Estimating Artificial Impervious Surface Percentage in Asia by Fusing Multi-Temporal MODIS and VIIRS Nighttime Light Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.3. Methodology
2.3.1. Feature Construction
2.3.2. Framework of the Proposed Method
2.3.3. Development of AISP Prediction Models and Evaluation
2.3.4. Experimental Scheme Description
3. Results
3.1. The Results of Different Schemes
3.2. Prediction of AISP in Asia
3.3. Analysis of Predicted Results of AISP in Typical Cities
4. Discussion
4.1. Comparative Analysis of Different Product Results in a Typical Area
4.2. Feature Importance Analysis
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnold, C.L.J.; Gibbons, C.J. Impervious surface coverage: The emergence of a key environmental indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Schueler, T. The importance of imperviousness. Watershed Prot. Tech. 1994, 1, 100–101. [Google Scholar]
- Gao, F.; Colstoun, E.B.D.; Ma, R.; Weng, Q.; Masek, J.G.; Chen, J.; Pan, Y.; Song, C. Mapping impervious surface expansion using medium-Resolution satellite image time series: A case study in the Yangtze River Delta, China. Int. J. Remote Sens. 2012, 33, 7609–7628. [Google Scholar] [CrossRef]
- Weng, Q. Modeling urban growth effects on surface runoff with the integration of remote sensing and GIS. Environ. Manag. 2001, 28, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Xu, H. Quantitative analysis on the relationship of urban impervious surface with other components of the urban ecosystem. Acta Ecol. Sin. 2009, 29, 2456–2462. [Google Scholar]
- Grimmond, S.U. Urbanization and global environmental change: Local effects of urban warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Bierwagen, B.G.; Theobald, D.M.; Pyke, C.R.; Choate, A.; Groth, P.; Thomas, J.V.; Morefield, P. National Housing and Impervious Surface Scenarios for Integrated Climate Impact Assessments; Proceedings of the National Academy of Sciences: Washington, DC, USA, 2010; Volume 107, pp. 20887–20892. [Google Scholar]
- Shao, Z.; Fu, H.; Li, D.; Altan, O.; Cheng, T. Remote sensing monitoring of multi-scale watersheds impermeability for urban hydrological evaluation. Remote Sens. Environ. 2019, 232, 111338. [Google Scholar] [CrossRef]
- Phinn, S.; Stanford, M.; Scarth, P.; Murray, A.; Shyy, P. Monitoring the composition of urban environments based on the vegetation-Impervious surface-Soil (VIS) model by subpixel analysis techniques. Int. J. Remote Sens. 2002, 23, 4131–4153. [Google Scholar] [CrossRef]
- Wu, J. Urban ecology and sustainability: The State-Of-The-Science and future directions. Landsc. Urban Plan. 2014, 125, 209–221. [Google Scholar] [CrossRef]
- Lu, D.; Moran, E.; Hetrick, S.; Li, G. Mapping impervious surface distribution with the integration of Landsat TM and QuickBird images in a complex urban-Rural frontier in Brazil. In Advances of Environmental Remote Sensing to Monitor Global Changes; CRC Press/Taylor and Francis: Boca Raton, FL, USA, 2011; pp. 277–296. [Google Scholar]
- Goetz, S.J.; Wright, R.K.; Smith, A.J.; Zinecker, E.; Schaub, E. IKONOS imagery for resource management: Tree cover, impervious surfaces, and riparian buffer analyses in the mid-Atlantic region. Remote Sens. Environ. 2003, 88, 195–208. [Google Scholar] [CrossRef]
- Cao, X.; Gao, X.; Shen, Z.; Li, R. Expansion of Urban Impervious Surfaces in Xining City Based on GEE and Landsat Time Series Data. IEEE Access 2020, 8, 147097–147111. [Google Scholar] [CrossRef]
