Exploring Wetland Dynamics in Large River Floodplain Systems with Unsupervised Machine Learning: A Case Study of the Dongting Lake, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Source and Preparation
2.2.1. MODIS Enhanced Vegetation Index (EVI)
2.2.2. Geomorphological Variables
- One and two degree detrended DEM (Figure 2): the residuals of the linear regression of poly (x, y) with degree of 1 and 2,
- CTI (Compound Topographic Index) [75]—a steady state wetness index calculated using
- Local deviation from global (LDFG) [76]:
- TPI (Topographic Position Index) [77]: the difference between the value of a cell and the mean value of its 8 surrounding cells
2.3. Wetland Clustering
2.3.1. Assessing Clustering Tendency
2.3.2. Estimating the Optimal Number of Clusters
2.3.3. CLARA an Extension of k-Medoids Algorithm (PAM)
2.4. Clustering Validation
2.4.1. Internal Validation
2.4.2. Map Validation
3. Results
3.1. Optimal Number of Clusters
3.2. Accuracy of the Classification
3.2.1. Internal Clustering Validation
3.2.2. Validation of Clustering with Vegetation Maps
3.3. Changes of Wetland Extent
4. Discussion
5. Conclusions and Management Implications
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davidson, N.C.; Finlayson, C.M. Extent, regional distribution and changes in area of different classes of wetland. Mar. Freshw. Res. 2018, 69, 1525–1533. [Google Scholar] [CrossRef] [Green Version]
- Lehner, B.; Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- Silva, T.S.F.; Costa, M.P.F.; Melack, J.M. Spatial and temporal variability of macrophyte cover and productivity in the eastern Amazon floodplain: A remote sensing approach. Remote Sens. Environ. 2010, 114, 1998–2010. [Google Scholar] [CrossRef]
- Han, X.; Chen, X.; Feng, L. Four decades of winter wetland changes in Poyang Lake based on Landsat observations between 1973 and 2013. Remote Sens. Environ. 2015, 156, 426–437. [Google Scholar] [CrossRef]
- Wang, H.Z.; Liu, X.Q.; Wang, H.J. The Yangtze River-Floodplain: Threats and rehabilitation. In American Fisheries Society Symposium; Chen, Y., Duane, C., Jackson, J.R., Chen, D., Li, Z., Kilgore, K.J., Phelps, Q., Eggleton, M.A., Eds.; American Fisheries Society: Bethesda, MD, USA, 2016; pp. 263–291. [Google Scholar]
- McCarthy, J.M.; Gumbricht, T.; McCarthy, T.; Frost, P.; Wessels, K.; Seidel, F. Flooding patterns of the Okavango Wetland in Botswana between 1972 and 2000. Ambio 2003, 32, 453–457. [Google Scholar] [CrossRef]
- Cai, Y.; Li, X.; Zhang, M.; Lin, H. Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data. IJAEO 2020, 92, 102164. [Google Scholar]
- Parrens, M.; Bitar, A.A.; Frappart, F.; Paiva, R.; Wongchuig, S.; Papa, F.; Yamasaki, D.; Kerr, Y. High resolution mapping of inundation area in the Amazon basin from a combination of L-band passive microwave, optical and radar datasets. IJAEO 2019, 81, 58–71. [Google Scholar] [CrossRef]
- Silio-Calzada, A.; Barquin, J.; Huszar, V.L.M.; Mazzeo, N.; Mendez, F.; Alvarez-Martinez, J.M. Long-term dynamics of a floodplain shallow lake in the Pantanal wetland: Is it all about climate? Sci. Total Environ. 2017, 605–606, 527–540. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.; Yu, D.; Yao, R.; Li, C.a.; He, Q.; Wang, S.; Wang, L. Four decades of wetland changes in Dongting Lake using Landsat observations during 1978–2018. J. Hydrol. 2020, 587. [Google Scholar] [CrossRef]
- Taddeo, S.; Dronova, I. Indicators of vegetation development in restored wetlands. Ecol. Indic. 2018, 94, 454–467. [Google Scholar] [CrossRef]
- Guan, L.; Lei, J.; Zuo, A.; Zhang, H.; Lei, G.; Wen, L. Optimizing the timing of water level recession for conservation of wintering geese in Dongting Lake, China. Ecol. Eng. 2016, 88, 90–98. [Google Scholar] [CrossRef]
- Jing, L.; Lu, C.; Xia, Y.; Shi, L.; Zuo, A.; Lei, J.; Zhang, H.; Lei, G.; Wen, L. Effects of hydrological regime on development of Carex wet meadows in East Dongting Lake, a Ramsar Wetland for wintering waterbirds. Sci. Rep. 2017, 7, 41761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [Green Version]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Philos. Soc. 2019, 94, 849–873. [Google Scholar] [CrossRef] [Green Version]
- Tockner, K.; Pusch, M.; Borchardt, D.; Lorang, M.S. Multiple stressors in coupled river-floodplain ecosystems. Freshwat. Biol. 2010, 55, 135–151. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- United Nations. New UN Decade on Ecosystem Restoration Offers Unparalleled Opportunity for Job Creation, Food Security and Addressing Climate Change. 2019. Available online: https://www.unenvironment.org/news-and-stories/press-release/new-undecade-ecosystem-restoration-offers-unparalleledopportunity (accessed on 21 May 2010).
