Gas Emission Craters and Mound-Predecessors in the North of West Siberia, Similarities and Differences
Abstract
:1. Introduction
2. Study Area, Materials, and Methods
2.1. An Overview of the Study Area
2.2. Field Survey
2.3. Remote Sensing Data Processing
- Selecting satellite imagery closest to the determined time interval of the study GECs formation.
- Photogrammetric processing of stereo pairs and DSM extraction.
- DSM analysis, including computing the amount of ejected material and identifying changes in terrain.
2.3.1. Selecting Stereo Pairs of Satellite Images for DSM Extraction
2.3.2. Photogrammetric Processing of Satellite Imagery
2.3.3. Computations from DSM
2.3.4. Analyzing Dynamics of the SeYkhGEC Mound-Predecessor Growth
3. Results
3.1. Geomorphic and Environmental Characteristics of Gas Emission Crater Key Sites
3.2. DSM Interpretation
3.3. Evaluating Relief Changes—An Estimate of Ejected Material Volume
4. Discussion
4.1. Gas Emission Craters Formation Dates
4.2. Geomorphic and Environmental Patterns Associated with Gas Emission Craters
4.3. Applicability of Remote Sensing Data
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sizov, O.S. Remote sensing data analysis of the consequences of gas releases in the north of Western Siberia. Geomatica 2015, 1, 53–68. [Google Scholar]
- Bogoyavlenskiy, V.I.; Sizov, O.S.; Bogoyavlenskiy, I.V.; Nikonov, R.A. Remote identifications of areas of surface gas and gas emissions in the Arctic: Yamal Peninsula. Arct. Ecol. Econ. 2016, 3, 4–15. [Google Scholar]
- Kizyakov, A.I.; Sonyushkin, A.V.; Leibman, M.O.; Zimin, M.V.; Khomutov, A.V. Geomorphological conditions of the gas-emission crater and its dynamics in Central Yamal. Earth’s Cryosph. 2015, 19, 13–22. [Google Scholar]
- Kizyakov, A.I.; Zimin, M.V.; Sonyushkin, A.V.; Dvornikov, Y.A.; Khomutov, A.V.; Leibman, M.O. Comparison of gas emission crater geomorphodynamics on Yamal and Gydan peninsulas (Russia), based on repeat very-high-resolution stereopairs. Remote Sens. 2017, 9, 1023. [Google Scholar] [CrossRef] [Green Version]
- Kizyakov, A.I.; Sonyushkin, A.V.; Khomutov, A.V.; Dvornikov, Y.A.; Leibman, M.O. Assessment of the relief-forming effect of the Antipayuta gas emission crater formation using satellite stereo pairs. Curr. Probl. Remote Sens. Earth Space 2017, 14, 67–75. [Google Scholar] [CrossRef]
- Bogoyavlenskiy, V.I.; Bogoyavlenskiy, I.V.; Nikonov, R.A. Results of aerial, space and field investigations of large gas blowouts near Bovanenkovo field on Yamal peninsula. Arct. Ecol. Econ. 2017, 3, 4–17. [Google Scholar] [CrossRef]
- Bogoyavlensky, V.I.; Sizov, O.S.; Bogoyavlensky, I.V.; Nikonov, R.A.; Kargina, T.N. Earth degassing in the arctic: Comprehensive studies of the distribution of frost mounds and thermokarst lakes with gas blowout craters on the Yamal Peninsula. Arct. Ecol. Econ. 2019, 4, 52–68. [Google Scholar] [CrossRef] [Green Version]
- Khilimonyuk, V.Z.; Ospennikov, E.N.; Buldovicz, S.N.; Gunar, A.Y.; Gorshkov, E.I. Geocryological conditions of Yamal crater location. In Proceedings of the 5th Russian Conference on Geocryologists, Lomonosov Moscow State University, Moscow, Russia, 14–17 June 2016; pp. 245–255. (In Russian). [Google Scholar]
- Buldovicz, S.N.; Khilimonyuk, V.Z.; Bychkov, A.Y.; Ospennikov, E.N.; Vorobyev, S.A.; Gunar, A.Y.; Gorshkov, E.I.; Chuvilin, E.M.; Cherbunina, M.Y.; Kotov, P.I.; et al. Cryovolcanism on the Earth: Origin of a Spectacular Crater in the Yamal Peninsula (Russia). Sci. Rep. 2018, 8, 13534. [Google Scholar] [CrossRef]
- ArcticDEM Data. Available online: https://www.pgc.umn.edu/data/arcticdem/ (accessed on 17 February 2020).