- Zhang, Y.; Balzter, H.; Liu, B.; Chen, Y. Analyzing the impacts of urbanization and seasonal variation on land surface temperature based on subpixel fractional covers using Landsat images. IEEE J. Sel. Top. Appl. Earth Obse. Remote Sens. 2016, 10, 1344–1356. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Zhou, Y.; He, B.; Liu, X.; Zhang, H.; Feng, S. Improving Land Cover Change Detection and Classification With BRDF Correction and Spatial Feature Extraction Using Landsat Time Series: A Case of Urbanization in Tianjin, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4166–4177. [Google Scholar] [CrossRef]
- Chen, J.; Gong, P.; He, C.; Luo, W.; Tamura, M.; Shi, P. Assessment of the urban development plan of Beijing by using a CA-based urban growth model. Photogramm. Eng. Remote Sens. 2002, 68, 1063–1072. [Google Scholar]
- Ju, J.; Roy, D.P. The availability of cloud-Free Landsat ETM+ data over the conterminous United States and globally. Remote Sens. Environ. 2008, 112, 1196–1211. [Google Scholar] [CrossRef]
- Sun, G.; Chen, X.; Ren, J.; Zhang, A.; Jia, X. Stratified spectral mixture analysis of medium resolution imagery for impervious surface mapping. Int. J. Appl. Earth Obs. Geoinf. 2017, 60, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wu, C. Phenology-Based temporal mixture analysis for estimating large-Scale impervious surface distributions. Int. J. Remote Sens. 2014, 35, 779–795. [Google Scholar] [CrossRef]
- Wu, C.; Murray, A.T. Estimating impervious surface distribution by spectral mixture analysis. Remote Sens. Environ. 2003, 84, 493–505. [Google Scholar] [CrossRef]
- Li, W.; Wu, C. A geostatistical temporal mixture analysis approach to address endmember variability for estimating regional impervious surface distributions. GIScience Remote Sens. 2016, 53, 102–121. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C. The use of single-Date MODIS imagery for estimating large-Scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques. ISPRS J. Photogramm. Remote Sens. 2013, 86, 100–110. [Google Scholar] [CrossRef]
- Deng, C. Incorporating endmember variability into linear unmixing of coarse resolution imagery: Mapping large-Scale impervious surface abundance using a hierarchically object-Based spectral mixture analysis. Remote Sens. 2015, 7, 9205–9229. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Zhao, M.; Sun, C.; Pan, J. Exploring the impact of seasonality on urban land-Cover mapping using multi-Season sentinel-1a and gf-1 wfv images in a subtropical monsoon-Climate region. ISPRS Int. J. Geo-Inf. 2018, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Goldblatt, R.; Stuhlmacher, M.F.; Tellman, B.; Clinton, N.; Hanson, G.; Georgescu, M.; Wang, C.; Serrano-Candela, F.; Khandelwal, A.K.; Cheng, W.-H. Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sens. Environ. 2018, 205, 253–275. [Google Scholar] [CrossRef]
- Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar] [CrossRef]
- Xu, H. Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI). Photogramm. Eng. Remote Sens. 2010, 76, 557–565. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, C.; Guo, H.; Shang, R. A modified normalized difference impervious surface index (MNDISI) for automatic urban mapping from Landsat imagery. Remote Sens. 2017, 9, 942. [Google Scholar] [CrossRef] [Green Version]
- Henderson, M.; Yeh, E.T.; Gong, P.; Elvidge, C.; Baugh, K. Validation of urban boundaries derived from global night-Time satellite imagery. Int. J. Remote Sens. 2003, 24, 595–609. [Google Scholar] [CrossRef]