- Latrubesse, E.M.; Arima, E.Y.; Dunne, T.; Park, E.; Baker, V.R.; d’Horta, F.M.; Wight, C.; Wittmann, F.; Zuanon, J.; Baker, P.A.; et al. Damming the rivers of the Amazon basin. Nature 2017, 546, 363–369. [Google Scholar] [CrossRef]
- Arthington, Á.H.; Naiman, R.J.; Mcclain, M.E.; Nilsson, C. Preserving the biodiversity and ecological services of rivers: New challenges and research opportunities. Freshwat. Biol. 2010, 55, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Jungwirth, M.; Muhar, S.; Schmutz, S. Re-establishing and assessing ecological integrity in riverine landscapes. Freshwat. Biol. 2002, 47, 867–887. [Google Scholar] [CrossRef]
- Qureshi, M.E.; Schwabe, K.; Connor, J.; Kirby, M. Environmental water incentive policy and return flows. WRR 2010, 46, 4. [Google Scholar] [CrossRef] [Green Version]
- Guida, R.J.; Remo, J.W.F.; Secchi, S. Tradeoffs of strategically reconnecting rivers to their floodplains: The case of the Lower Illinois River (USA). Sci. Total Environ. 2016, 572, 43–55. [Google Scholar] [CrossRef]
- Fang, Y.; Du, S.; Scussolini, P.; Wen, J.; He, C.; Huang, Q.; Gao, J. Rapid Population Growth in Chinese Floodplains from 1990 to 2015. Int. J. Environ. Res. Public Health 2018, 15, 1602. [Google Scholar] [CrossRef] [Green Version]
- Hein, T.; Schwarz, U.; Habersack, H.; Nichersu, I.; Preiner, S.; Willby, N.; Weigelhofer, G. Current status and restoration options for floodplains along the Danube River. Sci Total Environ. 2016, 543, 778–790. [Google Scholar] [CrossRef]
- Tockner, K.; Schiemer, F. Ecological aspects of the restoration strategy for a river-floodplain system on the Danube River in Austria. Glob. Ecol. Biogeogr. Lett. 1997, 6, 321–329. [Google Scholar] [CrossRef]
- Alsdorf, D.; Han, S.-C.; Bates, P.; Melack, J. Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sens. Environ. 2010, 114, 2448–2456. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, C.; Ticehurst, C.; Merrin, L.; Thew, P. An evaluation of MODIS daily and 8-day composite products for floodplain and wetland inundation mapping. Wetlands 2013, 33, 823–835. [Google Scholar] [CrossRef]
- Palmer, M.A.; Bernhardt, E.S.; Allan, J.D.; Lake, P.S.; Alexander, G.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.N.; Follstad Shah, J.; et al. Standards for ecologically successful river restoration. J. Appl. Ecol. 2005, 42, 208–217. [Google Scholar] [CrossRef]
- Rodriguez-Gonzalez, P.M.; Albuquerque, A.; Martinez-Almarza, M.; Diaz-Delgado, R. Long-term monitoring for conservation management: Lessons from a case study integrating remote sensing and field approaches in floodplain forests. J. Environ. Manag. 2017, 202, 392–402. [Google Scholar] [CrossRef]
- Christopher, L.; Lunetta, S. Wetland detection methods. In Wetland and Environmental Applications in GIS; Lyon, J.G., McCarthy, J., Eds.; Lewis: Boca Raton, FL, USA, 1996; pp. 249–284. [Google Scholar]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016, 187, 156–168. [Google Scholar] [CrossRef]
- Ullerud, H.A.; Bryn, A.; Halvorsen, R.; Hemsing, L.Ø. Consistency in land-cover mapping: Influence of field workers, spatial scale and classification system. Appl. Veg. Sci. 2018, 21, 278–288. [Google Scholar] [CrossRef] [Green Version]
- Herold, M.; Mayaux, P.; Woodcock, C.E.; Baccini, A.; Schmullius, C. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 2008, 112, 2538–2556. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Cihlar, J. Land cover mapping of large areas from satellites: Status and research priorities. IJRS 2000, 21, 1093–1114. [Google Scholar]
