Hyperspectral Image Denoising Using Global Weighted Tensor Norm Minimum and Nonlocal Low-Rank Approximation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Motivation
2.2. The Low-Rankness Approximation of Nonlocal Similar Patches Groups
2.3. Proposed Method
3. Optimization Procedure and Algorithm Results
Algorithm 1. Proposed method for HSI denoising |
Input: Noisy HSI Output: Denoised HSI Initialization: Set parameters α, β, λ, μ, η, R1 = ceil(h ×0.6) and R2 = ceil(d×0.6); is initialized by (R1, R2, R3)-Tucker approximation of , here ceil(a) indicates the smallest integer larger than a. Other variables are initialized by 0. 1: while not converged do 2: updating via 3: updating via 4: updating via 5: updating via 6: updating via 7: updating via 8: updating via 9: updating via , where 10: updating α=1.05α, β=1.05β 11: end while |
4. Experimental Results and Discussion
4.1. Experiment on Simulated Noisy Data
4.2. Real HSI Denoising
4.3. Compare of Computational Costs
4.4. Parameter Selection and Analysis of Convergence
4.5. Analysis of Convergence
4.6. A comparison of State-of-the-Art Clustering Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Optimization Process of Algorithm 1
References
- Rasti, B.; Scheunders, P.; Ghamisi, P.; Licciardi, G.; Chanussot, J. Noise Reduction in Hyperspectral Imagery: Overview and Application. Remote Sens. 2018, 10, 482. [Google Scholar] [CrossRef]
- Han, J.; Zhang, D.; Cheng, G.; Guo, L.; Ren, J. Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3325–3337. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Tao, D.; Huang, X. On Combining Multiple Features for Hyperspectral Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 879–893. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Huang, Y.; Zhang, L. Hyperspectral image classification by nonlocal joint collaborative representation with a locally adaptive dictionary. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3707–3719. [Google Scholar] [CrossRef]
- Fang, L.; Li, S.; Kang, X.; Benediktsson, J.A. Spectral–spatial hyperspectral image classification via multiscale adaptive sparse representation. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7738–7749. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, G.; Jie, F.; Gao, S.; Chen, C.; Pan, Q. Unsupervised Classification of Spectropolarimetric Data by Region-Based Evidence Fusion. IEEE Geosci. Remote Sens. Lett. 2011, 8, 755–759. [Google Scholar] [CrossRef]
- Makantasis, K.; Doulamis, A.D.; Doulamis, N.D.; Nikitakis, A. Tensor-based classification models for hyperspectral data analysis. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6884–6898. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4085–4098. [Google Scholar] [CrossRef]
- Yi, C.; Zhao, Y.Q.; Yang, J.; Chan, J.C.W.; Kong, S.G. Joint Hyperspectral Super-Resolution and Unmixing with Interactive Feedback. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3823–3834. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.-Q.; Chan, J.C.-W.; Kong, S.G. Coupled Sparse Denoising and Unmixing with Low Rank Constraint for Hyper-spectral Image. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1818–1833. [Google Scholar] [CrossRef]
- Gao, S.B.; Cheng, Y.M.; Zhao, Y.Q.; Xiao, L.-P. Data-driven quadratic correlation filter using sparse coding for infrared targets detection. J. Infrared Millim. Waves 2014, 33, 498–506. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, Y.; Liao, W.; Chan, J.C.-W. Hyper-Laplacian Regularized Nonlocal Low-rank Matrix Recovery for Hyperspectral Image Compressive Sensing Reconstruction. Inf. Sci. 2019, 501, 406–420. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, Y.; Liao, W.; Chan, J.C.-W. Total Variation and Rank-1 Constraint RPCA for Background Subtraction. IEEE Access 2018, 6, 49955–49966. [Google Scholar] [CrossRef]
