Automated Characterization of Yardangs Using Deep Convolutional Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Annotated Dataset
2.3. Mask R-CNN Algorithm
2.4. Implementation
2.5. Accuracy Assessment
3. Results
3.1. Model Optimization and Accuracy
3.2. Case Studies and Validation
3.2.1. Case Study Results of 0.6 m Resolution Images
3.2.2. Case Study Results of 1.2 m Resolution Images
3.2.3. Case Study Results of 2.0 m Resolution Images
3.2.4. Case Study Results of 3.0 m Resolution Images
3.3. Transferability
4. Discussion
4.1. Advantages and Limitations of Using Google Earth Imagery
4.2. Advantages and Limitations of the Method
4.3. Recommendations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCauley, J.F.; Grolier, M.J.; Breed, C.S. Yardangs of Peru and other Desert Regions; US Geological Survey: Reston, VA, USA, 1977.
- Lancaster, N. Geomorphology of Desert Dunes; Routledge: London, UK, 1995. [Google Scholar]
- Goudie, A.S. Wind erosional landforms: Yardangs and pans. In Aeolian Environments, Sediments and Landforms; Goudie, A.S., Livingstone, I., Stokes, S., Eds.; John Wiley and Sons: Chichester, UK, 1999; pp. 167–180. [Google Scholar]
- Alavi Panah, S.; Komaki, C.B.; Goorabi, A.; Matinfar, H. Characterizing land cover types and surface condition of yardang region in Lut desert (Iran) based upon Landsat satellite images. World Appl. Sci. J. 2007, 2, 212–228. [Google Scholar]
- Ward, A.W. Yardangs on Mars: Evidence of recent wind erosion. J. Geophys. Res. Solid Earth 1979, 84, 8147–8166. [Google Scholar] [CrossRef]
- Mandt, K.; Silva, S.d.; Zimbelman, J.; Wyrick, D. Distinct erosional progressions in the Medusae Fossae Formation, Mars, indicate contrasting environmental conditions. Icarus 2009, 204, 471–477. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, L.; Reiss, D.; Hiesinger, H.; Huang, J.; Xu, Y.; Zhao, J.; Xiao, Z.; Komatsu, G. Geological Features and Evolution of Yardangs in the Qaidam Basin, Tibetan Plateau (NW China): A Terrestrial Analogue for Mars. J. Geophys. Res. Planets 2018, 123, 2336–2364. [Google Scholar] [CrossRef]
- Trego, K.D. Yardang Identification in Magellan Imagery of Venus. Earth Moon Planets 1992, 58, 289–290. [Google Scholar] [CrossRef]
- Greeley, R.; Bender, K.; Thomas, P.E.; Schubert, G.; Limonadi, D.; Weitz, C.M. Wind-Related Features and Processes on Venus: Summary of Magellan Results. Icarus 1995, 115, 399–420. [Google Scholar] [CrossRef]
- Paillou, P.; Radebaugh, J. Looking for Mega-Yardangs on Titan: A Comparative Planetology Approach. In Proceedings of the European Planetary Science Congress 2013, London, UK, 8–13 September 2013. [Google Scholar]
- Laity, J.E. Landforms, Landscapes, and Processes of Aeolian Erosion. In Geomorphology of Desert Environments; Parsons, A.J., Abrahams, A.D., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 597–627. [Google Scholar] [CrossRef]
- Al-Dousari, A.M.; Al-Elaj, M.; Al-Enezi, E.; Al-Shareeda, A. Origin and characteristics of yardangs in the Um Al-Rimam depressions (N Kuwait). Geomorphology 2009, 104, 93–104. [Google Scholar] [CrossRef]
- Laity, J.E. Wind Erosion in Drylands. In Arid Zone Geomorphology; Thomas, D.S.G., Ed.; John Wiley & Sons: Chichester, UK, 2011; pp. 539–568. [Google Scholar] [CrossRef]
- Pelletier, J.D.; Kapp, P.A.; Abell, J.; Field, J.P.; Williams, Z.C.; Dorsey, R.J. Controls on Yardang Development and Morphology: 1. Field Observations and Measurements at Ocotillo Wells, California. J. Geophys. Res. Earth Surf. 2018, 123, 694–722. [Google Scholar] [CrossRef]
