Magnitude Agreement, Occurrence Consistency, and Elevation Dependency of Satellite-Based Precipitation Products over the Tibetan Plateau
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sources
2.3. Evaluation Procedures and Performance Indicators
3. Results
3.1. Magnitude Agreement at Grid-Cell Scale
3.2. Magnitude Agreement at Watershed Scale
3.3. Hit-Missed-False Events
3.4. Elevation Dependency of Bias
3.5. Spatiotemporal Distribution
4. Discussion
4.1. Performance of the Satellite-Based Products
4.2. Implications for Precipitation Product Application
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Glossary
AMSR-E | Advanced Microwave Scanning Radiometer for the Earth Observing System |
AMSU-B | Advanced Microwave Sounding Unit-B |
AVHRR | Advanced Very High Resolution Radiometer |
CAMS | Climate Assessment and Monitoring System |
CCD | Cold Cloud Duration |
CHIRPS | Climate Hazards group InfraRed Precipitation with Stations |
CHPlim | Climate Hazards group Precipitation climatology |
CPC | Climate Prediction Center |
CMAP | CPC Merged Analysis of Precipitation |
CMORPH | CPC MORPHing technique |
COOP | COOPerative observer network |
DMSP | Defense Meteorological Satellite Program |
ERA | European centre for medium-Range weather forecasts reAnalysis systems |
FAO | Food and Agriculture Organization |
GEO | GEOstationary |
GHCN | Global Historical Climatology Network |
GMS | Geostationary Meteorological Satellite |
GOES | Geostationary Operational Environmental Satellites |
GPCC | Global Precipitation Climatology Centre |
GPCP | Global Precipitation Climatology Project |
GPCP-1DD | GPCP one-degree daily precipitation analysis |
GPI | Geostationary operational environmental satellites Precipitation Index |
GPROF | Goddard PROFiling algorithm |
GriSat | Globally Gridded Satellite |
GSMaP | Global Satellite Mapping of Precipitation |
GSOD | Global Summary Of the Day |
GTS | Global Telecommunication System |
JRA-55 | Japanese 55-year ReAnalysis |
MetOp | European Operational Meteorological satellite. |
MSU | Microwave Sounding Unit |
MSWEP | Multi-Source Weighted-Ensemble Precipitation |
NCAR | National Center for Atmospheric Research |
NCEP | National Centers for Environmental Prediction |
NMAs | National Meteorological Agencies |
OLR | Outgoing Longwave Radiation |
PERSIANN | Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks |
PER-CCS | PERSIANN - Cloud Classification System |
PER-CDR | PERSIANN - Climate Data Record |
SSM/I | Special Sensor Microwave/Imager |
TCI | TRMM Combined Instrument |
TIR | Thermal InfraRed |
TRMM | Tropical Rainfall Measuring Mission |
TMI | TRMM Microwave Imager |
TMPA | TRMM Multi-Satellite Precipitation Analysis |
TOVS | Television and infrared Observation satellite Operational Vertical Sounder |
References
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.-L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Prakash, S.; Mitra, A.K.; Rajagopal, E.N.; Pai, D.S. Assessment of TRMM-based TMPA-3B42 and GSMaP precipitation products over India for the peak southwest monsoon season. Int. J. Clim. 2015, 36, 1614–1631. [Google Scholar] [CrossRef]
- Tong, K.; Su, F.; Yang, D.; Zhang, L.; Hao, Z. Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. Int. J. Clim. 2013, 34, 265–285. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Turk, F.; Petersen, W.A.; Hou, A.Y.; García-Ortega, E.; Machado, L.A.T.; Angelis, C.F.; Salio, P.; Kidd, C.; Huffman, G.J.; et al. Global precipitation measurement: Methods, datasets and applications. Atmos. Res. 2012, 104, 70–97. [Google Scholar] [CrossRef]
- Maussion, F.; Scherer, D.; Mölg, T.; Collier, E.; Curio, J.; Finkelnburg, R. Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis. J. Clim. 2014, 27, 1910–1927. [Google Scholar] [CrossRef] [Green Version]
- Reiner, P.L.; Samir, C.-M.; Sonia Raquel, G.-F.; Yolanda, C.-D.; María Jesús, E.-P. High-resolution boreal winter precipitation projections over tropical america from cmip5 models. Clim. Dyn. 2018, 51, 1773–1792. [Google Scholar]
