Comparative Analysis of Landsat-8, Sentinel-2, and GF-1 Data for Retrieving Soil Moisture over Wheat Farmlands
Abstract
:1. Introduction
2. Data and Pre-Processing
2.1. Study Area and Ground Measurements
2.2. Sentinel-1 SAR Data Collection and Processing
2.3. Optical Data Collection and Processing
3. Methodology
3.1. Microwave Scattering Model Based on Bare and Vegetation Cover
3.2. Vegetation Indices and Vegetation Water Content
3.3. Look Up Table (LUT) Algorithm Creation
4. Results and Discussion
4.1. Differences in Different Optical Data Indices
4.2. Contribution of Bare Soil Scattering to Total Scattering with Different Indices
4.3. Effect of Indices from Different Optical Data on Accuracy of Soil Moisture Retrieval
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gleick, P.H. Water resources. In Encyclopedia of Climate and Weather; Schneider, S.H., Ed.; Oxford University Press: New York, NY, USA, 1996; pp. 817–823. [Google Scholar]
- Scholze, M.; Kaminski, T.; Knorr, W.; Blessing, S.; Vossbeck, M.; Grant, J.P.; Scipal, K. Simultaneous assimilation of SMOS soil moisture and atmospheric CO2 in-situ observations to constrain the global terrestrial carbon cycle. Remote Sens. Environ. 2016, 180, 334–345. [Google Scholar] [CrossRef]
- Larson, K.M.; Small, E.E.; Gutmann, E.D.; Bilich, A.L.; Braun, J.J.; Zavorotny, V.U. Use of GPS receivers as a soil moisture network for water cycle studies. Geophys. Res. Lett. 2008, 35, 24. [Google Scholar] [CrossRef] [Green Version]
- Petrone, R.M.; Price, J.S.; Waddington, J.M.; Von Waldow, H. Surface moisture and energy exchange from a restored peatland, Quebec, Canada. J. Hydrol. 2004, 295, 198–210. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, G. Estimation of soil moisture from optical and thermal remote sensing: A. review. Sensors 2016, 16, 1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baghdadi, N.N.; El Hajj, M.; Zribi, M.; Fayad, I. Coupling SAR C-band and optical data for soil moisture and leaf area index retrieval over irrigated grasslands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 9, 1229–1243. [Google Scholar] [CrossRef] [Green Version]
- Houser, P.R.; Shuttleworth, W.J.; Famiglietti, J.S.; Gupta, H.V.; Syed, K.H.; Goodrich, D.C. Integration of soil moisture remote sensing and hydrologic modeling using data assimilation. Water Resour. Res. 1998, 34, 3405–3420. [Google Scholar] [CrossRef] [Green Version]
- Draper, C.; Mahfouf, J.; Calvet, J.C.; Martin, E.L.; Wagner, W. Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France. Hydrol. Earth Syst. Sci. 2011, 15, 3829. [Google Scholar] [CrossRef] [Green Version]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Belaud, G.; Cheviron, B.; Courault, D.; Charron, F. Soil moisture retrieval over irrigated grassland using X-band SAR data. Remote Sens. Environ. 2016, 176, 202–218. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Lin, L.; Wu, S.; Deng, K.A.; Petropoulos, G.P. Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 76–85. [Google Scholar] [CrossRef]
- Qiu, J.; Crow, W.T.; Wagner, W.; Zhao, T. Effect of vegetation index choice on soil moisture retrievals via the synergistic use of synthetic aperture radar and optical remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 47–57. [Google Scholar] [CrossRef]