- Bogoyavlenskiy, V.I.; Bogoyavlenskiy, I.V.; Nikonov, R.A.; Sizov, O.S. Technologies for remote detection and monitoring of the Earth degassing in the Arctic: Yamal Peninsula, Neito Lake. Arct. Ecol. Econ. 2018, 30, 83–93. [Google Scholar] [CrossRef]
- Dubikov, G.I. Composition and Cryogenic Structure of the Western Siberia Permafrost, 2nd ed.; GEOS: Moscow, Russia, 2002. [Google Scholar]
- Yakushev, V.S. Natural Gas and Gas Hydrates in Cryolithozone; VNIIGAZ: Moscow, Russia, 2009. [Google Scholar]
- Vasiliev, A.A.; Streletskaya, I.D.; Melnikov, V.P.; Oblogov, G.E. Methane in ground ice and frozen quaternary deposits of Western Yamal. Dokl. Earth Sci. 2015, 465, 1289–1292. [Google Scholar] [CrossRef]
- Kraev, G.N.; Schulze, E.D.; Yurova, A.; Kholodov, A.; Chuvilin, E.M.; Rivkina, E.M. Cryogenic displacement and accumulation of biogenic methane in frozen soils. Atmosphere 2017, 6, 105. [Google Scholar] [CrossRef] [Green Version]
- Leibman, M.O.; Kizyakov, A.I.; Plekhanov, A.V.; Streletskaya, I.D. New permafrost feature—Deep crater in Central Yamal (West Siberia, Russia) as a response to local climate fluctuations. Geogr. Environ. Sustain. 2014, 7, 68–79. [Google Scholar] [CrossRef]
- Streletskaya, I.D.; Leibman, M.O.; Kizyakov, A.I.; Oblogov, G.E.; Vasiliev, A.A.; Khomutov, A.V.; Dvornikov, Y.A. Ground ice and its role in the formation of gas-emission crater in the Yamal peninsula. Mosc. Univ. Bull. Ser. 5geogr. 2017, 2, 91–99. [Google Scholar]
- Leibman, M.O.; Kizyakov, A.I.; Streletskaya, I.D. Yamal crater—A new natural and permafrost phenomenon. In Proceedings of the XXI International conference on Marine Geology: Geology of seas and oceans, Moscow, Russia, 16–20 November 2015; IO RAS: Moscow, Russia, 2015; pp. 273–277. [Google Scholar]
- Leibman, M.O.; Dvornikov, Y.A.; Khomutov, A.V.; Babkin, E.M.; Babkina, E.A.; Vanshtein, B.G.; Kizyakov, A.I.; Oblogov, G.E.; Semenov, P.B.; Streletskaya, I.D. Hydro-chemical features of water in lakes and gas-emission craters embedded in the marine deposits of West-Siberian North. In Proceedings of the XXII International Conference on Marine Geology: Geology of Seas and Oceans, Moscow, Russia, 20–24 November 2017; Lisitsyn, A.P., Politova, N.V., Shevchenko, V.P., Eds.; IO RAS: Moscow, Russia, 2017; pp. 117–120. [Google Scholar]
- Kizyakov, A.I.; Khomutov, A.V.; Zimin, M.V.; Khairullin, R.R.; Babkina, E.A.; Dvornikov, Y.A.; Leibman, M.O. Microrelief associated with gas emission craters: Remote-sensing and field-based study. Remote Sens. 2018, 10, 677. [Google Scholar] [CrossRef] [Green Version]
- Porter, C.; Morin, P.; Howat, I.; Noh, M.-J.; Bates, B.; Peterman, K.; Keesey, S.; Schlenk, M.; Gardiner, J.; Tomko, K.; et al. ArcticDEM. Available online: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OHHUKH (accessed on 2 November 2019).