- Hashmi, M.Z.; Shamseldin, A.Y.; Melville, B. Comparison of SDSM and LARS-WG for simulation and downscaling of extreme precipitation events in a watershed. Stoch. Environ. Res. Risk Assess. 2010, 25, 475–484. [Google Scholar] [CrossRef]
- Ouyang, L.; Yang, K.; Qin, J.; Wang, Y.; Lu, H. Research progress and prospect of precipitation in himalayan region. Plateau Meteorol. 2017, 36, 1165–1175. [Google Scholar]
- Ashouri, H.; Hsu, K.; Sorooshian, S.; Braithwaite, D.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. Persiann-cdr: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; de Roo, A. Mswep: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ebert, E.E.; Walsh, K.J.E.; Davidson, N.E. Evaluation of trmm 3b42 precipitation estimates of tropical cyclone rainfall using pacrain data. J. Geophys. Res. Atmos. 2013, 118, 2184–2196. [Google Scholar] [CrossRef]
- Fu, Q.; Ruan, R.; Liu, Y. Accuracy assessment of global satellite mapping of precipitation (gsmap) product over poyang lake basin, china. Procedia Environ. Sci. 2011, 10, 2265–2271. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Gochis, D.J.; Cheng, J.; Hsu, K.; Sorooshian, S. Evaluation of persiann-ccs rainfall measurement using the name event rain gauge network. J. Hydrometeorol. 2007, 8, 469–482. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Adler, R.F.; Arkin, P.; Chang, A.; Ferraro, R.; Gruber, A.; Janowiak, J.; Mcnab, A.; Rudolf, B.; Schneider, U. The global precipitation climatology project (gpcp) combined precipitation data set. Bull. Am. Meteorol. Soc. 1997, 78, 5–20. [Google Scholar] [CrossRef]
- Joyce, R.; Janowiak, J.E.; Arkin, P.A.; Xie, P. Cmorph: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Katsanos, D.; Retalis, A.; Michaelides, S. Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period. Atmos. Res. 2016, 169, 459–464. [Google Scholar] [CrossRef]
- Okamoto, K.i.; Ushio, T.; Iguchi, T.; Takahashi, N.; Iwanami, K. The global satellite mapping of precipitation (gsmap) project. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 25–29 July 2005; Volume 5, pp. 3414–3416. [Google Scholar]
- Kai, T.; Su, F.; Yang, D.; Hao, Z. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the tibetan plateau. J. Hydrol. 2014, 519, 423–437. [Google Scholar]
- Liu, X.; Yang, T.; Hsu, K.; Liu, C.; Sorooshian, S. Evaluating the streamflow simulation capability of persiann-cdr daily rainfall products in two river basins on the tibetan plateau. Hydrol. Earth Syst. Sci. 2016, 21, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Ashouri, H.; Nguyen, P.; Thorstensen, A.; Hsu, K.; Sorooshian, S.; Braithwaite, D. Assessing the efficacy of high-resolution satellite-based persiann-cdr precipitation product in simulating streamflow. J. Hydrometeorol. 2016, 17, 2061–2076. [Google Scholar] [CrossRef]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; Van Dijk, A.I.J.M.; Weedon, G.P.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar] [CrossRef] [Green Version]
- Javanmard, S.; Yatagai, A.; Nodzu, M.I.; Bodaghjamali, J.; Kawamoto, H. Comparing high-resolution gridded precipitation data with satellite rainfall estimates of trmm_3b42 over iran. Adv. Geosci. 2010, 25, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Joshi, M.K.; Rai, A.; Pandey, A.C. Validation of tmpa and gpcp 1dd against the ground truth rain-gauge data for indian region. Int. J. Clim. 2013, 33, 2633–2648. [Google Scholar] [CrossRef]
- Ruiz, J. Evaluation of different methodologies for precipitation estimates calibration-cmorph-over South America. Rev. Bras. Meteorol. 2009, 24, 473–488. [Google Scholar] [CrossRef]
- Xu, S.; Niu, Z.; Kuang, D.; Shen, Y.; Huang, W.; Wang, Y. Estimating summer precipitation over the tibetan plateau with geostatistics and remote sensing. Mt. Res. Dev. 2013, 33, 424–436. [Google Scholar] [CrossRef]
