A Novel Method for Mitigating the GPS Multipath Effect Based on a Multi-Point Hemispherical Grid Model
Abstract
:1. Introduction
2. The Multi-Point Hemispherical Grid Model
3. Experiments and Discussion
3.1. Experimental Design
- (1)
- The observation (3) constructed by DD OMC observations, where the weights of this kind of observation equation are determined by the accuracy of DD OMC observations, whose accuracy can achieve a millimeter or better [44].
- (2)
- The observation equation constructed by imposing a requirement on the absolute values of the grid point parameters, where the weights of this kind of observation equation are determined by 1/4 of the L1 wavelength [2].
- (3)
- The observation equation constructed by imposing constraints on the correlation among grid point parameters, where the weights of this kind of observation equation are determined by an empirical variation value between grid point parameters, and this value is set to 1.0 cm/degree based on the results of multiple experiments, and it is found that setting the value to 5 mm/degree ~5 cm/degree has little effect on the final model.
3.2. Analysis of Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roberts, G.W.; Meng, X.; Psimoulis, P.; Brown, C.J. Time series analysis of rapid GNSS measurements for quasi-static and dynamic bridge monitoring. In Geodetic Time Series Analysis in Earth Sciences; Montillet, J.P., Bos, M., Eds.; Springer Geophysics: Cham, Switzerland, 2020; pp. 345–417. [Google Scholar]
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Wasle, E. GNSS–Global Navigation Satellite Systems: GPS, Glonass, Galileo, and More; Springer: Vienna, Austria, 2008. [Google Scholar]
- Xie, L.; Cui, X.; Zhao, S.; Lu, M. Mitigating multipath bias using a dual-polarization antenna: Theoretical performance, algorithm design, and simulation. Sensors 2017, 17, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, G.; Chen, C.; Yang, Y.; Xu, T. Tikhonov regularization based modeling and sidereal filtering mitigation of GNSS multipath errors. Remote Sens. 2018, 10, 1801. [Google Scholar] [CrossRef] [Green Version]
- Dierendonck, A.J.v.; Fenton, P.; Ford, T. Theory and performance of narrow correlator spacing in a GPS receiver. Navigation 1992, 39, 265–283. [Google Scholar] [CrossRef]
- Nee, R.D.J.v. The multipath estimating delay lock loop. In Proceedings of the IEEE 2nd International Symposium on Spread Spectrum Techniques and Applications, Yokohama, Japan, 29 November–2 December 1992; pp. 39–42. [Google Scholar]
- Townsend, B.R.; Fenton, P. A practical approach to the reduction of pseudorange multipath errors in a L1 GPS receiver. In Proceedings of the 7th International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, UT, USA, 20–23 September 1994. [Google Scholar]
- Filippov, V.; Tatarnicov, D.; Ashjaee, J.; Astakhov, A.; Sutiagin, I. The first dual-depth dual-frequency choke ring. In Proceedings of the 11th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1998), Nashville, TN, USA, 15–18 September 1998; pp. 1035–1040. [Google Scholar]
- Tranquilla, J.M.; Carr, J.P.; Al-Rizzo, H.M. Analysis of a choke ring ground plane for multipath control in global positioning system (GPS) applications. IEEE Trans. Antennas Propag. 1994, 42, 905–911. [Google Scholar] [CrossRef]