- Hedin, S.A. Scientific Results of a Journey in Central Asia, 1899–1902; Lithographic Institute of the General Staff of the Swedish Army: Stockholm, Sweden, 1907. [Google Scholar]
- Blackwelder, E. Yardangs. Gsa Bull. 1934, 45, 159–166. [Google Scholar] [CrossRef]
- Breed, C.S.; McCauley, J.F.; Whitney, M.I. Wind erosion forms. Arid Zone Geomorphol. 1989, 284–307. [Google Scholar]
- Goudie, A.S. Mega-Yardangs: A Global Analysis. Geogr. Compass 2007, 1, 65–81. [Google Scholar] [CrossRef]
- Kapp, P.; Pelletier, J.D.; Rohrmann, A.; Heermance, R.; Russell, J.; Ding, L. Wind erosion in the Qaidam basin, central Asia: Implications for tectonics, paleoclimate, and the source of the Loess Plateau. Gsa Today 2011, 21, 4–10. [Google Scholar] [CrossRef]
- Li, J.; Dong, Z.; Qian, G.; Zhang, Z.; Luo, W.; Lu, J.; Wang, M. Yardangs in the Qaidam Basin, northwestern China: Distribution and morphology. Aeolian Res. 2016, 20, 89–99. [Google Scholar] [CrossRef]
- Hu, C.; Chen, N.; Kapp, P.; Chen, J.; Xiao, A.; Zhao, Y. Yardang geometries in the Qaidam Basin and their controlling factors. Geomorphology 2017, 299, 142–151. [Google Scholar] [CrossRef]
- De Silva, S.L.; Bailey, J.E.; Mandt, K.E.; Viramonte, J.M. Yardangs in terrestrial ignimbrites: Synergistic remote and field observations on Earth with applications to Mars. Planet. Space Sci. 2010, 58, 459–471. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, J.; Huang, J.; Ye, B. A new approach to study terrestrial yardang geomorphology based on high-resolution data acquired by unmanned aerial vehicles (UAVs): A showcase of whaleback yardangs in Qaidam Basin, NW China. Earth Planet Phys 2018, 2, 398–405. [Google Scholar] [CrossRef]
- Ehsani, A.H.; Quiel, F. Application of Self Organizing Map and SRTM data to characterize yardangs in the Lut desert, Iran. Remote Sens. Environ. 2008, 112, 3284–3294. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, N.; Chen, J.; Hu, C. Automatic extraction of yardangs using Landsat 8 and UAV images: A case study in the Qaidam Basin, China. Aeolian Res. 2018, 33, 53–61. [Google Scholar] [CrossRef]
- Yuan, W.; Zhang, W.; Lai, Z.; Zhang, J. Extraction of Yardang Characteristics Using Object-Based Image Analysis and Canny Edge Detection Methods. Remote Sens. Basel 2020, 12, 726. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Ball, J.; Anderson, D.; Chan, C.S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. J. Appl. Remote Sens. 2017, 11, 042609. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, K.; Penatti, O.A.B.; dos Santos, J.A. Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognit. 2017, 61, 539–556. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Hsu, C.-Y. Automated terrain feature identification from remote sensing imagery: A deep learning approach. Int. J. Geogr. Inf. Sci. 2020, 34, 637–660. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Fully convolutional neural networks for remote sensing image classification. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5071–5074. [Google Scholar]
- Palafox, L.F.; Hamilton, C.W.; Scheidt, S.P.; Alvarez, A.M. Automated detection of geological landforms on Mars using Convolutional Neural Networks. Comput. Geosci. 2017, 101, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Luo, J.; Lin, Z.; Niu, F.; Liu, L. Using deep learning to map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau) from CubeSat images. Remote Sens. Environ. 2020, 237, 111534. [Google Scholar] [CrossRef]