- Zimin, M.V.; Sonyushkin, A.V. Automated System for VHR Satellite imagery processing. L. Manag. Cadastrel. Monit. 2014, 1, 38–43. [Google Scholar]
- Sonyushkin, A.V. Comparison of DSM creation methods from high spatial resolution stereopairs. Izv. Vuzov. Geod. Aerophotosurveying 2015, 1, 43–52. [Google Scholar]
- Hirshmuller, H. Accurate and efficient stereo processing by semi-global matching and mutual information. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San-Diego, CA, USA, 20–26 June 2005; pp. 807–814. [Google Scholar]
- Hirshmuller, H. Stereo processing by semi-global matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 2, 328–341. [Google Scholar] [CrossRef]
- Hirshmuller, H.; Buder, M.; Ernst, I. Memory efficient semi-global matching. In Proceedings of the XXII Congress of the International Society for Photogrammetry and Remote Sensing, Melbourne, Australia, 25 August–1 September 2012; pp. 371–376. [Google Scholar]
- Sonyushkin, A.V. Improving the Technology for Orthophoto Creating from High-Resolution Space Images. Ph.D. Thesis, Moscow State University of Geodesy and Cartography (MIIGAiK), Moscow, Russia, 2015. [Google Scholar]
- Burrough, P.A.; McDonell, R.A. Principles of Geographical Information Systems; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Bochkarev, V.S.; Braduchan, Y.V.; Voronin, A.S.; Generalov, P.P.; Kovrigina, E.K.; Kulakhmetov, N.K.; Mitusheva, V.S.; Stavitsky, B.P.; Faybusovich, Y.E.; Shemraeva, S.V. State Geological Map of the Russian Federation. Scale 1:1,000,000 (New Series). Sheet R-43-(45)—Gydan-Dudinka. Explanatory Note; VSEGEI: St. Petersburg, Russia, 2000; 187p. (In Russian) [Google Scholar]
- Vasilchuk, Y.K.; Trofimov, V.T.; Badu, Y.B. East-Yamal region. In Geocryology of USSR. Western Siberia; Ershov, E.D., Ed.; Nedra: Moscow, Russia, 1989; pp. 172–180. [Google Scholar]
- Leibman, M.O.; Plekhanov, A.V. The Yamal gas emission crater: Results of preliminary survey. KholodOK 2014, 2, 9–15. [Google Scholar]
- Arefyev, S.P.; Khomutov, A.V.; Ermokhina, K.A.; Leibman, M.O. Dendrochronologic reconstruction of gas-inflated mound formation at the Yamal crater location. Earth’s Cryosph. 2017, 5, 89–100. [Google Scholar] [CrossRef]
- Van Everdingen, R. Multi-Language Glossary of Permafrost and Related Ground-Ice Terms, 2nd ed.; National Snow and Ice Data Center: Boulder, CO, USA, 2005. [Google Scholar]
- French, H. The Periglacial Environment, 4th ed.; Hoboken, N.J., Ed.; Wiley-Blackwell: Oxford, UK, 2017; ISBN 9781119132790. [Google Scholar]
- Romanovsky, V.E.; Isaksen, K.; Drozdov, D.S.; Anisimov, O.; Instanes, A.; Leibman, M.O.; McGuire, A.D.; Shiklomanov, N.; Smith, S.; Walker, D. Changing permafrost and its impacts. In Snow, Water, Ice and Permafrost in the Arctic (SWIPA); Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2017; pp. 65–102. [Google Scholar]
- Serié, C.; Huuse, M.; Schødt, N.H. Gas hydrate pingoes: Deep seafloor evidence of focused fluid flow on continental margins. Geology 2012, 3, 207–210. [Google Scholar] [CrossRef]
- Leibman, M.; Dvornikov, Y.; Khomutov, A.; Kizyakov, A.; Vanshtein, B. Main results of 4-year gas-emission crater study. In Proceedings of the 5 th European Conference On Permafrost—Book of Abstracts, Chamonix, France, 23 June–1 July 2018; Deline, P., Bodin, X., Ravanel, L., Eds.; Laboratoire EDYTEM, CNRS, Université Savoie Mont-Blanc: Le Bourget, France; pp. 293–294. [Google Scholar]