- Yi, C.; Zhao, Y.Q.; Chan, J.C.W. Spectral super-resolution for multispectral image based on spectral improvement strategy and spatial preservation strategy. IEEE Trans. Geosci. Remote Sens. 2019, 1–15. [Google Scholar] [CrossRef]
- Shomorony, I.; Avestimehr, A.S. Worst-Case Additive Noise in Wireless Networks. IEEE Trans. Inf. Theory 2013, 59, 3833–3847. [Google Scholar] [CrossRef] [Green Version]
- Kolda, T.G.; Bader, B.W. Tensor decompositions and applications. J. SIAM Rev. 2005, 66, 294–310. [Google Scholar] [CrossRef]
- Lathauwer, L.D.; Moor, B.D.; Vandewalle, J. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 2000, 21, 1253–1278. [Google Scholar] [CrossRef]
- Aggarwal, H.K.; Majumdar, A. Hyperspectral Image Denoising Using Spatio-Spectral Total Variation. IEEE Geosci. Remote Sens. Lett. 2016, 13, 442–446. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.-M. A non-local algorithm for image denoising. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; pp. 60–65. [Google Scholar] [CrossRef]
- Elad, M.; Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 2006, 15, 3736–3745. [Google Scholar] [CrossRef] [PubMed]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef]
- Rasti, B.; Ulfarsson, M.O.; Ghamisi, P. Automatic Hyperspectral Image Restoration Using Sparse and Low-Rank Modeling. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2335–2339. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.Q.; Yang, J. Hyperspectral Image Denoising via Sparse Representation and Low-Rank Constraint. IEEE Trans. Geosci. Remote Sens. 2015, 53, 296–308. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, Y.; Liao, W.; Chan, J.C.-W. Nonlocal Tensor Sparse Representation and Low-Rank Regularization for Hyperspectral Image Compressive Sensing Reconstruction. Remote Sens. 2019, 11, 193. [Google Scholar] [CrossRef]
- Renard, N.; Bourennane, S.; Blanc-Talon, J. Denoising and dimensionality reduction using multilinear tools for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2008, 5, 138–142. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, Y.; Liao, W.; Kong, S.G. Joint Spatial and Spectral Low-Rank Regularization for Hyperspectral Image Denoising. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1940–1958. [Google Scholar] [CrossRef]
- Liu, X.; Bourennane, S.; Fossati, C. Denoising of hyperspectral images using the parafac model and statistical performance analysis. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3717–3724. [Google Scholar] [CrossRef]
- Sena, M.M.; Trevisan, M.G.; Poppi, R.J. Parallel factor analysis. In Practical Three-Way Calibration; Elsevier: Amsterdam, The Netherlands, 2005; pp. 109–125. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, Y.; Liao, W.; Chan, J.C.-W. Nonconvex tensor rank minimization and its applications to tensor recovery. Inf. Sci. 2019, 503, 109–128. [Google Scholar] [CrossRef]
- Xie, Q.; Zhao, Q.; Meng, D.; Xu, Z.; Gu, S.; Zuo, W.; Zhang, L. Multispectral Images Denoising by Intrinsic Tensor Sparsity Regularization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1692–1700. [Google Scholar] [CrossRef]
- Peng, Y.; Meng, D.; Xu, Z.; Gao, C.; Yang, Y.; Zhang, B. Decomposable Nonlocal Tensor Dictionary Learning for Multispectral Image Denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2949–2956. [Google Scholar] [CrossRef]
- Drineas, P.; Mahoney, M.W. A randomized algorithm for a tensor-based generalization of the singular value decomposition. Linear Algebra Appl. 2007, 420, 553–571. [Google Scholar] [CrossRef] [Green Version]
