A Bidirectional Analysis Method for Extracting Glacier Crevasses from Airborne LiDAR Point Clouds
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Experimental Datasets
3. Methodology
3.1. Crevasse Point Detection Using a Hybrid-Entity Method
3.1.1. Representation of Point Clouds Based on Hybrid Entities
3.1.2. Separation of Crevasse Points from Non-Crevasse Points
3.2. Crevasse Edges/Regions Detection Using a Local Statistical Analysis Method
3.2.1. A Novel Feature: The Longest Triangle Edge Within the One Ring Neighborhood (LTE_ORN)
3.2.2. Extracting Crevasse Edges Based on an Adaptive Threshold Using DBSCAN
3.3. Refining the Crevasse Points/Regions Using a Cross-Analysis Method
4. Results and Performance Analysis
4.1. Experimental Results
4.2. Performance Analysis of the Proposed Method
4.2.1. Parameter Sensitivity Analysis
4.2.2. The Importance Evaluation of the Horizontal Analysis
4.2.3. Comparison with a Morphological Method Based on the LiDAR DEM
5. Discussion
5.1. Advantages and Limitations of the Proposed Method
5.2. Potential of the Crevasse Detection Result in the Estimation of the Crevasse Depth
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vaughan, D.G. Relating the occurrence of crevasses to surface strain rates. J. Glaciol. 1993, 39, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Campbell, S.; Roy, S.; Kreutz, K.; Arcone, S.A.; Osterberg, E.C.; Koons, P. Strain-rate estimates for crevasse formation at an alpine ice divide: Mount Hunter, Alaska. Ann. Glaciol. 2013, 54, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Colgan, W.; Steffen, K.; McLamb, W.S.; Abdalati, W.; Rajaram, H.; Motyka, R.; Phillips, T.; Anderson, R. An increase in crevasse extent, West Greenland: Hydrologic implications. Geophys. Res. Lett. 2011, 38, L18502. [Google Scholar] [CrossRef]
- Fountain, A.G.; Jacobel, R.W.; Schlichting, R.; Jansson, P. Fractures as the main pathways of water flow in temperate glaciers. Nature 2005, 433, 618–620. [Google Scholar] [CrossRef] [PubMed]
- Benn, D.; Gulley, J.; Luckman, A.; Adamek, A.; Glowacki, P.S. Englacial drainage systems formed by hydrologically driven crevasse propagation. J. Glaciol. 2009, 55, 513–523. [Google Scholar] [CrossRef] [Green Version]
- Das, S.B.; Joughin, I.; Behn, M.D.; Howat, I.M.; King, M.A.; Lizarralde, D.; Bhatia, M.P. Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science 2008, 320, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Mottram, R.H.; Benn, D.I. Testing crevasse-depth models: A field study at Breiðamerkurjökull, Iceland. J. Glaciol. 2009, 55, 746–752. [Google Scholar] [CrossRef]
- Benn, D.I.; Warren, C.R.; Mottram, R.H. Calving processes and the dynamics of calving glaciers. Earth-Sci. Rev. 2007, 82, 143–179. [Google Scholar] [CrossRef]
- Colgan, W.; Rajaram, H.; Abdalati, W.; McCutchan, C.; Mottram, R.; Moussavi, M.S.; Grigsby, S. Glacier crevasses: Observations, models, and mass balance implications. Rev. Geophys. 2016, 54, 119–161. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Bhardwaj, A.; Javier Martin-Torres, F. LiDAR remote sensing of the cryosphere: Present applications and future prospects. Remote Sens. Environ. 2016, 177, 125–143. [Google Scholar] [CrossRef]
- Fricker, H.A. Multi-year monitoring of rift propagation on the Amery Ice Shelf, East Antarctica. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Cheng, X.; Hui, F.; Wang, X.; Wang, F.; Cheng, C. Detection of crevasses over polar ice shelves using Satellite Laser Altimeter. Sci. China Earth Sci. 2014, 57, 1267–1277. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Singh, S.; Kumar, R. Automated detection and temporal monitoring of crevasses using remote sensing and their implications for glacier dynamics. Ann. Glaciol. 2016, 57, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Dall’Asta, E.; Forlani, G.; Roncella, R.; Santise, M.; Diotri, F.; Morra di Cella, U. Unmanned Aerial Systems and DSM matching for rock glacier monitoring. ISPRS J. Photogramm. Remote Sens. 2017, 127, 102–114. [Google Scholar] [CrossRef]
