UVSQ-SAT, a Pathfinder CubeSat Mission for Observing Essential Climate Variables
Abstract
:1. Introduction
2. Scientific Rationale of the UVSQ-SAT Mission
2.1. Earth’s Energy Imbalance
2.2. Solar Spectral Irradiance in the Herzberg Continuum
2.3. Scientific Requirements
3. Materials and Methods
3.1. The Space Segment: The UVSQ-SAT CubeSat Platform
3.2. The Space Segment: The UVSQ-SAT CubeSat Payload
3.2.1. The ERS Sensors
3.2.2. The DEVINS Sensors
3.2.3. The TW Sensor
3.3. The Ground Segment: The UHF/VHF Station
3.4. UVSQ-SAT Mission Concept of Operations
- Operations before launch and for launch.
- Launch early operations and satellite platform in-orbit verification: deployment of UVSQ-SAT from the CubeSat deployer, automatic activation of the satellite by separation switches, automatic initialization of the onboard software a few seconds after the satellite separation, deployment of deployable structures (antenna), automatic satellite ADCS activation to perform autonomous detumbling of the spacecraft, verification of the link between the ground and satellite, restitution of the satellite orbit thanks to the first visibilities, check that all platform satellite services are running, payload switch-on, and check that all payload instruments are functional.
- Instrument in-orbit verification and operations: preliminary configuration, operational configuration of the satellite, Calibration/Validation (CalVal) of the payload instruments and comparisons with payload ground based calibration (ERS (responsivity, solar absorption (200 to 2500 nm), normal emittance (around 10 m), bidirectional reflectance distribution function for different angle of incidence, etc.), DEVINS (responsivity, slit function of the sensor, calibrations against national SI standards, etc.), etc.), and validation of the performances. In “routine”, the CubeSat will observe the Earth and the Sun full time. Each month, a calibration will be done to characterize the angular responsivity of the sensors (ERS and DEVINS).
- End of life of the UVSQ-SAT CubeSat.
4. Results
- Use of CERES data (1× 1 latitude-longitude geographic grid, monthly mean) to have an initial map of Earth’s net radiation for analysis. Then, we considered that this map corresponded to Earth’s net radiation “real” map at time t (Figure 6, left upper panel). This map illustrates the fundamental imbalance between net radiation surpluses at the Equator and net radiation deficits at high latitudes.
- We calculated the UVSQ-SAT CubeSat ground-track (SSO LEO orbit) for a given period (Figure 6, right upper panel).
- We considered that the maximum angle of view of the UVSQ-SAT sensors can effectively detect the net radiation in a ground area of 1× 1 along the ground-track and for a given acquisition integration time. Then, we obtained Earth’s net radiation associated with the sensors’ observations. Finally, we performed an interpolation (Delaunay triangulation) on the scattered dataset that resided in 2D space to obtain Earth’s net radiation based on UVSQ-SAT observations for a given time period (Figure 6, left middle and bottom panels).