- Congalton, R.G.; Gu, J.; Yadav, K.; Thenkabail, P.; Ozdogan, M. Global land cover mapping: A review and uncertainty analysis. Remote Sens. 2014, 6, 12070–12093. [Google Scholar] [CrossRef] [Green Version]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef]
- Teferi, E.; Bewket, W.; Uhlenbrook, S.; Wenninger, J. Understanding recent land use and land cover dynamics in the source region of the Upper Blue Nile, Ethiopia: Spatially explicit statistical modeling of systematic transitions. Agric. Ecosyst. Environ. 2013, 165, 98–117. [Google Scholar] [CrossRef]
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Powell, M.; Hodgins, G.; Danaher, T.; Ling, J.; Hughes, M.; Wen, L. Mapping Wetland Types in Semiarid Floodplains: A Statistical Learning Approach. Remote Sens. 2019, 11, 609. [Google Scholar] [CrossRef] [Green Version]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Dronova, I.; Gong, P.; Wang, L.; Zhong, L. Mapping dynamic cover types in a large seasonally flooded wetland using extended principal component analysis and object-based classification. Remote Sens. Environ. 2015, 158, 193–206. [Google Scholar] [CrossRef]
- Sandi, S.G.; Saco, P.M.; Rodriguez, J.F.; Saintilan, N.; Wen, L.; Kuczera, G.; Riccardi, G.; Willgoose, G. Patch organization and resilience of dryland wetlands. Sci. Total Environ. 2020, 726, 138581. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Smith, K.B.; Bourgeau-Chavez, L.L.; Romanowicz, E.A.; Brunzell, S.; Richardson, C.J. Effects of seasonal hydrologic patterns in south Florida wetlands on radar backscatter measured from ERS-2 SAR imagery. Remote Sens. Environ. 2003, 88, 423–441. [Google Scholar] [CrossRef]
- Gallant, A. The Challenges of Remote Monitoring of Wetlands. Remote Sens. 2015, 7, 10938–10950. [Google Scholar] [CrossRef] [Green Version]
- Kayastha, N.; Thomas, V.; Galbraith, J.; Banskota, A. Monitoring Wetland Change Using Inter-Annual Landsat Time-Series Data. Wetlands 2012, 32, 1149–1162. [Google Scholar] [CrossRef]
- Hu, S.; Niu, Z.; Chen, Y. Global Wetland Datasets: A Review. Wetlands 2017, 37, 807–817. [Google Scholar] [CrossRef]
- Ganguly, S.; Friedl, M.A.; Tan, B.; Zhang, X.; Verma, M. Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product. Remote Sens. Environ. 2010, 114, 1805–1816. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, E.W.; Spruce, J.; Rangoonwala, A.; Suzuoki, Y.; Smoot, J.; Gasser, J.; Bannister, T. Monitoring wetland forest recovery along the lower Pearl river with daily MODIS satellite data. PgERS 2011, 77, 1133–1143. [Google Scholar]
- Klemas, V. Remote sensing of wetlands: Case studies comparing practical techniques. J. Coast. Res. 2011, 27, 418–427. [Google Scholar] [CrossRef]
- Testa, S.; Soudani, K.; Boschetti, L.; Borgogno Mondino, E. MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests. IJAEO 2018, 64, 132–144. [Google Scholar] [CrossRef]
- Ozesmi, S.L.; Bauer, M.E. Satellite remote sensing of wetlands. Wetlands Ecol. Manag. 2002, 10, 381–402. [Google Scholar] [CrossRef]
- Ball, G.H.; Hall, D.J. ISODATA, A Novel Method of Data Analysis and Pattern Classification; Stanford Research Institute: Menlo Park, CA, USA, 1965. [Google Scholar]
- Lloyd, S. Least squares quantization in PCM. ITIT 1982, 28, 129–137. [Google Scholar] [CrossRef]
- Khosravi, I.; Safari, A.; Homayouni, S.; McNairn, H. Enhanced decision tree ensembles for land-cover mapping from fully polarimetric SAR data. IJRS 2017, 38, 7138–7160. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Z.; Lou, I.; Ung, W.K.; Mok, K.M. Algal bloom prediction by support vector machine and relevance vector machine with genetic algorithm optimization in freshwater reservoirs. Eng. Comput. 2017, 34, 664–679. [Google Scholar] [CrossRef]