- Kääb, A. Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: Examples using digital aerial imagery and ASTER data. ISPRS J. Photogramm. Remote Sens. 2002, 57, 39–52. [Google Scholar] [CrossRef]
- Pieczonka, T.; Bolch, T.; Buchroithner, M. Generation and evaluation of multitemporal digital terrain models of the Mt. Everest area from different optical sensors. ISPRS J. Photogramm. Remote Sens. 2011, 66, 927–940. [Google Scholar] [CrossRef]
- Shean, D.E.; Alexandrov, O.; Moratto, Z.M.; Smith, B.E.; Joughin, I.R.; Porter, C.; Morin, P. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS J. Photogramm. Remote Sens. 2016, 116, 101–117. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Xiao, H.; Liu, S.; Tong, X. A Systematic Study of the Fracturing of Ronne—Filchner Ice Shelf, Antarctica, Using Multisource Satellite Data from 2001 to 2016. Cryosphere Discuss. 2017. [Google Scholar] [CrossRef]
- Ryan, J.C.; Hubbard, A.L.; Box, J.E.; Todd, J.; Christoffersen, P.; Carr, J.R.; Holt, T.O.; Snooke, N. UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet. Cryosphere 2015, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Höfle, B.; Geist, T.; Rutzinger, M.; Pfeifer, N. Glacier surface segmentation using airborne laser scanning point cloud and intensity data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2007, 36 Pt 3, W52. [Google Scholar]
- Fritzmann, P.; Höfle, B.; Vetter, M.; Sailer, R.; Stötter, J.; Bollmann, E. Surface classification based on multi-temporal airborne LiDAR intensity data in high mountain environments: A case study from Hintereisferner, Austria. Z. Geomorphol. Suppl. Issues 2011, 55, 105–126. [Google Scholar] [CrossRef]
- Kodde, M.; Pfeifer, N.; Gorte, B.; Geist, T.; Höfle, B. Automatic glacier surface analysis from airborne laser scanning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2007, 36 Pt 3, 221–226. [Google Scholar]
- Yang, B.; Huang, R.; Dong, Z.; Zang, Y.; Li, J. Two-step adaptive extraction method for ground points and breaklines from lidar point clouds. ISPRS J. Photogramm. Remote Sens. 2016, 119, 373–389. [Google Scholar] [CrossRef]
- Foroutan, M.; Marshall, S.J.; Menounos, B. Automatic mapping and geomorphometry extraction technique for crevasses in geodetic mass-balance calculations at Haig Glacier, Canadian Rockies. J. Glaciol. 2019, 1–12. [Google Scholar] [CrossRef]
- Telling, J.; Glennie, C.; Fountain, A.; Finnegan, D. Analyzing glacier surface motion using LiDAR data. Remote Sens. 2017, 9, 283. [Google Scholar] [CrossRef]
- Arnold, N.; Rees, W.; Devereux, B.; Amable, G. Evaluating the potential of high-resolution airborne LiDAR data in glaciology. Int. J. Remote Sens. 2006, 27, 1233–1251. [Google Scholar] [CrossRef]
- Li, J.; Yang, B.; Cong, Y.; Cao, L.; Fu, X.; Dong, Z. 3D Forest Mapping Using A Low-Cost UAV Laser Scanning System: Investigation and Comparison. Remote Sens. 2019, 11, 717. [Google Scholar] [CrossRef]
- Johannesson, T.; Bjornsson, H.; Palsson, F.; Sigurdsson, O.; Porsteinsson, P. LiDAR mapping of the Snaefellsjokull ice cap, western Iceland. Jokull 2011, 61, 19–32. [Google Scholar]
- Larsen, C. IceBridge UAF Lidar Scanner L1B Geolocated Surface Elevation Triplets, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2018.