5. Final Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Meftah, M.; Keckhut, P.; Damé, L.; Bekki, S.; Sarkissian, A.; Hauchecorne, A. Think the way to measure the Earth Radiation Budget and the Total Solar Irradiance with a small satellites constellation. In Proceedings of the Sensors and Systems for Space Applications XI, Orlando, FL, USA, 16–17 April 2018; Volume 10641, p. 106410S. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T. Tracking Earth’s Energy. Science 2010, 328, 316–317. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D.J.; Bove, P.; Arrateig, X.; Sandana, V.E.; Teherani, F.H.; Razeghi, M.; McClintock, R.; Frisch, E.; Harel, S. The new oxide paradigm for solid state ultraviolet photodetectors. In Proceedings of the Oxide-Based Materials and Devices IX, San Francisco, CA, USA, 28 January–1 February 2018; Volume 10533, p. 105331P. [Google Scholar] [CrossRef]
- Blunden, J.; Arndt, D.S. State of the Climate in 2018. Bull. Am. Meteorol. Soc. 2019, 100, Si-S306. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Nazarenko, L.; Ruedy, R.; Sato, M.; Willis, J.; Del Genio, A.; Koch, D.; Lacis, A.; Lo, K.; Menon, S.; et al. Earth’s Energy Imbalance: Confirmation and Implications. Science 2005, 308, 1431–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Schuckmann, K.; Palmer, M.D.; Trenberth, K.E.; Cazenave, A.; Chambers, D.; Champollion, N.; Hansen, J.; Josey, S.A.; Loeb, N.; Mathieu, P.P.; et al. An imperative to monitor Earth’s energy imbalance. Nat. Clim. Chang. 2016, 6, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Meyssignac, B.; Boyer, T.; Zhao, Z.; Hakuba, M.Z.; Landerer, F.W.; Stammer, D.; Köhl, A.; Kato, S.; L’Ecuyer, T.; Ablain, M.; et al. Measuring Global Ocean Heat Content to Estimate the Earth Energy Imbalance. Front. Mar. Sci. 2019, 6, 432. [Google Scholar] [CrossRef] [Green Version]
- Swartz, W.; Lorentz, S.; Papadakis, S.; Huang, P.; Smith, A.; Deglau, D.; Yu, Y.; Reilly, S.; Reilly, N.; Anderson, D. RAVAN: CubeSat Demonstration for Multi-Point Earth Radiation Budget Measurements. Remote Sens. 2019, 11, 796. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Sato, M.; Kharecha, P.; von Schuckmann, K. Earth’s energy imbalance and implications. Atmos. Chem. Phys. 2011, 11, 13421–13449. [Google Scholar] [CrossRef] [Green Version]
- Stephens, G.L.; Li, J.; Wild, M.; Clayson, C.A.; Loeb, N.; Kato, S.; L’Ecuyer, T.; Stackhouse, P.W.; Lebsock, M.; Andrews, T. An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci. 2012, 5, 691–696. [Google Scholar] [CrossRef]
- Allan, R.P.; Liu, C.; Loeb, N.G.; Palmer, M.D.; Roberts, M.; Smith, D.; Vidale, P.L. Changes in global net radiative imbalance 1985–2012. Geophys. Res. Lett. 2014, 41, 5588–5597. [Google Scholar] [CrossRef]
- Wild, M.; Ohmura, A.; Schär, C.; Müller, G.; Folini, D.; Schwarz, M.; Hakuba, M.Z.; Sanchez-Lorenzo, A. The Global Energy Balance Archive (GEBA) version 2017: A database for worldwide measured surface energy fluxes. Earth Syst. Sci. Data 2017, 9, 601–613. [Google Scholar] [CrossRef] [Green Version]
- Johnson, G.C.; Lyman, J.M.; Loeb, N.G. Improving estimates of Earth’s energy imbalance. Nat. Clim. Chang. 2016, 6, 639–640. [Google Scholar] [CrossRef]
- Loeb, N.G.; Doelling, D.R.; Wang, H.; Su, W.; Nguyen, C.; Corbett, J.G.; Liang, L.; Mitrescu, C.; Rose, F.G.; Kato, S. Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product. J. Clim. 2018, 31, 895–918. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T., Qin, D., Plattner, G.K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., Eds.; Book Section SPM; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1–30. [Google Scholar] [CrossRef]