- Kuang, W.; Liu, J.; Zhang, Z.; Lu, D.; Xiang, B. Spatiotemporal dynamics of impervious surface areas across China during the early 21st century. Chin. Sci. Bull. 2013, 58, 1691–1701. [Google Scholar] [CrossRef] [Green Version]
- Shao, Z.; Liu, C. The integrated use of DMSP-OLS nighttime light and MODIS data for monitoring large-scale impervious surface dynamics: A case study in the Yangtze River Delta. Remote Sens. 2014, 6, 9359–9378. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Li, G.; Ni, W.; Zhang, Y.; Lu, D. Exploring improvement of impervious surface estimation at national scale through integration of nighttime light and proba-V data. GIScience Remote Sens. 2018, 55, 699–717. [Google Scholar] [CrossRef]
- Lu, D.; Li, G.; Kuang, W.; Moran, E. Methods to extract impervious surface areas from satellite images. Int. J. Digit. Earth 2014, 7, 93–112. [Google Scholar] [CrossRef]
- Kaspersen, P.S.; Fensholt, R.; Drews, M. Using Landsat vegetation indices to estimate impervious surface fractions for European cities. Remote Sens. 2015, 7, 8224–8249. [Google Scholar] [CrossRef] [Green Version]
- Okujeni, A.; Canters, F.; Cooper, S.D.; Degerickx, J.; Heiden, U.; Hostert, P.; Priem, F.; Roberts, D.A.; Somers, B.; Linden, S.V.D. Generalizing machine learning regression models using multi-Site spectral libraries for mapping vegetation-Impervious-Soil fractions across multiple cities. Remote Sens. Environ. 2018, 216, 482–496. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef] [Green Version]
- Qiu, C.; Schmitt, M.; Geiß, C.; Chen, T.-H.K.; Zhu, X.X. A framework for large-Scale mapping of human settlement extent from Sentinel-2 images via fully convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2020, 163, 152–170. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 2019, 64, 756–763. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-Resolution multi-Temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, R.; Du, W.; Wang, L.; Lu, D. High-Resolution urban land mapping in China from sentinel 1A/2 imagery based on Google Earth Engine. Remote Sens. 2019, 11, 752. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.P.; Ju, J.; Kline, K.; Scaramuzza, P.L.; Kovalskyy, V.; Hansen, M.; Loveland, T.R.; Vermote, E.; Zhang, C. Web-Enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sens. Environ. 2010, 114, 35–49. [Google Scholar] [CrossRef]
- Yang, F.; Matsushita, B.; Fukushima, T.; Yang, W. Temporal mixture analysis for estimating impervious surface area from multi-temporal MODIS NDVI data in Japan. ISPRS J. Photogramm. Remote Sens. 2012, 72, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-Temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Zhang, Q.; Schaaf, C.; Seto, K.C. The vegetation adjusted NTL urban index: A new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sens. Environ. 2013, 129, 32–41. [Google Scholar] [CrossRef]
- Guo, W.; Lu, D.; Kuang, W. Improving fractional impervious surface mapping performance through combination of DMSP-OLS and MODIS NDVI data. Remote Sens. 2017, 9, 375. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, L.; Zheng, J.; Zhang, X.; Li, J.; Liu, L. An improved method of night-Time light saturation reduction based on EVI. Int. J. Remote Sens. 2015, 36, 4114–4130. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Jing, W.; Yao, L.; Yue, X.; Zhao, X. A new urban index for expressing inner-City patterns based on MODIS LST and EVI regulated DMSP/OLS NTL. Remote Sens. 2017, 9, 777. [Google Scholar] [CrossRef] [Green Version]