- Zribi, M.; Muddu, S.; Bousbih, S.; Bitar, A.A.; Tomer, S.K.; Baghdadi, N.; Bandyopadhyay, S. Analysis of L-band SAR data for soil moisture estimations over agricultural areas in the tropics. Remote Sens. 2019, 11, 1122. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Huang, N.; Niu, Z.; Raghavan, V.; Song, X. Soil moisture retrieval in farmland using C-band SAR and optical data. Spat. Inf. Res. 2017, 25, 431–438. [Google Scholar] [CrossRef]
- Tao, L.; Wang, G.; Chen, W.; Chen, X.; Li, J.; Cai, Q. Soil moisture retrieval from SAR and optical data using a combined model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 637–647. [Google Scholar] [CrossRef]
- Attarzadeh, R.; Amini, J. Towards an object-based multi-scale soil moisture product using coupled Sentinel-1 and Sentinel-2 data. Remote Sens. Lett. 2019, 10, 619–628. [Google Scholar] [CrossRef]
- He, B.; Xing, M.; Bai, X. A synergistic methodology for soil moisture estimation in an alpine prairie using radar and optical satellite data. Remote Sens. 2014, 6, 10966–10985. [Google Scholar] [CrossRef] [Green Version]
- Bousbih, S.; Zribi, M.; El Hajj, M.; Baghdadi, N.; Lilichabaane, Z.; Gao, Q.; Fanise, P. Soil moisture and irrigation mapping in A semi-arid region, based on the synergetic use of Sentinel-1 and Sentinel-2 data. Remote Sens. 2018, 10, 1953. [Google Scholar] [CrossRef] [Green Version]
- Attarzadeh, R.; Amini, J.; Notarnicola, C.; Greifeneder, F. Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at plot scale. Remote Sens. 2018, 10, 1285. [Google Scholar] [CrossRef] [Green Version]
- El Hajj, M.; Baghdadi, N.; Zribi, M. Comparative analysis of the accuracy of surface soil moisture estimation from the C-and L-bands. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101888. [Google Scholar] [CrossRef]
- Patel, P.; Srivastava, H.S.; Panigrahy, S.; Parihar, J.S. Comparative evaluation of the sensitivity of multi-polarized multi-frequency SAR backscatter to plant density. Int. J. Remote Sens. 2006, 27, 293–305. [Google Scholar] [CrossRef]
- Baghdadi, N.; El Hajj, M.; Zribi, M.; Bousbih, S. Calibration of the water cloud model at C-band for winter crop fields and grasslands. Remote Sens. 2017, 9, 969. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, S.; Srivastava, H.S. Comparative evaluation of the sensitivity of multi-polarised sar and optical data for various land cover classes. Int. J. Adv. Remote Sens. GIS Geogr. 2016, 4, 1–14. [Google Scholar]
- Zeng, X.; Xing, Y.; Shan, W.; Zhang, Y.; Wang, C. Soil water content retrieval based on Sentinel-1A and Landsat 8 image for Bei’an-Heihe Expressway. Chin. J. Eco. Agric. 2017, 25, 118–126. [Google Scholar]
- Cui, C.; Xu, J.; Zeng, J.; Chen, K.; Bai, X.; Lu, H.; Chen, Q.; Zhao, T. Soil moisture mapping from satellites: An intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over two dense network regions at different spatial scales. Remote Sens. 2018, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Parinussa, R.; Konings, A.G.; Wagner, W.; Cosh, M.H.; Lakshmi, V.; Zohaib, M.; Choi, M. Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. Remote Sens. Environ. 2018, 204, 260–275. [Google Scholar] [CrossRef]
- Ma, H.; Zeng, J.; Chen, N.; Zhang, X.; Cosh, M.H.; Wang, W. Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations. Remote Sens. Environ. 2019, 231, 111215. [Google Scholar] [CrossRef]
- Attema, E.P.W.; Ulaby, F.T. Vegetation modeled as a water cloud. Radio Sci. 1978, 13, 357–364. [Google Scholar] [CrossRef]
- Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sens. Environ. 2013, 134, 234–248. [Google Scholar] [CrossRef]
- Yang, G.; Shi, Y.; Zhao, C.; Wang, J. Estimation of soil moisture from multi-polarized SAR data over wheat coverage areas. In Proceedings of the 2012 First International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shanghai, China, 2–4 August 2012. [Google Scholar]
- Zribi, M.; Chahbi, A.; Shabou, M.; Lilichabaane, Z.; Duchemin, B.; Baghdadi, N.; Amri, R.; Chehbouni, A. Soil surface moisture estimation over a semi-arid region using ENVISAT ASAR radar data for soil evaporation evaluation. Hydrol. Earth Syst. Sci. Discuss. 2011, 15, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Bindlish, R.; Barros, A.P. Parameterization of vegetation backscatter in radar-based, soil moisture estimation. Remote Sens. Environ. 2001, 76, 130–137. [Google Scholar] [CrossRef]
- Sikdar, M.; Cumming, I. A Modified Empirical Model for Soil Moisture Estimation in Vegetated Areas Using SAR Data. In Proceedings of the IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 2, pp. 803–806. [Google Scholar]
- Prevot, L.; Champion, I.; Guyot, G. Estimating surface soil moisture and leaf area index of a wheat canopy using a dual-frequency (C and X bands) scatterometer. Remote Sens. Environ. 1993, 46, 331–339. [Google Scholar] [CrossRef]
- Chen, K.S.; Wu, T.D.; Tsay, M.K.; Fung, A.K. Note on the multiple scattering in an IEM model. IEEE Trans. Geosci. Remote Sens. 2000, 38, 249–256. [Google Scholar] [CrossRef]
- Fung, A.K.; Liu, W.Y.; Chen, K.S.; Tsay, M. An improved IEM model for bistatic scattering from rough surfaces. J. Electromagn. Waves Appl. 2002, 16, 689–702. [Google Scholar] [CrossRef]
- Chen, L.; Shi, J.; Wigneron, J.P.; Chen, K. A parameterized surface emission model at L-band for soil moisture retrieval. IEEE Geosci. Remote Sens. Lett. 2009, 7, 127–130. [Google Scholar] [CrossRef]
- Nearing, G.S.; Moran, M.S.; Thorp, K.R.; Collins, C.D.; Slack, D.C. Likelihood parameter estimation for calibrating a soil moisture model using radar bakscatter. Remote Sens. Environ. 2010, 114, 2564–2574. [Google Scholar] [CrossRef]
- Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Chan, T.K.; Nghiem, S.V. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- Njoku, E.G.; Chan, S.K. Vegetation and surface roughness effects on AMSR-E land observations. Remote Sens. Environ. 2006, 100, 190–199. [Google Scholar] [CrossRef]
- Jacquette, E.; Al Bitar, A.; Mialon, A.; Kerr, Y.; Quesney, A.; Cabot, F.; Richaume, P. SMOS CATDS level 3 global products over land[C]//Remote Sensing for Agriculture, Ecosystems, and Hydrology XII. Int. Soc. Opt. Photonics 2010, 7824, 78240K. [Google Scholar]
- Huang, J.; Chen, D.; Cosh, M.H. Sub-pixel reflectance unmixing in estimating vegetation water content and dry biomass of corn and soybeans cropland using normalized difference water index (NDWI) from satellites. Int. J. Remote Sens. 2009, 30, 2075–2104. [Google Scholar] [CrossRef]
- Jiang, J.; Hu, D.; Li, Y.; Tang, X.; Li, J. Research of soil moisture retrieval model of wheat covered surface based on MIMICS model. J. Triticeae Crop. 2015, 35, 707–713. [Google Scholar]
- Cheng, X.; Yang, G.; Xu, X.; Chen, T.; Wang, D. Inferred water content of winter wheat based on ground hyperspectral and remote sensing data of TM5. J. Triticeae Crop. 2014, 34, 227–233. [Google Scholar]