- Zelinka, M.D.; Randall, D.A.; Webb, M.J.; Klein, S.A. Clearing clouds of uncertainty. Nat. Clim. Chang. 2017, 7, 674–678. [Google Scholar] [CrossRef]
- Meftah, M.; Damé, L.; Bolsée, D.; Hauchecorne, A.; Pereira, N.; Sluse, D.; Cessateur, G.; Irbah, A.; Bureau, J.; Weber, M.; et al. SOLAR-ISS: A new reference spectrum based on SOLAR/SOLSPEC observations. Astron. Astrophys. 2018, 611, A1. [Google Scholar] [CrossRef]
- Gray, L.J.; Beer, J.; Geller, M.; Haigh, J.D.; Lockwood, M.; Matthes, K.; Cubasch, U.; Fleitmann, D.; Harrison, G.; Hood, L.; et al. Solar Influences on Climate. Rev. Geophys. 2010, 48, RG4001. [Google Scholar] [CrossRef]
- Adolphi, F.; Muscheler, R.; Svensson, A.; Aldahan, A.; Possnert, G.; Beer, J.; Sjolte, J.; Björck, S.; Matthes, K.; Thiéblemont, R. Persistent link between solar activity and Greenland climate during the Last Glacial Maximum. Nat. Geosci. 2014, 7, 662–666. [Google Scholar] [CrossRef]
- Field, C.; Barros, V.; Mach, K.; Mastrandrea, M.; Aalst, M.; Adger, W.; Arent, D.; Barnett, J.; Betts, R.; Bilir, T.; et al. Technical Summary. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Cambridge University Press: Cambridge, UK, 2015; Volume 1, pp. 35–94. [Google Scholar]
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V.; et al. Evaluation of climate models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Doschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 741–882. [Google Scholar] [CrossRef] [Green Version]
- Roth, R.; Joos, F. A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14C and CO2 records: Implications of data and model uncertainties. Clim. Past 2013, 9, 1879–1909. [Google Scholar] [CrossRef] [Green Version]
- Steinhilber, F.; Beer, J. Prediction of solar activity for the next 500 years. J. Geophys. Res. (Space Phys.) 2013, 118, 1861–1867. [Google Scholar] [CrossRef] [Green Version]
- Ermolli, I.; Matthes, K.; Dudok de Wit, T.; Krivova, N.A.; Tourpali, K.; Weber, M.; Unruh, Y.C.; Gray, L.; Langematz, U.; Pilewskie, P.; et al. Recent variability of the solar spectral irradiance and its impact on climate modelling. AtmChemPhys 2013, 13, 3945. [Google Scholar] [CrossRef] [Green Version]
- Sukhodolov, T.; Rozanov, E.; Ball, W.T.; Bais, A.; Tourpali, K.; Shapiro, A.E.I.; Telford, P.; Smyshlyaev, S.; Fomin, B.; Sander, R.; et al. Evaluation of simulated photolysis rates and their response to solar irradiance variability. J. Geophys. Res. (Atmospheres) 2016, 121, 6066–6084. [Google Scholar] [CrossRef] [Green Version]
- Thiéblemont, R.; Marchand, M.; Bekki, S.; Bossay, S.; Lefèvre, F.; Meftah, M.; Hauchecorne, A. Sensitivity of the tropical stratospheric ozone response to the solar rotational cycle in observations and chemistry-climate model simulations. Atmos. Chem. Phys. 2017, 17, 9897–9916. [Google Scholar] [CrossRef] [Green Version]
- Arsenovic, P.; Rozanov, E.; Anet, J.; Stenke, A.; Schmutz, W.; Peter, T. Implications of potential future grand solar minimum for ozone layer and climate. Atmos. Chem. Phys. 2018, 18, 3469–3483. [Google Scholar] [CrossRef] [Green Version]
- Kodera, K.; Kuroda, Y. A possible mechanism of solar modulation of the spatial structure of the North Atlantic Oscillation. J. Geophys. Res. (Atmospheres) 2005, 110, D02111. [Google Scholar] [CrossRef]