- Buades, A.; Coll, B.; Morel, J.-M. A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 2005, 4, 490–530. [Google Scholar] [CrossRef]
- Yan, L.; Fang, H.; Zhong, S.; Zhang, Z.; Chang, Y. Weighted Low-rank Tensor Recovery for Hyperspectral Image Restoration. arXiv 2017, arXiv:1709.00192. [Google Scholar]
- Hao, R.; Su, Z. A patch-based low-rank tensor approximation model for multiframe image denoising. J. Comput. Appl. Math. 2018, 329, 125–133. [Google Scholar] [CrossRef]
- Xue, J.; Zhao, Y.; Liao, W.; Chan, J.C.-W. Nonlocal Low-Rank Regularized Tensor Decomposition for Hyperspectral Image Denoising. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5174–5189. [Google Scholar] [CrossRef]
- Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted Nuclear Norm Minimization with Application to Image Denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2862–2869. [Google Scholar] [CrossRef]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, R.; Jin, Y.; Zhang, H. Fast image fusion based on alternating direction algorithms. In Proceedings of the 12th International Conference on Signal Processing, Alsace, France, 20–22 July, 2015; pp. 713–717. [Google Scholar] [CrossRef]
- Dong, W.; Li, G.; Shi, G.; Li, X.; Ma, Y. Low-Rank Tensor Approximation with Laplacian Scale Mixture Modeling for Multiframe Image Denoising. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 442–449. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, W.; Jin, T.; Mei, Z. Nonlocal image denoising via adaptive tensor nuclear norm minimization. Neural Comput. Appl. 2016, 29, 3–19. [Google Scholar] [CrossRef]
- Peng, X.; Lu, C.; Yi, Z.; Tang, H. Connections Between Nuclear Norm and Frobenius Norm Based Representations. IEEE Trans. Neural Netw. Learn. Syst. 2015, 29, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Feng, J.; Xiao, S.; Yau, W.Y.; Zhou, J.T.; Yang, S. Structured AutoEncoders for Subspace Clustering. IEEE Trans. Image Process. 2018, 27, 5076–5086. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Yu, Z.; Yi, Z.; Tang, H. Constructing the L2-Graph for Robust Subspace Learning and Subspace Clustering. IEEE Trans. Cybern. 2012, 47, 1053–1066. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Wald, L. Data Fusion: Definitions and Architectures. Fusion of Images of Different Spatial Resolutions; Presses de l’Ecole, Ecole des Mines de Paris: Paris, France, 2002. [Google Scholar]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. Fsim: A feature similarity index for image quality assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Chen, Y.; Fang, T.; Tang, H. Error analysis and improvements of spectral angle mapper (SAM) model. In MIPPR 2005: SAR and Multispectral Image Processing; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Yi, C.; Chan, J.C.W. No-Reference Hyperspectral Image Quality Assessment via Quality-Sensitive Features Learning. Remote Sens. 2017, 9, 305. [Google Scholar] [CrossRef]
Variance | Index | Noisy Image | LRTA | PARAFAC | TDL | t-SVD | ITSReg | HyRes | Proposed |
---|---|---|---|---|---|---|---|---|---|
0.1 | MERGAS | 235.618 | 80.934 | 205.254 | 58.892 | 66.516 | 66.400 | 53.142 | 51.285 |
MFSIM | 0.837 | 0.951 | 0.842 | 0.977 | 0.973 | 0.973 | 0.989 | 0.989 | |
MSSIM | 0.713 | 0.937 | 0.741 | 0.970 | 0.968 | 0.966 | 0.984 | 0.986 | |
MPSNR | 19.993 | 29.580 | 21.209 | 32.313 | 31.156 | 31.096 | 33.015 | 33.212 | |
MSAM | 0.3420 | 0.1258 | 0.1082 | 0.0776 | 0.0610 | 0.0602 | 0.0488 | 0.0481 | |
0.2 | MERGAS | 471.236 | 128.882 | 208.844 | 99.246 | 106.972 | 123.583 | 90.942 | 90.867 |
MFSIM | 0.711 | 0.908 | 0.839 | 0.951 | 0.941 | 0.925 | 0.961 | 0.967 | |
MSSIM | 0.452 | 0.870 | 0.732 | 0.931 | 0.922 | 0.895 | 0.944 | 0.951 | |