- Zhao, T.; Yatagai, A. Evaluation of trmm 3b42 product using a new gauge-based analysis of daily precipitation over china. Int. J. Clim. 2014, 34, 2749–2762. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Ma, Z.; Hong, Y. Have satellite precipitation products improved over last two decades? A comprehensive comparison of gpm imerg with nine satellite and reanalysis datasets. Remote Sens. Environ. 2020, 240, 111697. [Google Scholar] [CrossRef]
- Wei, G.; Lu, H.; Crow, W.T.; Zhu, Y.; Wang, J.; Su, J. Comprehensive evaluation of gpm-imerg, cmorph, and tmpa precipitation products with gauged rainfall over mainland china. Adv. Meteorol. 2018, 2018, 18. [Google Scholar] [CrossRef] [Green Version]
- Chokngamwong, R.; Chiu, L.S. Thailand daily rainfall and comparison with trmm products. J. Hydrometeorol. 2008, 9, 256–266. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Chen, C.; Chen, Q.; Zhang, Y.; Ma, N.; Zaman, Q. Effects of temporal scales and space mismatches on the trmm 3b42 v7 precipitation product in a remote mountainous area. Hydrol. Process. 2017, 31, 4315–4327. [Google Scholar] [CrossRef]
- Prakash, S. Performance assessment of chirps, mswep, sm2rain-cci, and tmpa precipitation products across india. J. Hydrol. 2019, 571, 50–59. [Google Scholar] [CrossRef]
- Li, R.; Fu, Y. Tropical precipitation estimated by gpcp and trmm pr observations. Adv. Atmos. Sci. 2005, 22, 852–864. [Google Scholar]
- Liu, J.; Duan, Z.; Jiang, J.; Zhu, A.-X. Evaluation of Three Satellite Precipitation Products TRMM 3B42, CMORPH, and PERSIANN over a Subtropical Watershed in China. Adv. Meteorol. 2015, 2015, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bai, P.; Liu, X. Evaluation of five satellite-based precipitation products in two gauge-scarce basins on the tibetan plateau. Remote Sens. 2018, 10, 1316. [Google Scholar] [CrossRef] [Green Version]
- Qi, W.; Liu, J.; Chen, D. Evaluations and improvements of gldas2.0 and gldas2.1 forcing data’s applicability for basin scale hydrological simulations in the tibetan plateau. J. Geophys. Res. Atmos. 2018, 123, 13128–13148. [Google Scholar] [CrossRef]
- Gao, Y.C.; Liu, M. Evaluation of high-resolution satellite precipitation products using rain gauge observations over the tibetan plateau. Hydrol. Earth Syst. Sci. Discuss. 2012, 17, 837–849. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Bothe, O.; Fraedrich, K. Summer atmospheric bridging between europe and east asia: Influences on drought and wetness on the tibetan plateau. Quat. Int. 2011, 236, 151–157. [Google Scholar] [CrossRef]
- Rees, H.G.; Collins, D.N. Regional differences in response of flow in glacier-fed himalayan rivers to climatic warming. Hydrol. Process. 2006, 20, 2157–2169. [Google Scholar] [CrossRef]
- Xie, P.; Arkin, P.A. Global monthly precipitation estimates from satellite-observed outgoing longwave radiation. J. Clim. 1998, 11, 137–164. [Google Scholar] [CrossRef]
- Spencer, R.W. Global oceanic precipitation from the msu during 1979—91 and comparisons to other climatologies. J. Clim. 1993, 6, 1301–1326. [Google Scholar] [CrossRef] [Green Version]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Hirose, M.; Takayabu, Y.N.; Nakagawa, K.; Iwanami, K.; et al. Global Precipitation Map using Satellite borne Microwave Radiometers by the GSMaP Project: Production and Validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [Google Scholar]
- Xie, P.; Yatagai, A.; Chen, M.; Hayasaka, T.; Fukushima, Y.; Liu, C.; Yang, S. A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeorol. 2007, 8, 607–626. [Google Scholar] [CrossRef]
- Chen, M.; Xie, P.; Group, C.P.W. CPC Unified Gauge-based Analysis of Global Daily Precipiation. In Proceedings of the Western Pacific Geophysics Meeting, Cairns, Australia, 29 July–1 August 2008. [Google Scholar]
- Zhang, L.; Gao, L.; Zhao, L.; Qiao, Y.; Shi, J. Review on correction of errors in precipitation measurement. Adv. Earth Sci. 2017, 32, 723–730. [Google Scholar]