- Gao, Y.; Walker, J.P.; Allahmoradi, M.; Monerris, A.; Ryu, D.; Jackson, T.J. Optical sensing of vegetation water content: A synthesis study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1456–1464. [Google Scholar]
- Xu, H.; Zhang, T. Assessment of consistency in forest-dominated vegetation observations between ASTER and Landsat ETM+ images in subtropical coastal areas of southeastern China. Agric. For. Meteorol. 2013, 168, 1–9. [Google Scholar] [CrossRef]
- Yantao, X.I.; Thinh, N.X.; Cheng, L.I. Preliminary comparative assessment of various spectral indices for built-up land derived from Landsat-8 OLI and Sentinel-2A MSI imageries. Eur. J. Remote Sens. 2019, 52, 240–252. [Google Scholar]
- Wu, X.P.; Xu, H.Q.; Jiang, Q.L. Cross-Comparison of GF-1, GF-2 and landsat-8 OLI sensor data. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 150–158. [Google Scholar] [CrossRef]
- Mandanici, E.; Bitelli, G. Preliminary comparison of Sentinel-2 and landsat 8 imagery for a combined use. Remote Sens. 2016, 8, 1014. [Google Scholar] [CrossRef] [Green Version]
- Arekhi, M.; Goksel, C.; Sanli, F.B.; Senel, G. Comparative evaluation of the spectral and spatial consistency of Sentinel-2 and Landsat-8 OLI data for igneada longos forest. ISPRS Int. J. Geo Inf. 2019, 8, 56. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Li, J.; Liu, Q.; Wang, H.; Chen, C.; Xu, B.; Wu, S. Comparative analysis of Chinese HJ-1 CCD, GF-1 WFV and ZY-3 MUX sensor data for leaf area index estimations for maize. Remote Sens. 2018, 10, 68. [Google Scholar] [CrossRef] [Green Version]
- Lessio, A.; Fissore, V.; Borgognomondino, E. Preliminary tests and results concerning integration of Sentinel-2 and Landsat-8 OLI for crop monitoring. J. Imaging 2017, 3, 49. [Google Scholar] [CrossRef] [Green Version]
- He, L.I.; Chen, Z.; Jiang, Z.; Wenbin, W.U.; Ren, J.; Liu, B.; Tuya, H. Comparative analysis of GF-1, HJ-1, and Landsat-8 data for estimating the leaf area index of winter wheat. J. Integr. Agric. 2017, 16, 266–285. [Google Scholar]
- Pan, Y.Y.; Li, C.C.; Ma, X.X.; Wang, B.S.; Fang, X. Atmospheric correction method of sentinel-2A satellite and result analysis. Remote Sens. Inf. 2018, 33, 41–48. [Google Scholar]
- Maggioni, R.; Panciera, J.P.; Walker, M.; Rinaldi, V. A multi-sensor approach for high resolution airborne soil moisture mapping. In In Proceedings of the 30th Hydrology and Water Resource Symp[CD-ROM], Hobart, Australia, 4–8 December 2006. [Google Scholar]
- Yi, Y.; Yang, D.; Chen, D.; Huang, J. Retrieving crop physiological parameters and assessing water deficiency using MODIS data during the winter wheat growing period. Can. J. Remote Sens. 2007, 33, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Elhajj, M.; Baghdadi, N.; Bazzi, H.; Zribi, M. Penetration analysis of sar signals in the c and l bands for wheat, maize, and grasslands. Remote Sens. 2019, 11, 31. [Google Scholar] [CrossRef] [Green Version]
- Ceccato, P.; Gobron, N.; Flasse, S.P.; Pinty, B.; Tarantola, S. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach. Remote Sens. Environ. 2002, 82, 188–197. [Google Scholar] [CrossRef]
- Ceccato, P.; Flasse, S.P.; Gregoire, J.M. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2. Validation and applications. Remote Sens. Environ. 2002, 82, 198–207. [Google Scholar] [CrossRef]