- Hao, R.; Yu, D.; Sun, Y.; Cao, Q.; Liu, Y.; Liu, Y. Integrating multiple source data to enhance variation and weaken the blooming effect of DMSP-OLS light. Remote Sens. 2015, 7, 1422–1440. [Google Scholar] [CrossRef] [Green Version]
- Small, C.; Milesi, C.; Elvidge, C.; Baugh, K.; Henebry, G.; Nghiem, S. The Land Cover Continuum; Multi-Sensor Characterization of Human-Modified Landscapes. In Proceedings of the EARSeL/NASA Joint Workshop on Land Use and Land Cover Berlin, Berlin, Germany, 17–18 March 2014. [Google Scholar]
- Small, C. Multisensor Characterization of Urban Morphology and Network Structure. Remote Sens. 2019, 11, 2162. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Tuttle, B.T.; Sutton, P.C.; Baugh, K.E.; Howard, A.T.; Milesi, C.; Bhaduri, B.; Nemani, R. Global distribution and density of constructed impervious surfaces. Sensors 2007, 7, 1962–1979. [Google Scholar] [CrossRef]
- Guo, W.; Lu, D.; Wu, Y.; Zhang, J. Mapping impervious surface distribution with integration of SNNP VIIRS-DNB and MODIS NDVI data. Remote Sens. 2015, 7, 12459–12477. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Zhang, H.; Lin, H.; Gamba, P.E.; Liu, X. Incorporating synthetic aperture radar and optical images to investigate the annual dynamics of anthropogenic impervious surface at large scale. Remote Sens. Environ. 2020, 242, 111757. [Google Scholar] [CrossRef]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Li, X. Using “random forest” for classification and regression. Chin. J. Appl. Entomol. 2013, 50, 1190–1197. [Google Scholar]
- Anees, A.; Aryal, J.; O’Reilly, M.M.; Gale, T.J.; Wardlaw, T. A robust multi-Kernel change detection framework for detecting leaf beetle defoliation using Landsat 7 ETM+ data. ISPRS J. Photogramm. Remote Sens. 2016, 122, 167–178. [Google Scholar] [CrossRef]
- Anees, A.; Aryal, J. Near-Real time detection of beetle infestation in pine forests using MODIS data. IEEE J. Sel. Top. App. Earth Obs. Remote Sens. 2014, 7, 3713–3723. [Google Scholar] [CrossRef]
- Anees, A.; Aryal, J. A statistical framework for near-Real time detection of beetle infestation in pine forests using MODIS data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1717–1721. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Pandey, B.; Joshi, P.; Seto, K.C. Monitoring urbanization dynamics in India using DMSP/OLS night time lights and SPOT-VGT data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 49–61. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C. BCI: A biophysical composition index for remote sensing of urban environments. Remote Sens. Environ. 2012, 127, 247–259. [Google Scholar] [CrossRef]
- Kauth, R.J.; Thomas, G. The tasselled cap-A graphic description of the spectral-Temporal development of agricultural crops as seen by Landsat. In Proceedings of the LARS Symposia, West Lafayette, IN, USA, 29 June–1 July 1976; p. 159. [Google Scholar]
- Mozumder, C.; Tripathi, N.; Tipdecho, T. Ecosystem evaluation (1989–2012) of Ramsar wetland Deepor Beel using satellite-Derived indices. Environ. Monit. Assess. 2014, 186, 7909–7927. [Google Scholar] [CrossRef]