- Ye, B.; Yang, D.; Ding, Y.; Han, T. A bias- corrected precipitation climatology for china. ACTA GEOGRAPHICA SINICA 2007, 62, 3–13. [Google Scholar] [CrossRef]
- Xie, P.; Chen, M.; Shi, W. Cpc global unified gauge-based analysis of daily precipitation. Preprints. In Proceedings of the 24th Conference on Hydrology, Atlanta, GA, USA, 17–21 January 2010. [Google Scholar]
- Dinku, T.; Funk, C.C.; Tadesse, T.; Ceccato, P. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q. J. R. Meteorol. Soc. 2018, 144, 292–312. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G.; van Dijk, A.I.J.M.; McVicar, T.R.; Adler, R.F. Mswep v2 global 3-hourly 0.1° precipitation: Methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 2018, 100, 473–500. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.; Adler, R.; Bolvin, D.; Gu, G.; Nelkin, E.; Bowman, K.; Hong, Y.; Stocker, E.; Wolff, D. The trmm multisatellite precipitation analysis (tmpa): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. The trmm multi-satellite precipitation analysis (tmpa). In Satellite rainfall Applications for Surface Hydrology; Gebremichael, M., Hossain, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 3–22. [Google Scholar]
- Xie, P.; Arkin, P.A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 1997, 78, 2539–2558. [Google Scholar] [CrossRef]
- Xie, P.; Janowiak, J.E.; Arkin, P.A.; Adler, R.F.; Gruber, A.; Ferraro, R.; Huffman, G.J.; Curtis, S. Gpcp pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Clim. 2003, 16, 2197–2214. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.; Shearer, E.J.; Tran, H.; Ombadi, M.; Hayatbini, N.; Palacios, T.; Huynh, P.; Braithwaite, D.; Updegraff, G.; Hsu, K. The chrs data portal, an easily accessible public repository for persiann global satellite precipitation data. Sci. Data 2019, 6, 180296. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; Mcgavock, B.; Susskind, J. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2001, 2, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Ushio, T.; Sasashige, K.; Kubota, T.; Shige, S.; Okamoto, K.; Aonashi, K.; Inoue, T.; Takahashi, N.; Iguchi, T.; Kachi, M. A kalman filter approach to the global satellite mapping of precipitation (gsmap) from combined passive microwave and infrared radiometric data. J. Meteorol. Soc. Jpn. 2009, 87, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Sorooshian, S.; Hsu, K.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D. Evaluation of persiann system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Xie, X.; Lu, C.; Meng, S.; Yao, Y.; Wang, Y. Toward high-spatial resolution hydrological modeling for china: Calibrating the vic model. Hydrol. Earth Syst. Sci. Discuss. 2019, 1–43. [Google Scholar] [CrossRef]
- Xie, Z.; Yuan, F.; Duan, Q.; Zheng, J.; Liang, M.; Chen, F. Regional parameter estimation of the vic land surface model: Methodology and application to river basins in china. J. Hydrometeorol. 2007, 8, 447–468. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Liang, S.; Yao, Y.; Jia, K.; Meng, S.; Li, J. Detection and attribution of changes in hydrological cycle over the three-north region of china: Climate change versus afforestation effect. Agric. For. Meteorol. 2015, 203, 74–87. [Google Scholar] [CrossRef]
- Tian, Y.; Peterslidard, C.D.; Eylander, J.B.; Joyce, R.; Huffman, G.J.; Adler, R.F.; Hsu, K.; Turk, F.J.; Garcia, M.; Zeng, J. Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Derin, Y.; Yilmaz, K.K. Evaluation of multiple satellite-based precipitation products over complex topography. J. Hydrometeorol. 2014, 15, 1498–1516. [Google Scholar] [CrossRef] [Green Version]
- Nair, A.S.; Indu, J. Performance assessment of multi-source weighted-ensemble precipitation (mswep) product over india. Climate 2017, 5, 2. [Google Scholar] [CrossRef]