- Chuvieco, E.; Riano, D.; Aguado, I.; Cocero, D. Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: Applications in fire danger assessment. Int. J. Remote Sens. 2002, 23, 2145–2162. [Google Scholar] [CrossRef]
Mode | Resolution/m | Polarization | Incidence Angle | Width(km) |
---|---|---|---|---|
Interferometric Wide Swath | 5 × 20 | VV/VH, HH/HV, VV, HH | 29.1°–46° | 250 |
Stripmap | 5 × 5 | VV/VH, HH/HV, VV, HH | 18.3°–46.8° | 80 |
Extra Wide Swath | 20 × 40 | VV/VH, HH/HV, VV, HH | 18.9°–47° | 400 |
Wave | 5 × 5 | VV, HH | 21.6°–25.1° 34.8°–38° | 20 × 20 |
Sentinel-1 SAR Data | |||
Date | polarization | Observation Mode | Incidence Angle |
16 November 2017 | VV/VH | IW | 39°–40.5° |
9 April 2018 | VV/VH | IW | 39°–40.5° |
Sentinel-2 MSI Data | |||
Date | Spatial Resolution(m) | Spectrum Range(m) | Width(km) |
14 November 2017 | 10–60 | 0.4–2.4 | 290 |
8 April 2018 | 10–60 | 0.4–2.4 | 290 |
GF-1 WFV data | |||
Date | Spatial Resolution(m) | Spectrum Range(m) | Width(km) |
16 November 2017 | 16 | 0.45–0.89 | 800 |
9 April 2018 | 16 | 0.45–0.89 | 800 |
Landsat-8 OLI Data | |||
Date | Spatial Resolution(m) | Spectrum Range(m) | Width(km) |
15 November 2017 | 15–30 | 0.43–1.38 | 185 |
8 April 2018 | 15–30 | 0.43–1.38 | 185 |
Parameter | All Vegetation | Rangeland | Winter Wheat | Pasture |
---|---|---|---|---|
A | 0.0012 | 0.0009 | 0.0018 | 0.0014 |
B | 0.091 | 0.032 | 0.138 | 0.084 |
GF-1 | Landsat-8 | Sentinel-2 | ||||||
---|---|---|---|---|---|---|---|---|
NDVI | NDVI | NDWI1 | NDWI2 | NDVI | NDWI1 | NDWI2 | ||
2017 | Min | −0.111 | −0.622 | −0.363 | −0.658 | −0.445 | −0.651 | −0.821 |
Max | 0.591 | 0.778 | 0.851 | 0.860 | 0.817 | 0.584 | 0.728 | |
Mean | 0.286 | 0.308 | −0.011 | 0.101 | 0.316 | −0.031 | 0.064 | |
Std dev | 0.082 | 0.128 | 0.096 | 0.123 | 0.142 | 0.112 | 0.136 | |
2018 | Min | −0.032 | −0.440 | −0.269 | −0.558 | −0.385 | −0.588 | −0.577 |
Max | 0.683 | 0.714 | 0.410 | 0.631 | 0.806 | 0.471 | 0.625 | |
Mean | 0.265 | 0.271 | 0.008 | 0.106 | 0.296 | −0.029 | 0.040 | |
Std dev | 0.099 | 0.124 | 0.088 | 0.121 | 0.145 | 0.096 | 0.134 |
GF-1 NDVI | Sentinel-2 NDVI | Landsat-8 NDVI | |
---|---|---|---|
2017 | 15% | 28% | 24% |
2018 | 16% | 23% | 18% |
Landsat-8 | Sentinel-2 | |||
---|---|---|---|---|
NDWI1 | NDWI2 | NDWI1 | NDWI2 | |
2017 | 42% | 80% | 37% | 64% |
2018 | 45% | 81% | 35% | 53% |
Sentinel-2 | Landsat-8 | GF-1 | |||
---|---|---|---|---|---|
NDVI | NDWI1 | NDVI | NDWI1 | NDVI | |
R2 | 0.54 | 0.623 | 0.51 | 0.56 | 0.52 |
RMSE (%) | 5.78 | 4.73 | 6.18 | 5.21 | 6.44 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Li, J.; Jin, T.; Chang, X.; Zhu, Y.; Li, Y.; Sun, J.; Li, D. Comparative Analysis of Landsat-8, Sentinel-2, and GF-1 Data for Retrieving Soil Moisture over Wheat Farmlands. Remote Sens. 2020, 12, 2708. https://doi.org/10.3390/rs12172708
Wang Q, Li J, Jin T, Chang X, Zhu Y, Li Y, Sun J, Li D. Comparative Analysis of Landsat-8, Sentinel-2, and GF-1 Data for Retrieving Soil Moisture over Wheat Farmlands. Remote Sensing. 2020; 12(17):2708. https://doi.org/10.3390/rs12172708
Chicago/Turabian StyleWang, Qi, Jiancheng Li, Taoyong Jin, Xin Chang, Yongchao Zhu, Yunwei Li, Jiaojiao Sun, and Dawei Li. 2020. "Comparative Analysis of Landsat-8, Sentinel-2, and GF-1 Data for Retrieving Soil Moisture over Wheat Farmlands" Remote Sensing 12, no. 17: 2708. https://doi.org/10.3390/rs12172708