- Leibman, M.O.; Dvornikov, Y.A.; Kizyakov, A.I.; Khairullin, R.R.; Khomutov, A.V. Principles and cartographic modeling of the danger associated with of gas emission craters occurrence on the Yamal Peninsula. In Proceedings of the XXIII International conference on Marine Geology: Geology of seas and oceans, Moscow, Russia, 18–22 November 2019; IO RAS: Moscow, Russia, 2019; pp. 263–267. [Google Scholar]
- Leibman, M.O.; Kizyakov, A.I.; Dvornikov, Y.A.; Khairullin, R.R.; Khomutov, A.V.; Babkina, E.A.; Streletskaya, I.D. Gas-emission craters puzzle—4 years of investigations. In Proceedings of the Solving the puzzles from Cryosphere: Program, Abstracts, Pushchino, Russia, 15–18 April 2019; pp. 27–28. [Google Scholar]
- Khomutov, A.V.; Leibman, M.O.; Gubarkov, A.A.; Dvornikov, Y.A.; Mullanurov, D.R.; Babkin, E.M.; Babkina, E.A. Monitoring of permafrost zone: New data from Cenyral Yamal and arrangement of observation on Gydan. Nauchniy Vestn. Yamalo-Nenetskogo Avton. Okruga 2016, 4, 17–19. [Google Scholar]
- Babkina, E.A.; Leibman, M.O.; Dvornikov, Y.A.; Fakashchuk, N.Y.; Khairullin, R.R.; Khomutov, A.V. Activation of cryogenic processes in central Yamal as a result of regional and local change in climate and thermal state of permafrost. Russ. Meteorol. Hydrol. 2019, 44, 283–290. [Google Scholar] [CrossRef]
- Leibman, M.O.; Kizyakov, A.I. A new natural phenomenon in permafrost. Priroda 2016, 2, 15–24. [Google Scholar]
- Dvornikov, Y.A.; Leibman, M.O.; Khomutov, A.V.; Kizyakov, A.I.; Semenov, P.B.; Bussmann, I.; Babkin, E.M.; Heim, B.; Portnov, A.; Babkina, E.A.; et al. Gas-emission craters of the Yamal and Gydan peninsulas: A proposed mechanism for lake genesis and development of permafrost landscapes. Permafr. Periglac. Process. 2019, 146–162. [Google Scholar] [CrossRef] [Green Version]
Time Frame | Date | Sensor | Pan Ground Sample Distance (GSD), m |
---|---|---|---|
GEC-1 (Yamal Peninsula) | |||
before | 09 October 2013 | Landsat 8 | 15 |
after | 01 November 2013 | Landsat 8 | 15 |
GEC-2 (Yamal Peninsula) | |||
before | 24 September 2012 | SPOT5 | 5.5 |
after | 15 October 2012 | SPOT5 | 5.3 |
GEC-3 (Yamal Peninsula) | |||
before | 22 October 2012 | SPOT5 | 2.5 |
after | 10 June 2013 | WorldView-2 | 0.5 |
SeYkhGEC GEC (Yamal Peninsula) formed on 28 June 2017 defined by observation | |||
AntGEC (Gydan Peninsula) formed on 27 September 2013 defined by observation |
Sensor | Date | Mean Scan Azimuth Angle | Mean Scan Elevation Angle | Orbit Height (H), km | Pan Ground Sample Distance (GSD), m | Estimated Relative Height Accuracy of the DSMs, m | DSMs Difference Confidence Level, m |
---|---|---|---|---|---|---|---|
GEC-1 (Yamal Peninsula) | |||||||
WorldView-1 | 9 June 2013 | 307.9 | 64.9 | 440 | 0.580 | 0.45 | 0.57 |
WorldView-1 | 9 June 2013 | 196.8 | 67.4 | 440 | 0.563 | ||
WorldView-1 | 15 June 2014 | 184.1 | 66.5 | 440 | 0.540 | 0.35 | |
WorldView-1 | 15 June 2014 | 37.4 | 64.0 | 440 | 0.579 | ||
GEC-2 (Yamal Peninsula) | |||||||
GeoEye-1 | 30 July 2010 | 50.3 | 72.0 | 770 | 0.450 | 0.39 | 0.52 |
WorldView-2 | 11 September 2011 | 258.9 | 71.1 | 770 | 0.506 | ||