- Matthes, K.; Kuroda, Y.; Kodera, K.; Langematz, U. Transfer of the solar signal from the stratosphere to the troposphere: Northern winter. J. Geophys. Res. (Atmospheres) 2006, 111, D06108. [Google Scholar] [CrossRef] [Green Version]
- Chiodo, G.; Calvo, N.; Marsh, D.R.; Garcia-Herrera, R. The 11 year solar cycle signal in transient simulations from the Whole Atmosphere Community Climate Model. J. Geophys. Res. (Atmospheres) 2012, 117, D06109. [Google Scholar] [CrossRef]
- Swartz, W.H.; Stolarski, R.S.; Oman, L.D.; Fleming, E.L.; Jackman, C.H. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model. Atmos. Chem. Phys. Discuss. 2012, 12, 7039–7071. [Google Scholar] [CrossRef]
- Richard, E.; Harber, D.; Drake, G.; Rutkowsi, J.; Castleman, Z.; Smith, M.; Sprunck, J.; Zheng, W.; Smith, P.; Fisher, M.; et al. Compact spectral irradiance monitor flight demonstration mission. In Proceedings of the SPIE, San Diego, CA, USA, 11–15 August 2019; Volume 11131, p. 1113105. [Google Scholar] [CrossRef]
- Meftah, M.; Dominique, M.; BenMoussa, A.; Dammasch, I.E.; Bolsée, D.; Pereira, N.; Damé, L.; Bekki, S.; Hauchecorne, A. On-orbit degradation of recent space-based solar instruments and understanding of the degradation processes. In Proceedings of the SPIE, Anaheim, CA, USA, 9–13 April 2017; Volume 10196, p. 1019606. [Google Scholar] [CrossRef]
- BenMoussa, A.; Gissot, S.; Schühle, U.; Del Zanna, G.; Auchère, F.; Mekaoui, S.; Jones, A.R.; Walton, D.; Eyles, C.J.; Thuillier, G.; et al. On-Orbit Degradation of Solar Instruments. Sol. Phys. 2013, 288, 389–434. [Google Scholar] [CrossRef] [Green Version]
- Brasseur, G.P.; Solomon, S. Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere; Springer: New York, NY, USA, 2005; p. 3. [Google Scholar]
- Meftah, M.; Bolsée, D.; Damé, L.; Hauchecorne, A.; Pereira, N.; Bekki, S.; Cessateur, G.; Foujols, T.; Thiéblemont, R. Solar Irradiance from 165 to 400 nm in 2008 and UV Variations in Three Spectral Bands During Solar Cycle 24. Sol. Phys. 2016, 291, 3527–3547. [Google Scholar] [CrossRef] [Green Version]
- Yeo, K.L.; Krivova, N.A.; Solanki, S.K.; Glassmeier, K.H. Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI, and SDO/HMI observations. Astron. Astrophys. 2014, 570, A85. [Google Scholar] [CrossRef] [Green Version]
- Solanki, S.K.; Krivova, N.A.; Haigh, J.D. Solar Irradiance Variability and Climate. Annu. Rev. Astron. Astrophys. 2013, 51, 311–351. [Google Scholar] [CrossRef] [Green Version]
- Puig-Suari, J.; Schoos, J.; Turner, C.; Wagner, T.; Connolly, R.; Block, R.P. CubeSat developments at Cal Poly: The standard deployer and PolySat. In Proceedings of the SPIE 4136, Small Payloads in Space, San Diego, CA, USA, 7 November 2000; Volume 4136, pp. 72–78. [Google Scholar] [CrossRef]
- Twiggs, R.J. Space system developments at Stanford University: From launch experience of microsatellites to the proposed future use of picosatellites. In Proceedings of the SPIE 4136, Small Payloads in Space, San Diego, CA, USA, 7 November 2000; Volume 4136, pp. 79–86. [Google Scholar] [CrossRef]
- Razeghi, M.; Park, J.H.; McClintock, R.; Pavlidis, D.; Teherani, F.H.; Rogers, D.J.; Magill, B.A.; Khodaparast, G.A.; Xu, Y.; Wu, J.; et al. A review of the growth, doping, and applications of Beta-Ga2O3 thin films. In Proceedings of the SPIE International Society for Optics and Photonics, Oxide-based Materials and Devices IX, San Francisco, CA, USA, 27 January–1 February 2018; Volume 10533, pp. 21–44. [Google Scholar] [CrossRef]