- Tatarnikov, D.; Filippov, V.; Soutiaguine, I.; Astahov, A.; Stepanenko, A.; Shamatulsky, P. Multipath mitigation by conventional antennas with ground planes and passive vertical structures. GPS Solut. 2005, 9, 194–201. [Google Scholar] [CrossRef]
- Rothacher, M.; Springer, T.; Schaer, S.; Beutler, G. Processing strategies for regional GPS networks. In Advances in Positioning and Reference Frames; Springer: Heidelberg, Germany, 1998; pp. 93–100. [Google Scholar]
- Meindl, M.; Schaer, S.; Hugentobler, U.; Beutler, G. Tropospheric gradient estimation at CODE: Results from global solutions. J. Meteorol. Soc. Japan. Ser. II 2004, 82, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Comp, C.; Axelrad, P. Adaptive SNR based carrier phase multipath mitigation technique. IEEE Trans. Aerosp. Electron. Syst. 1998, 34, 264–276. [Google Scholar] [CrossRef]
- Lau, L.; Mok, E. Improvement of GPS relative positioning accuracy by using SNR. J. Surv. Eng. 1999, 125, 185–202. [Google Scholar] [CrossRef]
- Souza, E.M.; Monico, J.F.G. Wavelet shrinkage: High frequency multipath reduction from GPS relative positioning. GPS Solut. 2004, 8, 152–159. [Google Scholar] [CrossRef]
- Satirapod, C.; Rizos, C. Multipath mitigation by wavelet analysis for GPS base station applications. Surv. Rev. 2005, 38, 2–10. [Google Scholar] [CrossRef]
- Ince, C.D.; Sahin, M. Real-time deformation monitoring with GPS & Kalman filter. Earth Planets Space 2000, 52, 837–840. [Google Scholar]
- Zheng, D.; Zhong, P.; Ding, X.; Chen, W. Filtering GPS time-series using a Vondrak filter and cross-validation. J. Geod. 2005, 79, 363–369. [Google Scholar] [CrossRef]
- Ge, L.; Han, S.; Rizos, C. Multipath mitigation of continuous GPS measurements using an adaptive filter. GPS Solut. 2000, 4, 19–30. [Google Scholar] [CrossRef]
- Yu, S.; Guo, F.; Zhang, X.; Liu, W.; Li, X.; Wu, R. A new method for GNSS multipath mitigation with an adaptive frequency domain filter. Sensors 2018, 18, 2514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.; Rizos, C. Multipath effects on GPS in mine environments. In Proceedings of the 10th International Congress of the International Society for Mine Surveying, Fremantle, Australia, 2–6 November 1997; pp. 447–457. [Google Scholar]
- Genrich, J.; Bock, Y. Rapid resolution of crustal motion at short ranges with the global positioning system. J. Geophys. Res. 1992, 97, 3261–3269. [Google Scholar] [CrossRef]
- Bock, Y.; Nikolaidis, R.M.; Jonge, P.J.; Michael, B. Instantaneous geodetic positioning at medium distances with the global positioning system. J. Geophys. Res. 2000, 105, 28223–28254. [Google Scholar] [CrossRef]
- Bock, Y.; Prawirodirdjo, L.; Melbourne, T.I. Detection of arbitrarily large dynamic ground motions with a dense high-rate GPS network. Geophys. Res. Lett. 2004, 31, L06604. [Google Scholar] [CrossRef] [Green Version]
- Nikolaidis, R.M.; Bock, Y.; Jonge, P.J.D.; Shearer, P.; Agnew, D.C.; Domselaar, M.V. Seismic wave observations with the global positioning system. J. Geophys. Res. 2001, 106, 21897–21916. [Google Scholar] [CrossRef] [Green Version]
- Seeber, G.; Menge, F.; Völksen, C.; Wübbena, G.; Schmitz, M. Precise GPS Positioning Improvements by Reducing Antenna and Site Dependent Effects; Springer: Heidelberg, Germany, 1998; Volume 118. [Google Scholar]