- Yang, Z.; He, X. Automatic extraction of urban land-Use information from remote sensing images based on improved NDBI method. J. Hohai Univ. Nat. Sci. 2010, 38, 181–184. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sen. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Xie, Y.; Weng, Q. Updating urban extents with nighttime light imagery by using an object-Based thresholding method. Remote Sens. Environ. 2016, 187, 1–13. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.; Imhoff, M. A cluster-Based method to map urban area from DMSP/OLS nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Cao, X.; Chen, J.; Imura, H.; Higashi, O. A SVM-Based method to extract urban areas from DMSP-OLS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 2205–2209. [Google Scholar] [CrossRef]
- Echeverry-Galvis, M.A.; Peterson, J.K.; Sulo-Caceres, R. The social nestwork: Tree structure determines nest placement in kenyan weaverbird colonies. PLoS ONE 2014, 9, e88761. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Wang, P.; Huang, C.; Tilton, J.C.; Tan, B.; de Colstoun, E.C.B. HOTEX: An approach for global mapping of human built-Up and settlement extent. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1562–1565. [Google Scholar]
- Pok, S.; Matsushita, B.; Fukushima, T. An easily implemented method to estimate impervious surface area on a large scale from MODIS time-Series and improved DMSP-OLS nighttime light data. ISPRS J. Photogramm. Remote Sens. 2017, 133, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Sutton, P.C.; Anderson, S.J.; Elvidge, C.D.; Tuttle, B.T.; Ghosh, T. Paving the planet: Impervious surface as proxy measure of the human ecological footprint. Prog. Phys. Geogr. 2009, 33, 510–527. [Google Scholar] [CrossRef]
- Shi, K.; Huang, C.; Yu, B.; Yin, B.; Huang, Y.; Wu, J. Evaluation of NPP-VIIRS night-Time light composite data for extracting built-Up urban areas. Remote Sens. Lett. 2014, 5, 358–366. [Google Scholar] [CrossRef]
- Letu, H.; Hara, M.; Tana, G.; Nishio, F. A saturated light correction method for DMSP/OLS nighttime satellite imagery. IEEE Trans. Geosci. Remote Sens. 2011, 50, 389–396. [Google Scholar] [CrossRef]
Data Type | Description | Source |
---|---|---|
MOD09A1 | MODIS Terra/Aqua Surface Reflectance 8-Day L3 Global 500 m; 46 periods in a year, the 8-day surface reflectance composites in 2013 and 2018 covering 4232 scenes are used. | NASA Goddard Space Flight Center (Https://Ladsweb.Modaps.Eosdis.Nasa.Gov/Search/) |
VIIRS DNB | VIIRS DNB Cloud Free Composites; Version 1 monthly products covering the globe from 75 N to 65 S. Fifteen arc-second geographic grids (approximately 500 m spatial resolution); Date range: January, February, November and December in 2013 and 2018. | National Centers for Environmental Information (https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.htmL) |
Landsat-8 OLI | Spatial resolution: 30 m. Path/row: acquisition data 118/28: 24 June 2018, 30 September 2013; 118/30: 24 June 2018, 25 May 2013; 118/38: 23 May 2018, 29 August 2013; 123/32: 17 October 2018, 3 October 2013; 123/39: 15 September 2018, 31 July 2013; 129/43: 1 March 2018, 20 April 2013; 130/35: 12 June 2018, 4 October 2013; 143/29: 23 June 2018, 9 June 2013; 122/44: 12 February 2018, 29 November 2013; 124/36: 24 October 2018, 4 June 2013; 129/51: 13 February 2018, 20 April 2013; 146/40: 2 October 2018, 18 September 2013; 177/32: 18 April 2018, 23 June 2013; 155/24: 14 August 2018, 31 July 2013; 127/36: 11 September 2018, 13 September 2013. | United States Geological Survey (http://earthexplorer.usgs.gov/) |
Feature Variable | Feature Description | Feature Number |
---|---|---|
Spectral feature set | 8 | |
Index feature set | 21 | |
Fusion feature set | 21 |
Experimental Scheme | Feature Combination |
---|---|
1 | Spectral features |
2 | Spectral features + Index features |
3 | Spectral features + Fusion features |