- Meftah, M.; Dewitte, S.; Irbah, A.; Chevalier, A.; Conscience, C.; Crommelynck, D.; Janssen, E.; Mekaoui, S. SOVAP/Picard, a Spaceborne Radiometer to Measure the Total Solar Irradiance. Sol. Phys. 2014, 289, 1885–1899. [Google Scholar] [CrossRef]
- Bolsée, D.; Pereira, N.; Gillotay, D.; Pandey, P.; Cessateur, G.; Foujols, T.; Bekki, S.; Hauchecorne, A.; Meftah, M.; Damé, L.; et al. SOLAR/SOLSPEC mission on ISS: In-flight performance for SSI measurements in the UV. Astron. Astrophys. 2017, 600, A21. [Google Scholar] [CrossRef] [Green Version]
- Meftah, M.; Bamas, É.; Cambournac, P.; Cherabier, P.; Demarets, R.; Denis, G.; Dion, A.; Duroselle, R.; Duveiller, F.; Eichner, L.; et al. SERB, a nano-satellite dedicated to the Earth-Sun relationship. In Proceedings of the SPIE 9838, Sensors and Systems for Space Applications IX, Baltimore, MD, USA, 17–21 April 2016; Volume 9838, p. 98380T. [Google Scholar] [CrossRef] [Green Version]
- Chandran, A.; Baker, D. INSPIRING a new generation of University small satellite missions for space science. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 7–12 April 2019; p. 12179. [Google Scholar]
- Wong, T.; Smith, G.L.; Kato, S.; Loeb, N.G.; Kopp, G.; Shrestha, A.K. On the Lessons Learned From the Operations of the ERBE Nonscanner Instrument in Space and the Production of the Nonscanner TOA Radiation Budget Data Set. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5936–5947. [Google Scholar] [CrossRef]
Requirements | Scientific Relevance | |
Essential Climate Variable (ECV) | Absolute uncertainty | Stability per decade |
EEI measurements | ±1 Wm at 1 | ±0.1 Wm at 1 |
SSI at 215 nm | ±1.7 10 Wmnm | ±3.4 10 Wmnm |
( ±0.5% at 1) | ( ±0.1% at 1) | |
Requirements | UVSQ-SAT Performances | |
Essential Climate Variable (ECV) | Absolute uncertainty | Stability per year |
EEI measurements | ±15 Wm at 1 | ±5 Wm at 1 |
SSI at 215 nm | ±8.5 10 Wmnm | ±1.7 10 Wmnm |
( ±2.5% at 1) | ( ±0.5% at 1) |
Properties | Value | Comments |
---|---|---|
Orbit | SSO | Maximum altitude of 600 km, LTAN of 10:30 |
Design lifetime | 1 year for LEO | 3 years desired |
Launch date | Q4 2020/Q1 2021 | Launch vehicle: Soyuz |
Size | 1U | 11.10 cm (X) × 11.10 cm (Y) × 11.35 cm (Z) |
Mass | 1.6 kg | Maximum with margins |
Solar cells | 12 | 3G30A solar cells provided by Azurspace |
Batteries | 22.5 Wh at 8 V | 2 Panasonic batteries (NCR18650B) with heaters |
Power generated | 2.2 W | Orbit average power per 1U area in LEO |
Power consumption | 1.6 W | Maximum orbit average with margins |
ADCS | 3 axis magnetometer | Measurements of the local Earth magnetic field |
(Appendix A) | 3 axis magnetorquer | 0.2 Am magnetic dipole |
6 SLCD-61N8 photodiodes | Coarse estimation of the Sun’s direction () | |
CDHS and OBC | 400 MHz, 32-bit ARM9 | Processor |
(Appendix A) | 32 MB SDRAM | Synchronous Dynamic Random Access Memory |
2×2 GB SD cards | Non-volatile Data Storage (SD card redundancy) | |
1 MB NOR flash memory | Code storage | |
IC, SPI, UARTs | UART is only used for debugging iOBC | |
Data downlink | 1.2/9.6 kbps | UHF BPSK (437.020 MHz) communication |
Data uplink | 9.6 kbps | VHF FSK (145.830 MHz) communication |
Ground contact station | Less than 1 hour per day | LATMOS station |
Redundancy stations | NCU (TW), ACRI-ST (FR) | Other stations: amateur radio partners |
Downlink UVSQ-SAT data | 1.8 Mbyte per day | Maximum during a day |
Uplink UVSQ-SAT data | 0.3 Mbyte per day | Maximum during a day |
Transponder | Link with amateur radio | Live retransmission of FM signals |
Payload | 12 ERS | EEI measurements |