- Long, W.; Srihar, S. Land cover classification of SSC image: Unsupervised and supervised classification using ERDAS imagine. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS, Anchorage, AK, USA, 20–24 September 2004; Volume 4, pp. 2707–2712. [Google Scholar]
- Černá, L.; Chytrý, M. Supervised classification of plant communities with artificial neural networks. J. Veg. Sci. 2005, 16, 407–414. [Google Scholar] [CrossRef]
- Davranche, A.; Lefebvre, G.; Poulin, B. Wetland monitoring using classification trees and SPOT-5 seasonal time series. Remote Sens. Environ. 2010, 114, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Jia, Y.; Jing, L.; Zeng, Q.; Lei, J.; Zhang, S.; Lei, G.; Wen, L. Shifts in river-floodplain relationship reveal the impacts of river regulation: A case study of Dongting Lake in China. J. Hydrol. 2018, 559, 932–941. [Google Scholar] [CrossRef]
- Yin, H.; Liu, G.; Pi, J.; Chen, G.; Li, C. On the river–lake relationship of the middle Yangtze reaches. Geomorphology 2007, 85, 197–207. [Google Scholar] [CrossRef]
- Yi, Y.; Yang, Z.; Zhang, S. Ecological influence of dam construction and river-lake connectivity on migration fish habitat in the Yangtze River basin, China. Procedia Environ. Sci. 2010, 2, 1942–1954. [Google Scholar] [CrossRef] [Green Version]
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC. Available online: https://doi.org/10.5067/MODIS/MOD13Q1.006 (accessed on 26 May 2020).
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Dougherty, R.L.; Edelman, A.S.; Hyman, J.M. Nonnegativity-, monotonicity-, or convexity-preserving cubic and quintic Hermite interpolation. Math. Comput. 1989, 52, 471–494. [Google Scholar] [CrossRef]
- Guan, L.; Wen, L.; Feng, D.; Zhang, H.; Lei, G. Delayed flood recession in central Yangtze floodplains can cause significant food shortages for wintering geese: Results of inundation experiment. Environ. Manag. 2014, 54, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis; Springer: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Sen, P.K. Estimates of Regression Coefficient Based on Kendall’s tau. J. Amer. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Evans, J.; Ram, K. spatialEco: Spatial Analysis and Modelling Utilities. R Package Version. J. Lumin. 2019, 132, 3035–3041. [Google Scholar]
- Hijmans, R.J.; van Etten, J. Raster: Geographic Analysis and Modeling with Raster Data. Available online: http://CRAN.R-project.org/package=raster (accessed on 29 May 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; The R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Lang, M.; McCarty, G.; Oesterling, R.; Yeo, I.-Y. Topographic Metrics for Improved Mapping of Forested Wetlands. Wetlands 2012, 33, 141–155. [Google Scholar] [CrossRef]
- Horvath, E.K.; Christensen, J.R.; Mehaffey, M.H.; Neale, A.C. Building a potential wetland restoration indicator for the contiguous United States. Ecol. Indic. 2017, 83, 462–473. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R. Perception of climate change. Proc. Natl. Acad. Sci. USA 2012, 109, E2415–E2423. [Google Scholar] [CrossRef] [Green Version]
- Riley, J.W.; Calhoun, D.L.; Barichivich, W.J.; Walls, S.C. Identifying Small Depressional Wetlands and Using a Topographic Position Index to Infer Hydroperiod Regimes for Pond-Breeding Amphibians. Wetlands 2017, 37, 325–338. [Google Scholar] [CrossRef]
- Baddeley, A.; Turner, R.; Rubak, E. Package Spatstat: Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests. Available online: http://cran.r-project.org (accessed on 18 August 2020).