MPSNR | 13.973 | 25.354 | 21.057 | 27.619 | 26.910 | 25.630 | 27.983 | 28.375 | |
MSAM | 0.5428 | 0.1473 | 0.1112 | 0.0875 | 0.0717 | 0.0724 | 0.0681 | 0.0621 | |
0.3 | MERGAS | 706.855 | 165.924 | 214.940 | 132.553 | 142.304 | 164.568 | 125.017 | 124.803 |
MFSIM | 0.620 | 0.874 | 0.833 | 0.925 | 0.905 | 0.875 | 0.937 | 0.944 | |
MSSIM | 0.293 | 0.807 | 0.718 | 0.885 | 0.868 | 0.820 | 0.896 | 0.904 | |
MPSNR | 10.451 | 23.088 | 20.805 | 25.032 | 24.400 | 23.127 | 25.16 | 25.814 | |
MSAM | 0.6901 | 0.1402 | 0.1162 | 0.0898 | 0.0704 | 0.0727 | 0.0614 | 0.0698 |
Variance | Index | Noisy Image | LRTA | PARAFAC | TDL | t-SVD | ITSREG | HyRes | Proposed |
---|---|---|---|---|---|---|---|---|---|
0.1 | MERGAS | 304.984 | 89.666 | 253.521 | 69.326 | 79.281 | 76.134 | 63.81 | 64.371 |
MFSIM | 0.831 | 0.960 | 0.829 | 0.974 | 0.971 | 0.972 | 0.988 | 0.989 | |
MSSIM | 0.580 | 0.905 | 0.655 | 0.948 | 0.943 | 0.946 | 0.951 | 0.965 | |
MPSNR | 19.992 | 30.798 | 21.604 | 33.087 | 31.916 | 32.159 | 35.074 | 35.108 | |
MSAM | 0.514 | 0.124 | 0.167 | 0.086 | 0.093 | 0.083 | 0.064 | 0.068 | |
0.2 | MERGAS | 609.968 | 151.650 | 258.479 | 117.230 | 127.088 | 140.455 | 111.057 | 110.847 |
MFSIM | 0.698 | 0.911 | 0.825 | 0.944 | 0.937 | 0.924 | 0.957 | 0.960 | |
MSSIM | 0.348 | 0.802 | 0.643 | 0.887 | 0.882 | 0.869 | 0.904 | 0.915 | |
MPSNR | 13.972 | 26.119 | 21.435 | 28.443 | 27.676 | 26.777 | 29.684 | 29.975 | |
MSAM | 0.775 | 0.175 | 0.177 | 0.1104 | 0.108 | 0.103 | 0.098 | 0.091 | |
0.3 | MERGAS | 914.952 | 201.083 | 266.740 | 155.195 | 168.758 | 191.443 | 146.910 | 146.281 |
MFSIM | 0.604 | 0.871 | 0.819 | 0.914 | 0.900 | 0.875 | 0.907 | 0.928 | |
MSSIM | 0.224 | 0.719 | 0.625 | 0.833 | 0.821 | 0.791 | 0.851 | 0.862 | |
MPSNR | 10.450 | 23.630 | 21.160 | 25.930 | 25.168 | 24.060 | 27.021 | 27.380 | |
MSAM | 0.934 | 0.184 | 0.191 | 0.117 | 0.112 | 0.112 | 0.115 | 0.103 |
LRTA | PARAFAC | TDL | t-SVD | ITSReg | HyRes | Proposed | |
---|---|---|---|---|---|---|---|
NHQA | 27.3619 | 27.4287 | 27.1911 | 27.1038 | 27.1360 | 26.9105 | 26.8241 |
Size | LRTA | PARAFAC | t-SVD | TDL | ITSReg | HyRes | Proposed | |
---|---|---|---|---|---|---|---|---|
WDC | 341 × 307 × 160 | 48 | 269 | 4.2306 × 104 | 113 | 10.6579 × 104 | 159 | 9.16 × 104 |
URBAN | 301 × 201 × 162 | 27 | 132 | 0.2531 × 104 | 45 | 1.0631 × 104 | 136 | 4.921 × 104 |
Indian Pine | 145 × 145 × 220 | 104 | 2237 | 0.1968 × 104 | 175 | 0.5053 × 104 | 182 | 2.184×104 |
Proposed Approach | Approach of [7] | Traditional Deep Learning | |
---|---|---|---|
layer of prior | single | single | multi |
time cost | low | low | high |
Learning method | on-line | on-line | off-line |
decomposition | tucker | rank-1 canonical | — |
labeled training samples | — | large number | large number |
tunable parameters | small | small | huge |
spatial and spectral structure | integrated | integrated | destroyed |
computational complexity | low | low | high |
classification accuracy | low | high | high |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, X.; Zhao, Y.; Xue, J.; Chan, J.C.-W. Hyperspectral Image Denoising Using Global Weighted Tensor Norm Minimum and Nonlocal Low-Rank Approximation. Remote Sens. 2019, 11, 2281. https://doi.org/10.3390/rs11192281
Kong X, Zhao Y, Xue J, Chan JC-W. Hyperspectral Image Denoising Using Global Weighted Tensor Norm Minimum and Nonlocal Low-Rank Approximation. Remote Sensing. 2019; 11(19):2281. https://doi.org/10.3390/rs11192281
Chicago/Turabian StyleKong, Xiangyang, Yongqiang Zhao, Jize Xue, and Jonathan Cheung-Wai Chan. 2019. "Hyperspectral Image Denoising Using Global Weighted Tensor Norm Minimum and Nonlocal Low-Rank Approximation" Remote Sensing 11, no. 19: 2281. https://doi.org/10.3390/rs11192281