- Van der Veen, C. Crevasses on glaciers. Polar Geogr. 1999, 23, 213–245. [Google Scholar] [CrossRef]
- Vosselman, G.; Coenen, M.; Rottensteiner, F. Contextual segment-based classification of airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 2017, 128, 354–371. [Google Scholar] [CrossRef]
- Huang, R.; Jiang, L.; Shen, X.; Dong, Z.; Zhou, Q.; Yang, B.; Wang, H. An efficient method of monitoring slow-moving landslides with long-range terrestrial laser scanning: A case study of the Dashu landslide in the Three Gorges Reservoir Region, China. Landslides 2019, 16, 839–855. [Google Scholar] [CrossRef]
- Yang, B.; Dong, Z.; Liu, Y.; Liang, F.; Wang, Y. Computing multiple aggregation levels and contextual features for road facilities recognition using mobile laser scanning data. ISPRS J. Photogramm. Remote Sens. 2017, 126, 180–194. [Google Scholar] [CrossRef]
- Huang, R.; Yang, B.; Liang, F.; Dai, W.; Li, J.; Tian, M.; Xu, W. A top-down strategy for buildings extraction from complex urban scenes using airborne LiDAR point clouds. Infrared Phys. Technol. 2018, 92, 203–218. [Google Scholar] [CrossRef]
- Tóvári, D.; Pfeifer, N. Segmentation based robust interpolation-a new approach to laser data filtering. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2005, 36, 79–84. [Google Scholar]
- Edelsbrunner, H.; Mücke, E.P. Three-dimensional alpha shapes. ACM Trans. Graph. (TOG) 1994, 13, 43–72. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the International Conference on Knowledge Discovery and Data Mining (KDD96), Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Rodriguez, F.; Maire, E.; Courjault-Rade, P.; Darrozes, J. The Black Top Hat function applied to a DEM: A tool to estimate recent incision in a mountainous watershed (Estibere Watershed, Central Pyrenees). Geophys. Res. Lett. 2002, 29, 9-1–9-4. [Google Scholar] [CrossRef]
- Emetc, V.; Tregoning, P.; Morlighem, M.; Borstad, C.; Sambridge, M. A statistical fracture model for Antarctic ice shelves and glaciers. The Cryosphere 2018, 12, 3187–3213. [Google Scholar] [CrossRef] [Green Version]
- Enderlin, E.M.; Bartholomaus, T.C. Poor performance of a common crevasse model at marine-terminating glaciers. The Cryosphere Discuss. 2019, 1–19. [Google Scholar] [CrossRef] [Green Version]
Item | Value |
---|---|
Scanning system | Riegl LMS-Q240i |
Laser wavelength | 905 nm |
Height above ground (HAG) | 500–600 m |
Footprint size | ~20 cm |
Horizontal and vertical accuracies of points | ±30 cm |
Pulse repetition frequency | 20 kHz |
Average point spacing | ~1 m |
Parameter | Value | Description |
---|---|---|
30.0 m | The neighborhood size for obtainding non-crevasse seed points. | |
0.5 m | The height threshold for extracting individual crevasse points. | |
45.0° | The angle threshold for describing the vertical or near-vertical crevasse sidewalls. | |
8.0 m | The neighborhood size for the local statistical analysis. | |
0.3 m | The error term of the adaptive distance threshold. | |
5 | To remove the pseudo crevasse regions using the corresponding crevasse points. |
TP/m2 | FP/m2 | FN/m2 | Recall/% | Precision/% | F1/% | |
---|---|---|---|---|---|---|
Site 1 | 49,058.3 | 1778.5 | 787.3 | 98.42 | 96.50 | 97.45 |
Site 2 | 87,550.7 | 5191.4 | 4774.8 | 94.83 | 94.40 | 94.61 |
Interpolation Method | Extraction Method | TP/m2 | FP/m2 | FN/m2 | Recall/% | Precision/% | F1/% |
---|---|---|---|---|---|---|---|
IDW | SS | 77,425.7 | 56,009.4 | 14,899.8 | 83.86 | 58.02 | 68.59 |
MS | 72,429.4 | 37,956.2 | 19,896.1 | 78.45 | 65.61 | 71.46 | |
TIN | SS | 78,605.1 | 50,786.3 | 13,720.4 | 85.14 | 60.75 | 70.91 |
MS | 75,446.5 | 36,427.1 | 16,879.0 | 81.72 | 67.44 | 73.90 | |
NN | SS | 63,265.6 | 49,280.1 | 29,059.9 | 68.52 | 56.21 | 61.76 |
MS | 59,616.6 | 33,434.7 | 32,708.9 | 64.57 | 64.07 | 64.32 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, R.; Jiang, L.; Wang, H.; Yang, B. A Bidirectional Analysis Method for Extracting Glacier Crevasses from Airborne LiDAR Point Clouds. Remote Sens. 2019, 11, 2373. https://doi.org/10.3390/rs11202373
Huang R, Jiang L, Wang H, Yang B. A Bidirectional Analysis Method for Extracting Glacier Crevasses from Airborne LiDAR Point Clouds. Remote Sensing. 2019; 11(20):2373. https://doi.org/10.3390/rs11202373
Chicago/Turabian StyleHuang, Ronggang, Liming Jiang, Hansheng Wang, and Bisheng Yang. 2019. "A Bidirectional Analysis Method for Extracting Glacier Crevasses from Airborne LiDAR Point Clouds" Remote Sensing 11, no. 20: 2373. https://doi.org/10.3390/rs11202373
APA StyleHuang, R., Jiang, L., Wang, H., & Yang, B. (2019). A Bidirectional Analysis Method for Extracting Glacier Crevasses from Airborne LiDAR Point Clouds. Remote Sensing, 11(20), 2373. https://doi.org/10.3390/rs11202373