- Lawson, R.G.; Jurs, P.C. New Index for Clustering Tendency and Its Application to Chemical Problems. J. Chem. Inf. Comput. Sci. 1990, 30, 36–41. [Google Scholar] [CrossRef]
- Charrad, M.; Ghazzali, N.; Boiteau, V.E.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Tibshirani, R.; Walther, G.; Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2001, 63, 411–423. [Google Scholar] [CrossRef]
- Kaufmann, L.; Rousseeuw, P.J. Clustering by means of medoids. In Proceedings of the Statistical Data Analysis Based on the L1 Norm Conference, Neuchatel, Switzerland, 4–9 August 2002; pp. 405–416. [Google Scholar]
- Arnau, O.; Xavier, M.; Joan, B.; Lluis, P.; Jordi, F. Improving clustering algorithms for image segmentation using contour and region information. In Proceedings of the 2006 IEEE International Conference on Robotics, Orlando, FL, USA, 15–19 May 2006; pp. 315–320. [Google Scholar]
- Rashmi, C.; Chaluvaiah, S.; Kumar, G.H. An Efficient Parallel Block Processing Approach for K -Means Algorithm for High Resolution Orthoimagery Satellite Images. Procedia Comput. Sci. 2016, 89, 623–631. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; John Wiley & Sons: Hoboken, NY, USA, 2009; Volume 344. [Google Scholar]
- Schubert, E.; Rousseeuw, P.J. Faster k-medoids clustering: Improving the PAM, CLARA, and CLARANS algorithms. In Proceedings of the International Conference on Similarity Search and Applications, Newark, NJ, USA, 2–4 October 2019; pp. 171–187. [Google Scholar] [CrossRef] [Green Version]
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K.; Studer, M. Package ‘Cluster’. Available online: https://mran.microsoft.com/snapshot/2014-2012-2011/web/packages/cluster/cluster.pdf (accessed on 18 August 2020).
- Lemenkova, P. K-means Clustering in R Libraries {cluster} and {factoextra} for Grouping Oceanographic Data. Int. J. Inform. Appl. Math. 2019, 2, 1–26. [Google Scholar]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. An Application of Hierarchical Kappa-type Statistics in the Assessment of Majority Agreement among Multiple Observers. Biometrics 1977, 33, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Rose, R.A.; Byler, D.; Eastman, J.R.; Fleishman, E.; Geller, G.; Goetz, S.; Guild, L.; Hamilton, H.; Hansen, M.; Headley, R.; et al. Ten ways remote sensing can contribute to conservation. Conserv. Biol. 2015, 29, 350–359. [Google Scholar] [CrossRef] [Green Version]
- Arvor, D.; Jonathan, M.; Meirelles, M.S.P.; Dubreuil, V.; Durieux, L. Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. IJRS 2011, 32, 7847–7871. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the US Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Heimhuber, V.; Tulbure, M.G.; Broich, M. Addressing spatio-temporal resolution constraints in Landsat and MODIS-based mapping of large-scale floodplain inundation dynamics. Remote Sens. Environ. 2018, 211, 307–320. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Chen, X.; Li, R.; Tian, L.; Murch, B. MODIS observations of the bottom topography and its inter-annual variability of Poyang Lake. Remote Sens. Environ. 2011, 115, 2729–2741. [Google Scholar] [CrossRef]