- Ding, X.; Chen, Y.; Zhu, J.; Huang, D. Surface deformation detection using GPS. In Proceedings of the 12th International Technical Meeting of the Satellite Division of The Institute of Navigation, Nashville, TN, USA, 14–17 September 1999; pp. 53–62. [Google Scholar]
- Choi, K.; Bilich, A.; Larson, K.M.; Axelrad, P. Modified sidereal filtering: Implications for high-rate GPS positioning. Geophys. Res. Lett. 2004, 31, 178–198. [Google Scholar] [CrossRef] [Green Version]
- Agnew, D.C.; Larson, K.M. Finding the repeat times of the GPS constellation. GPS Solut. 2007, 11, 71–76. [Google Scholar] [CrossRef]
- Larson, K.; Bilich, A.; Axelrad, P. Improving the precision of high-rate GPS. J. Geophys. Res. 2007, 112, B05422. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.; Dong, D.; Li, H.; Han, L.; Chen, W. Comparison of three methods for estimating GPS multipath repeat time. Remote Sens. 2018, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Alber, C.; Ware, R.; Rocken, C.; Braun, J. Obtaining single path phase delays from GPS double differences. Geophys. Res. Lett. 2000, 27, 2661–2664. [Google Scholar] [CrossRef] [Green Version]
- Ragheb, A.E.; Clarke, P.J.; Edwards, S.J. GPS sidereal filtering: Coordinate- and carrier-phase-level strategies. J. Geod. 2007, 81, 325–335. [Google Scholar] [CrossRef]
- Zhong, P.; Ding, X.; Yuan, L.; Xu, Y.; Kwok, K.; Chen, Y. Sidereal filtering based on single differences for mitigating GPS multipath effects on short baselines. J. Geod. 2010, 84, 145–158. [Google Scholar] [CrossRef]
- Cohen, C.E.; Parkinson, B.W. Mitigating multipath error in GPS-based attitude determination. In Proceedings of the Annual Rocky Mountain Guidance and Control Conference, Keystone, CO, USA, 2–6 February 1991; pp. 53–68. [Google Scholar]
- Fuhrmann, T.; Luo, X.; Knoepfler, A.; Mayer, M. Generating statistically robust multipath stacking maps using congruent cells. GPS Solut. 2015, 19, 83–92. [Google Scholar] [CrossRef]
- Moore, M.; Watson, C.; King, M.; McClusky, M.; Tregoning, P. Empirical modelling of site-specific errors in continuous GPS data. J. Geod. 2014, 88, 887–900. [Google Scholar] [CrossRef]
- Shi, Q.; Dai, W.; Zeng, F.; Kuang, C. The BDS Multipath Hemispherical Map Based on Double Difference Residuals and Its Application Analysis. In China Satellite Navigation Conference (CSNC) 2016 Proceedings: Volume I; Lecture Notes in Electrical Engineering; Sun, J., Liu, J., Fan, S., Wang, F., Eds.; Springer: Singapore, 2016; Volume 388. [Google Scholar]
- Dong, D.; Wang, M.; Chen, W.; Zeng, Z.; Song, L.; Zhang, Q.; Cai, M.; Cheng, Y.; Lv, J. Mitigation of multipath effect in GNSS short baseline positioning by the multipath hemispherical map. J. Geod. 2016, 90, 255–262. [Google Scholar] [CrossRef]
- Elósegui, P.; Davis, J.L.; Jaldehag, R.T.K.; Johansson, J.M.; Niell, A.E.; Shapiro, I.I. Geodesy using the global positioning system: The effects of signal scattering on estimates of site position. J. Geophys. Res. 1995, 100, 9921–9934. [Google Scholar] [CrossRef]
- Liu, J.; Ge, M. PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ. J. Nat. Sci. 2003, 8, 603–609. [Google Scholar]
- Shi, C.; Zhao, Q.; Geng, J.; Lou, Y.; Ge, M.; Liu, J. Recent development of PANDA software in GNSS data processing. In International Conference on Earth Observation Data Processing and Analysis (ICEODPA); International Society for Optics and Photonics: Bellingham, WA, USA, 2008; p. 7285. [Google Scholar]