4 DEVINS | UV SSI measurements | |
1 Teach’ Wear (TW) sensor | Accelerometer, gyroscope, and compass | |
Launch adapter | ISIPOD or Quadpack | CubeSat deployer with a satellite mass up to 2 kg |
Uncertainty Sources | Absolute Uncertainty | Determination Method |
---|---|---|
Emissivity (, ) | ±0.25% | Ground based calibration, BRDF |
Absorptivity (, ) | ±0.25% | Ground based calibration, BRDF |
Temperatures (, ) | ±0.01 Kelvin | Ground based calibration, in-flight validation |
Voltage (, ) | ±50 nV | Ground based calibration, in-flight validation |
Responsivity (, ) | ±0.25% | Ground based calibration, in-flight validation |
Satellite altitude (z) | ±0.1% | Orbital assessment |
±0.5 Wm | Space based radiometers observations | |
d | ±0.05% | IMCCE determinations |
±0.1% | Calculations, IMCCE determinations | |
±1% | Deep learning approach |
Parameter | Requirements |
---|---|
ERS signal range | −500 Wm to +1500 Wm |
(−100 V per Wm to +300 V per Wm) | |
ERS resolution | 18 bits (∼1.5 nV) |
ERS noise detection | ±0.25 Wm ( ±50 nV) |
ERS time response | < 50 ms |
Temperature range | −60 C to +90 C |
Resolution | 18 bits (5.7 10 C) |
Temperature noise | < ±0.1 C |
Acquisition time | Better than 10 s |
Parameter | Absolute Uncertainty | Stability per Year |
---|---|---|
OLR | ±10 Wm at 1 | ±1 Wm at 1 |
OSR | ±10 Wm at 1 | ±5 Wm at 1 |
TSI | ±0.5 Wm at 1 | < ±0.1 Wm at 1 |
EEI = TSI/4 − (OLR + OSR) | < ±15 Wm at 1 | ∼±5 Wm at 1 |
Parameter | Requirements |
---|---|
DEVINS signal range | 0 to 2.1 Wm (200–242 nm band) |
Target value: ∼1.4 Wm | |
Central wavelength | 220 ± 5 nm |
Full width at half maximum | 20 ± 2 nm |
Rejection | 10 in the 250–3000 nm band |
DEVINS resolution | 18 bits (∼0.03 nA) |
DEVINS noise detection | < 30 nA |
DEVINS time response | < 20 ms |
Acquisition integration time | Better than 10 s |
Parameter | Requirements |
---|---|
TW signal range | Accelerometer: ±2 g |
Gyroscope: ±250 deg | |
Compass: ±4912 T | |
TW resolution | 16 bits |
TW noise detection | Accelerometer: 230 g/ |
Gyroscope: 0.015 deg/s/ | |
DEVINS time response | <20 ms |
Acquisition integration time | 10 s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meftah, M.; Damé, L.; Keckhut, P.; Bekki, S.; Sarkissian, A.; Hauchecorne, A.; Bertran, E.; Carta, J.-P.; Rogers, D.; Abbaki, S.; et al. UVSQ-SAT, a Pathfinder CubeSat Mission for Observing Essential Climate Variables. Remote Sens. 2020, 12, 92. https://doi.org/10.3390/rs12010092
Meftah M, Damé L, Keckhut P, Bekki S, Sarkissian A, Hauchecorne A, Bertran E, Carta J-P, Rogers D, Abbaki S, et al. UVSQ-SAT, a Pathfinder CubeSat Mission for Observing Essential Climate Variables. Remote Sensing. 2020; 12(1):92. https://doi.org/10.3390/rs12010092
Chicago/Turabian StyleMeftah, Mustapha, Luc Damé, Philippe Keckhut, Slimane Bekki, Alain Sarkissian, Alain Hauchecorne, Emmanuel Bertran, Jean-Paul Carta, David Rogers, Sadok Abbaki, and et al. 2020. "UVSQ-SAT, a Pathfinder CubeSat Mission for Observing Essential Climate Variables" Remote Sensing 12, no. 1: 92. https://doi.org/10.3390/rs12010092
APA StyleMeftah, M., Damé, L., Keckhut, P., Bekki, S., Sarkissian, A., Hauchecorne, A., Bertran, E., Carta, J. -P., Rogers, D., Abbaki, S., Dufour, C., Gilbert, P., Lapauw, L., Vieau, A. -J., Arrateig, X., Muscat, N., Bove, P., Sandana, É., Teherani, F., ... Bui, A. (2020). UVSQ-SAT, a Pathfinder CubeSat Mission for Observing Essential Climate Variables. Remote Sensing, 12(1), 92. https://doi.org/10.3390/rs12010092