4 | Preferred combination of all features |
Scheme | Test_R2 (60%) | Test RMSE (60%) | Test_R2 (80%) | Test RMSE (80%) |
---|---|---|---|---|
(2018/2013) | (2018/2013) | (2018/2013) | (2018/2013) | |
1 | 0.59/0.66 | 0.058/0.048 | 0.59/0.66 | 0.058/0.049 |
2 | 0.60/0.67 | 0.055/0.046 | 0.61/0.68 | 0.056/0.047 |
3 | 0.66/0.71 | 0.048/0.041 | 0.67/0.71 | 0.047/0.041 |
4 | 0.69/0.71 | 0.044/0.040 | 0.69/0.72 | 0.044/0.039 |
LISI | 0.56/0.46 | 0.063/0.073 | 0.57/0.47 | 0.061/0.075 |
MISI | 0.62/0.49 | 0.054/0.072 | 0.62/0.50 | 0.054/0.070 |
Cities | Our Method (2018/2013) | LISI (2018/2013) | MISI (2018/2013) | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |
Beijing | 0.86/0.87 | 0.146/0.123 | 0.52/0.58 | 0.271/0.217 | 0.59/0.63 | 0.250/0.206 |
Changchun | 0.89/0.88 | 0.142/0.135 | 0.60/0.63 | 0.256/0.235 | 0.69/0.68 | 0.226/0.222 |
Harbin | 0.86/0.87 | 0.125/0.128 | 0.59/0.60 | 0.193/0.221 | 0.67/0.65 | 0.175/0.209 |
Shanghai | 0.87/0.88 | 0.137/0.132 | 0.59/0.38 | 0.237/0.296 | 0.67/0.39 | 0.213/0.295 |
Kunming | 0.88/0.85 | 0.116/0.145 | 0.71/0.64 | 0.175/0.222 | 0.75/0.68 | 0.162/0.211 |
Lanzhou | 0.88/0.85 | 0.138/0.128 | 0.47/0.47 | 0.283/0.231 | 0.55/0.49 | 0.263/0.227 |
Shenzhen | 0.89/0.87 | 0.135/0.134 | 0.66/0.28 | 0.226/0.316 | 0.70/0.27 | 0.209/0.329 |
Wuhan | 0.83/0.85 | 0.150/0.143 | 0.54/0.46 | 0.237/0.269 | 0.58/0.46 | 0.229/0.267 |
Zhengzhou | 0.86/0.85 | 0.148/0.142 | 0.40/0.51 | 0.305/0.259 | 0.47/0.62 | 0.288/0.243 |
Urumqi | 0.86/0.85 | 0.139/0.147 | 0.41/0.49 | 0.288/0.312 | 0.39/0.53 | 0.292/0.299 |
Bangkok | 0.54/0.60 | 0.227/0.198 | 0.42/0.50 | 0.256/0.219 | 0.46/0.54 | 0.247/0.212 |
Astana | 0.72/0.69 | 0.212/0.175 | 0.51/0.58 | 0.285/0.201 | 0.58/0.64 | 0.265/0.186 |
New Delhi | 0.66/0.72 | 0.237/0.212 | 0.64/0.63 | 0.243/0.243 | 0.68/0.67 | 0.227/0.233 |
Ankara | 0.52/0.54 | 0.255/0.237 | 0.39/0.40 | 0.288/0.270 | 0.38/0.41 | 0.289/0.265 |
Anshun | 0.75/0.70 | 0.196/0.214 | 0.65/0.64 | 0.240/0.242 | 0.66/0.64 | 0.239/0.241 |
Cities | AISP-2018 | GAIA-2018 | HBASE-2010 | NUACI-2015 | ||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
Urumqi | 0.87 | 0.139 | 0.67 | 0.317 | 0.47 | 0.301 | 0.48 | 0.293 |
Anshun | 0.75 | 0.196 | 0.20 | 0.420 | 0.31 | 0.373 | 0.49 | 0.299 |
Harbin | 0.84 | 0.122 | 0.86 | 0.169 | 0.68 | 0.170 | 0.46 | 0.328 |
Beijing | 0.86 | 0.155 | 0.95 | 0.081 | 0.62 | 0.238 | 0.70 | 0.232 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Li, E.; Zhang, C.; Samat, A.; Liu, W.; Li, C.; Atkinson, P.M. Estimating Artificial Impervious Surface Percentage in Asia by Fusing Multi-Temporal MODIS and VIIRS Nighttime Light Data. Remote Sens. 2021, 13, 212. https://doi.org/10.3390/rs13020212
Li F, Li E, Zhang C, Samat A, Liu W, Li C, Atkinson PM. Estimating Artificial Impervious Surface Percentage in Asia by Fusing Multi-Temporal MODIS and VIIRS Nighttime Light Data. Remote Sensing. 2021; 13(2):212. https://doi.org/10.3390/rs13020212
Chicago/Turabian StyleLi, Fanggang, Erzhu Li, Ce Zhang, Alim Samat, Wei Liu, Chunmei Li, and Peter M. Atkinson. 2021. "Estimating Artificial Impervious Surface Percentage in Asia by Fusing Multi-Temporal MODIS and VIIRS Nighttime Light Data" Remote Sensing 13, no. 2: 212. https://doi.org/10.3390/rs13020212
APA StyleLi, F., Li, E., Zhang, C., Samat, A., Liu, W., Li, C., & Atkinson, P. M. (2021). Estimating Artificial Impervious Surface Percentage in Asia by Fusing Multi-Temporal MODIS and VIIRS Nighttime Light Data. Remote Sensing, 13(2), 212. https://doi.org/10.3390/rs13020212