- Jung, J.A.; Rokitnicki-Wojcik, D.; Midwood, J.D. Characterizing Past and Modelling Future Spread of Phragmites australis ssp. australis at Long Point Peninsula, Ontario, Canada. Wetlands 2017, 37, 961–973. [Google Scholar] [CrossRef]
- Warren, R.S.; Fell, P.E.; Grimsby, J.L.; Buck, E.L.; Rilling, G.C.; Fertik, R.A. Rates, patterns, and impacts of Phragmites australis expansion and effects of experimental Phragmites control on vegetation, macroinvertebrates, and fish within tidelands of the lower Connecticut River. Estuaries 2001, 24, 90–107. [Google Scholar] [CrossRef]
- Gratton, C.; Denno, R.F. Restoration of Arthropod Assemblages in a Spartina Salt Marsh following Removal of the Invasive Plant Phragmites Australis. Restor. Ecol. 2005, 13, 358–372. [Google Scholar] [CrossRef]
- Ravit, B.; Ehrenfeld, J.G.; Häggblom, M.M.; Bartels, M. The effects of drainage and nitrogen enrichment on Phragmites australis, Spartina alterniflora, and their root-associated microbial communities. Wetlands 2007, 27, 915–927. [Google Scholar] [CrossRef]
- Wyman, K.E.; Cuthbert, F.J. Black tern (Chlidonias niger) breeding site abandonment in US Great Lakes coastal wetlands is predicted by historical abundance and patterns of emergent vegetation. Wetl. Ecol. Manag. 2017, 25, 583–596. [Google Scholar] [CrossRef]
- Meyer, D.L.; Johnson, J.M.; Gill, J.W. Comparison of nekton use of Phragmites australis and Spartina alterniflora marshes in the Chesapeake Bay, USA. Mar. Ecol. Prog. Ser. 2001, 209, 71–83. [Google Scholar] [CrossRef]
Wetland Type | Key Species | Flood Requirement | Ecological Importance |
---|---|---|---|
Forested Wetlands | Populus nigra, Salix triandra | Tolerant short-term inundation | Non-native species for commercial planting |
Reed marshes | Phragmites australis, Phalaris arundinacea, Miscanthus sacchariflorus | Can survival occasional, prolonged flooded | A typical wetland plant community, providing habitat for a range of wildlife, such as herons. |
Wet meadows | Polygonum hydropiper Oenanthe javanica Carex brevicuspis | Shallow, periodic flooded | A typical wetland plant community, providing foraging habitat for migratory water birds (e.g., geese and cranes) and breeding structure for fish |
Mudflat | - | Periodic flooded | Habitat for migratory water birds (e.g., geese and shorebirds) |
Permanent water | Vallisneria natans Ceratophyllum demersum Hydrilla verticillata | - | Habitat for fish and migratory water birds (e.g., ducks and swan) |
Year | Tendency | Average Width | No. of Clusters (Elbow) | No. of Clusters (Silhouette) | No. of Clusters (Gap Statistics) |
---|---|---|---|---|---|
2000 | 0.90 | 0.39 | 3 | 4 | 5 |
2001 | 0.90 | 0.42 | 3 | 3 | 7 |
2002 | 0.93 | 0.48 | 3 | 3 | 3 |
2003 | 0.94 | 0.43 | 3 | 3 | 3 |
2004 | 0.90 | 0.45 | 3 | 3 | 10 |
2005 | 0.93 | 0.44 | 3 | 3 | 4 |
2006 | 0.90 | 0.45 | 4 | 3 | 4 |
2007 | 0.91 | 0.47 | 3 | 3 | 3 |
2008 | 0.92 | 0.49 | 3 | 2 | 7 |
2009 | 0.95 | 0.44 | 3 | 2 | 5 |
2010 | 0.94 | 0.39 | 3 | 3 | 3 |
2011 | 0.90 | 0.44 | 3 | 3 | 6 |
2012 | 0.96 | 0.43 | 3 | 3 | 1 |
2013 | 0.94 | 0.47 | 3 | 3 | 3 |
2014 | 0.88 | 0.43 | 3 | 3 | 3 |
2015 | 0.94 | 0.45 | 3 | 3 | 4 |
2016 | 0.94 | 0.42 | 3 | 3 | 7 |
2017 | 0.91 | 0.38 | 4 | 3 | 6 |
2018 | 0.92 | 0.51 | 3 | 3 | 5 |