- Dinku, T.; Chidzambwa, S.; Ceccato, P.; Connor, S.J.; Ropelewski, C.F. Validation of high-resolution satellite rainfall products over complex terrain. Int. J. Remote. Sens. 2008, 29, 4097–4110. [Google Scholar] [CrossRef]
- Yin, X.; Gruber, A.; Arkin, P. Comparison of the gpcp and cmap merged gauge satellite monthly precipitation products for the period 1979 2001. J. Hydrometeorol. 2004, 5, 1207–1222. [Google Scholar] [CrossRef]
- Vu, T.T.; Li, L.; Jun, K.S. Evaluation of multi-satellite precipitation products for streamflow simulations: A case study for the han river basin in the korean peninsula, east asia. Water 2018, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- Derin, Y.; Nikolopoulos, E.; Anagnostou, E.N. Estimating extreme precipitation using multiple satellite-based precipitation products. In Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Environment; Elsevier: Amsterdam, The Netherlands, 2019; pp. 163–190. [Google Scholar]
Short Name | Data Source | Spa/Tem-Resolution | Spa-Coverage | Tem-Coverage | References |
---|---|---|---|---|---|
CPC-Global | CPC, GTS, COOP, NMAs, CMA | 0.5°/daily | Land | 1979.1–present | [42,43,46] |
CHIRPS V2.0 | CCD, CHPlim, FAO, GHCN, GriSat, CPC-TIR, GSOD, GTS | 0.05°/daily | Land, 50°S–50°N | 1981.1–present | [47,48] |
MSWEP V2.0 | CHPlim, CPC, GPCC, CMORPH, GSMaP, TMPA, ERA-Interim, JRA-55 | 0.5°/daily | Global | 1979.1–present | [10,49] |
TMPA 3B42 | TMI, DMSP SSM/I, AMSR-E, AMSU-B, MetOp, GEO-IR, GOES, TCI, GPCC, CAMS | 0.25°/daily | 50°S–50°N | 1998.1–present | [50,51] |
CMAP | CPCC, IR, OLR, SSM/I, MSU, NCEP–NCAR | 2.5°/pentad | Global | 1979.1–2016.12 | [52,53] |
PERSIANN-CDR V1R1 | NCEP GridSat-B1, GPCP | 0.25°/daily | 60°S–60°N | 1983.1–present | [9,54] |
GPCP-1DD | TOVS, GPROF SSM/I, GEO-IR, AVHRR GPI | 1.0°/daily | Global | 1996.10–2015.10 | [23,55] |
GSMaP-MVK/RNL V6 | TRMM, AMSR-E, DMSP SSM/I, NCEP CPC | 0.25°/daily | 60°S–60°N | 2000.3–present | [17,56] |
CMORPH-RAW V1.0 | GOES, Meteosat, GMS, AMSU-B, SSM/I, TMI | 0.25°/daily | 60°S–60°N | 1998.1–2018.11 | [15] |
PERSIANN-CCS | NCEP-CPC-IR | 0.04°/daily | 60°S–60°N | 2003.1–present | [13,57] |
MA-EGCs | MA-Watersheds | OC | ED | |
---|---|---|---|---|
CHIRPS | G | G | M | - |
MSWEP | G | G | G | - |
TRMM | G | G | G | - |
CMAP | M | G | M | - |
PER-CDR | M | M | M | P |
GPCP | M | M | M | P |
GSMaP | M | M | G | - |
CMORPH | M | P | P | - |
PER-CCS | P | P | P | P |
Judgement standard: | ||||
◆ MA-EGCs: G-R > 0.9, RMSE < 25 mm/mon, PBias < 30%; M-0.4 ≤ R ≤ 0.9, 25 mm/mon ≤ RMSE < 45 mm/mon, 30% ≤ PBias < 50%; P-R < 0.4, RMSE ≥ 25 mm/mon, PBias ≥ 50%; | ||||
◆ MA-Watersheds: G-PBias < 30%; M-30% ≤ PBias < 50%; P-PBias ≥ 50%; | ||||
◆ OC: G-Hit > 75%, Missed < 15%, False < 15%; M-70% ≤ Hit < 75%; P-60% ≤ Hit < 70%; | ||||
◆ ED: P-R ≥ 0.4. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xie, X.; Meng, S.; Wu, D.; Chen, Y.; Jiang, F.; Zhu, B. Magnitude Agreement, Occurrence Consistency, and Elevation Dependency of Satellite-Based Precipitation Products over the Tibetan Plateau. Remote Sens. 2020, 12, 1750. https://doi.org/10.3390/rs12111750
Wang Y, Xie X, Meng S, Wu D, Chen Y, Jiang F, Zhu B. Magnitude Agreement, Occurrence Consistency, and Elevation Dependency of Satellite-Based Precipitation Products over the Tibetan Plateau. Remote Sensing. 2020; 12(11):1750. https://doi.org/10.3390/rs12111750
Chicago/Turabian StyleWang, Yibing, Xianhong Xie, Shanshan Meng, Dandan Wu, Yuchao Chen, Fuxiao Jiang, and Bowen Zhu. 2020. "Magnitude Agreement, Occurrence Consistency, and Elevation Dependency of Satellite-Based Precipitation Products over the Tibetan Plateau" Remote Sensing 12, no. 11: 1750. https://doi.org/10.3390/rs12111750
APA StyleWang, Y., Xie, X., Meng, S., Wu, D., Chen, Y., Jiang, F., & Zhu, B. (2020). Magnitude Agreement, Occurrence Consistency, and Elevation Dependency of Satellite-Based Precipitation Products over the Tibetan Plateau. Remote Sensing, 12(11), 1750. https://doi.org/10.3390/rs12111750