- Ge, M.; Gendt, G.; Dick, G.; Zhang, F.P. Improving carrier-phase ambiguity resolution in global GPS network solutions. J. Geod. 2005, 79, 103–110. [Google Scholar] [CrossRef]
- Bona, P. Accuracy of GPS phase and code observations in practice. Acta Geod. Geoph. Hung. 2000, 35, 433–451. [Google Scholar]
Station | A | B | C |
---|---|---|---|
Receiver | Septentrio PolaRx5S | PANDA PD318 | Septentrio PolaRx5S |
Antenna | Harxon HX-CSX607A | Harxon HX-CSX607A | Harxon HX-CSX607A |
with baffle or not | Yes | No | No |
Parameter | Model | Constraint |
---|---|---|
Observation | L1 + P1 | 0.02 cycle, 1.0 m |
Observation weight | Satellite elevation | / |
Cutoff elevation | 7 degree | / |
Phase center pattern | igs14.atx | / |
Tropospheric delay | Saastamoinen + GMF | priori covariance 0.300 m |
Satellite clock | Broadcast + Process | priori covariance 3000 m |
Receiver clock | Range estimating + White noise | priori covariance 9000 m |
EOP | Fixed to IERS | / |
Satellite orbit | Broadcast | priori covariance 10 m |
Station displacement | Solid earth, pole tide, ocean loading | / |
Strategy | Modeling Method | Days of the Year 2018 | |
---|---|---|---|
Modeling Data | Test Data | ||
N | / | / | 233 |
SF | SF | 232 | 233 |
ESM | ESM | 232 | 233 |
M1 | MHGM | 232 | 233 |
M2 | MHGM | 231~232 | 233 |
M3 | MHGM | 230~232 | 233 |
M4 | MHGM | 229~232 | 233 |
M5 | MHGM | 228~232 | 233 |
M6 | MHGM | 227~232 | 233 |
M7 | MHGM | 226~232 | 233 |
Strategy | Mean RMS of DD OMC/cm | Improvement Compared with Strategy N | ||
---|---|---|---|---|
HMP | LMP | HMP | LMP | |
N | 1.055 | 0.629 | / | / |
SF | 0.289 | 0.294 | 72.6% | 53.4% |
ESM | 0.335 | 0.345 | 68.3% | 45.2% |
M1 | 0.260 | 0.307 | 75.4% | 51.2% |
M2 | 0.257 | 0.281 | 75.6% | 55.3% |
M3 | 0.257 | 0.282 | 75.6% | 55.2% |
M4 | 0.258 | 0.273 | 75.5% | 56.7% |
M5 | 0.257 | 0.270 | 75.7% | 57.0% |
M6 | 0.257 | 0.270 | 75.7% | 57.0% |
M7 | 0.257 | 0.271 | 75.6% | 57.0% |
Strategy | RMS (mm) | |||
---|---|---|---|---|
A (HMP) | B (LMP) | |||
Horizontal | Vertical | Horizontal | Vertical | |
N | 5.48 | 9.90 | 3.35 | 5.15 |
SF | 1.54 | 3.42 | 1.52 | 2.31 |
ESM | 2.11 | 4.03 | 1.95 | 3.07 |
M1 | 1.52 | 2.71 | 1.73 | 2.77 |
M7 | 1.50 | 2.46 | 1.54 | 2.37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zou, X.; Deng, C.; Tang, W.; Li, Y.; Zhang, Y.; Feng, J. A Novel Method for Mitigating the GPS Multipath Effect Based on a Multi-Point Hemispherical Grid Model. Remote Sens. 2020, 12, 3045. https://doi.org/10.3390/rs12183045
Wang Y, Zou X, Deng C, Tang W, Li Y, Zhang Y, Feng J. A Novel Method for Mitigating the GPS Multipath Effect Based on a Multi-Point Hemispherical Grid Model. Remote Sensing. 2020; 12(18):3045. https://doi.org/10.3390/rs12183045
Chicago/Turabian StyleWang, Yawei, Xuan Zou, Chenlong Deng, Weiming Tang, Yangyang Li, Yongfeng Zhang, and Jin Feng. 2020. "A Novel Method for Mitigating the GPS Multipath Effect Based on a Multi-Point Hemispherical Grid Model" Remote Sensing 12, no. 18: 3045. https://doi.org/10.3390/rs12183045
APA StyleWang, Y., Zou, X., Deng, C., Tang, W., Li, Y., Zhang, Y., & Feng, J. (2020). A Novel Method for Mitigating the GPS Multipath Effect Based on a Multi-Point Hemispherical Grid Model. Remote Sensing, 12(18), 3045. https://doi.org/10.3390/rs12183045