2019 | 0.93 | 0.46 | 3 | 3 | 3 |
Year | Average | Shallow Waters | Wet Meadows | Rushes | ||||
---|---|---|---|---|---|---|---|---|
Si | Isolation | Si | Isolation | Si | Isolation | Si | Isolation | |
2000 | 0.42 | 1.66 | 0.55 | 1.12 | 0.37 | 1.97 | 0.32 | 1.90 |
2001 | 0.44 | 1.48 | 0.59 | 1.15 | 0.32 | 1.29 | 0.43 | 1.99 |
2002 | 0.50 | 0.98 | 0.65 | 0.80 | 0.39 | 1.05 | 0.42 | 1.08 |
2003 | 0.44 | 2.21 | 0.57 | 1.40 | 0.31 | 3.67 | 0.44 | 1.57 |
2004 | 0.46 | 1.22 | 0.61 | 0.95 | 0.31 | 1.41 | 0.47 | 1.29 |
2005 | 0.43 | 1.84 | 0.59 | 1.37 | 0.23 | 2.41 | 0.51 | 1.74 |
2006 | 0.43 | 1.03 | 0.60 | 0.86 | 0.23 | 1.17 | 0.52 | 1.06 |
2007 | 0.46 | 1.13 | 0.59 | 0.86 | 0.34 | 1.41 | 0.48 | 1.11 |
2008 | 0.43 | 1.41 | 0.61 | 1.48 | 0.18 | 1.83 | 0.55 | 0.94 |
2009 | 0.47 | 1.58 | 0.45 | 1.06 | 0.38 | 2.45 | 0.53 | 1.23 |
2010 | 0.41 | 2.47 | 0.52 | 1.88 | 0.34 | 2.52 | 0.38 | 3.00 |
2011 | 0.47 | 1.28 | 0.57 | 0.86 | 0.40 | 1.25 | 0.44 | 1.75 |
2012 | 0.44 | 2.90 | 0.60 | 0.91 | 0.25 | 4.75 | 0.47 | 3.05 |
2013 | 0.50 | 1.80 | 0.56 | 1.03 | 0.37 | 2.04 | 0.53 | 2.32 |
2014 | 0.44 | 1.39 | 0.58 | 1.09 | 0.30 | 1.40 | 0.44 | 1.69 |
2015 | 0.49 | 1.67 | 0.60 | 1.24 | 0.33 | 1.72 | 0.49 | 2.04 |
2016 | 0.42 | 1.97 | 0.62 | 1.18 | 0.19 | 3.01 | 0.44 | 1.73 |
2017 | 0.39 | 2.41 | 0.60 | 2.08 | 0.18 | 2.59 | 0.40 | 2.56 |
2018 | 0.52 | 1.00 | 0.63 | 0.84 | 0.43 | 1.01 | 0.48 | 1.15 |
2019 | 0.47 | 1.45 | 0.62 | 1.02 | 0.39 | 1.89 | 0.42 | 1.44 |
Year | Overall Accuracy | Kappa | Shallow Waters | Wet Meadows | Rushes | |||
---|---|---|---|---|---|---|---|---|
UA | PA | UA | PA | UA | PA | |||
2009 | 0.8519 (0.8483, 0.8554) | 0.7731 | 0.9356 | 0.8438 | 0.9287 | 0.858 | 0.9108 | 0.8544 |
2013 | 0.8768 (0.8753, 0.8818) | 0.8116 | 0.9473 | 0.8761 | 0.9316 | 0.8787 | 0.9413 | 0.8806 |
Wetland Type | Change Rate (ha/yr) | Change (%) | |
---|---|---|---|
Lake | Water/mudflat | −666.60 | −16.34 |
Wet meadows | −1657.95 | −31.35 | |
Rushes | 2322.85 | 79.53 | |
East Dongting Lake | Water/mudflat | −222.95 | −11.17 |
Wet meadows | −739.45 | −22.13 | |
Rushes | 961.75 | 104.32 | |
South Dongting Lake | Water/mudflat | −350.45 | −22.74 |
Wet meadows | −601.40 | −41.03 | |
Rushes | 950.20 | 75.81 | |
West Dongting Lake | Water/mudflat | −93.15 | −17.18 |
Wet meadows | −317.05 | −65.78 | |
Rushes | 410.90 | 55.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, L.; Zhou, Y.; Zeng, Q.; Liu, S.; Lei, G.; Lu, C.; Wen, L. Exploring Wetland Dynamics in Large River Floodplain Systems with Unsupervised Machine Learning: A Case Study of the Dongting Lake, China. Remote Sens. 2020, 12, 2995. https://doi.org/10.3390/rs12182995
Jing L, Zhou Y, Zeng Q, Liu S, Lei G, Lu C, Wen L. Exploring Wetland Dynamics in Large River Floodplain Systems with Unsupervised Machine Learning: A Case Study of the Dongting Lake, China. Remote Sensing. 2020; 12(18):2995. https://doi.org/10.3390/rs12182995
Chicago/Turabian StyleJing, Lei, Yan Zhou, Qing Zeng, Shuguang Liu, Guangchun Lei, Cai Lu, and Li Wen. 2020. "Exploring Wetland Dynamics in Large River Floodplain Systems with Unsupervised Machine Learning: A Case Study of the Dongting Lake, China" Remote Sensing 12, no. 18: 2995. https://doi.org/10.3390/rs12182995