WorldView-2 | 21 July 2013 | 230.3 | 62.8 | 770 | 0.551 | 0.35 | |
WorldView-2 | 21 July 2013 | 2.9 | 68.9 | 770 | 0.514 | ||
GEC-3 (Yamal Peninsula) | |||||||
WorldView-1 | 05 June 2011 | 60.8 | 72.6 | 440 | 0.540 | 1.01 | 1.07 |
WorldView-1 | 09 June 2011 | 114.9 | 84.6 | 440 | 0.509 | ||
WorldView-2 | 10 June 2013 | 357.9 | 58.9 | 770 | 0.578 | 0.36 | |
WorldView-2 | 10 June 2013 | 253.6 | 61.8 | 770 | 0.557 | ||
AntGEC (Gydan Peninsula) | |||||||
WorldView-2 | 21 August 2013 | 27.5 | 77.0 | 770 | 0.48 | 0.35 | 0.65 |
WorldView-2 | 21 August 2013 | 205.8 | 60.0 | 770 | 0.55 | ||
WorldView-1 | 11 October 2014 | 335.9 | 64.8 | 440 | 0.58 | 0.55 | |
WorldView-1 | 11 October 2014 | 258.1 | 63.6 | 440 | 0.62 |
Characteristics | GEC-1 | GEC-2 | GEC-3 | SeYkhGEC | AntGEC |
---|---|---|---|---|---|
Before GEC Formation | |||||
Mound height, m | 5–6 | 4–6 | 3 | 1.7 | 2 |
Mound diameter, m | 45–48 | 40–55 | 36–46 | 55 | 20 |
Mound interpretation on images | Semi-spheric structure. Represented by a high-center polygon that rises above the surrounding polygonal surface | ||||
Local relief features | The gentle slope foot of a hill next to the drained lake depression | The upper portion of the erosion- thermokarst valley | Slope foot, close to the poorly expressed river floodplain | Point bar | The edge of the terrace bending into the slope of the thermoerosion hollow |
Slope angle | 1–7° | 1–3° | 3–7° | 1–3° | 7–15° |
After GEC Formation | |||||
Dates of GEC formation | Fall 2013 | Fall 2012 | Fall 2012–spring 2013 | Summer 2017 | Fall 2013 |
GEC edge diameter, m | 25–29 | 32–35 | 35–37 | 76–88 1 | 25–28 |
GECs’ inner structure | The lower cylindrical portion and the upper funnel-shaped portion | No data | The lower cylindrical portion and the upper funnel-shaped portion | ||
Tabular ground ice | Exposed in GEC walls | Seen on photographs of ejected material | No data | Seen on photographs of ejected material | Exposed in GEC walls |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kizyakov, A.; Leibman, M.; Zimin, M.; Sonyushkin, A.; Dvornikov, Y.; Khomutov, A.; Dhont, D.; Cauquil, E.; Pushkarev, V.; Stanilovskaya, Y. Gas Emission Craters and Mound-Predecessors in the North of West Siberia, Similarities and Differences. Remote Sens. 2020, 12, 2182. https://doi.org/10.3390/rs12142182
Kizyakov A, Leibman M, Zimin M, Sonyushkin A, Dvornikov Y, Khomutov A, Dhont D, Cauquil E, Pushkarev V, Stanilovskaya Y. Gas Emission Craters and Mound-Predecessors in the North of West Siberia, Similarities and Differences. Remote Sensing. 2020; 12(14):2182. https://doi.org/10.3390/rs12142182
Chicago/Turabian StyleKizyakov, Alexander, Marina Leibman, Mikhail Zimin, Anton Sonyushkin, Yury Dvornikov, Artem Khomutov, Damien Dhont, Eric Cauquil, Vladimir Pushkarev, and Yulia Stanilovskaya. 2020. "Gas Emission Craters and Mound-Predecessors in the North of West Siberia, Similarities and Differences" Remote Sensing 12, no. 14: 2182. https://doi.org/10.3390/rs12142182
APA StyleKizyakov, A., Leibman, M., Zimin, M., Sonyushkin, A., Dvornikov, Y., Khomutov, A., Dhont, D., Cauquil, E., Pushkarev, V., & Stanilovskaya, Y. (2020). Gas Emission Craters and Mound-Predecessors in the North of West Siberia, Similarities and Differences. Remote Sensing, 12(14), 2182. https://doi.org/10.3390/rs12142182