- Li, S.; Xiong, L.; Tang, G.; Strobl, J. Deep learning-based approach for landform classification from integrated data sources of digital elevation model and imagery. Geomorphology 2020, 354, 107045. [Google Scholar] [CrossRef]
- Romera-Paredes, B.; Torr, P.H.S. Recurrent Instance Segmentation. In Computer Vision–ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 312–329. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Li, J.; Wei, Y.; Liang, X.; Dong, J.; Xu, T.; Feng, J.; Yan, S. Attentive Contexts for Object Detection. IEEE Trans. Multimed. 2017, 19, 944–954. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 7–12 December 2015; pp. 91–99. [Google Scholar]
- Wen, Q.; Jiang, K.; Wang, W.; Liu, Q.; Guo, Q.; Li, L.; Wang, P. Automatic Building Extraction from Google Earth Images under Complex Backgrounds Based on Deep Instance Segmentation Network. Sensors 2019, 19, 333. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Gao, H.; Zhang, Y.; Li, H.; Yang, R. An Aircraft Detection Method Based on Improved Mask R-CNN in Remotely Sensed Imagery. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 1370–1373. [Google Scholar]
- You, Y.; Cao, J.; Zhang, Y.; Liu, F.; Zhou, W. Nearshore Ship Detection on High-Resolution Remote Sensing Image via Scene-Mask R-CNN. IEEE Access 2019, 7, 128431–128444. [Google Scholar] [CrossRef]
- Zhang, W.; Witharana, C.; Liljedahl, A.K.; Kanevskiy, M. Deep convolutional neural networks for automated characterization of arctic ice-wedge polygons in very high spatial resolution aerial imagery. Remote Sens. Basel 2018, 10, 1487. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Scott, T.R.; Bearman, S.; Anand, H.; Scott, C.; Arrowsmith, J.R.; Das, J. Geomorphological Analysis Using Unpiloted Aircraft Systems, Structure from Motion, and Deep Learning. Available online: https://arxiv.org/abs/1909.12874 (accessed on 20 December 2020).
- Maxwell, A.E.; Pourmohammadi, P.; Poyner, J.D. Mapping the Topographic Features of Mining-Related Valley Fills Using Mask R-CNN Deep Learning and Digital Elevation Data. Remote Sens. Basel 2020, 12, 547. [Google Scholar] [CrossRef] [Green Version]
- Rohrmann, A.; Heermance, R.; Kapp, P.; Cai, F. Wind as the primary driver of erosion in the Qaidam Basin, China. Earth Planet. Sci. Lett. 2013, 374, 1–10. [Google Scholar] [CrossRef]
- Han, W.; Ma, Z.; Lai, Z.; Appel, E.; Fang, X.; Yu, L. Wind erosion on the north-eastern Tibetan Plateau: Constraints from OSL and U-Th dating of playa salt crust in the Qaidam Basin. Earth Surf. Process. Landf. 2014, 39, 779–789. [Google Scholar] [CrossRef]
- Wada, K. labelme: Image Polygonal Annotation with Python. Available online: https://github.com/wkentaro/labelme (accessed on 28 April 2020).
- Hensman, P.; Masko, D. The impact of imbalanced training data for convolutional neural networks. Degree Project in Computer Science; KTH Royal Institute of Technology: Stockholm, Sweden, 2015. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the 2017 IEEE conference on computer vision and pattern recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Abdulla, W. Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow. Available online: https://github.com/matterport/Mask_RCNN (accessed on 20 May 2020).
- Hu, F.; Xia, G.-S.; Hu, J.; Zhang, L. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sens. Basel 2015, 7, 14680–14707. [Google Scholar] [CrossRef] [Green Version]
- Penatti, O.A.; Nogueira, K.; Dos Santos, J.A. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 44–51. [Google Scholar]
- Stewart, E.L.; Wiesnerhanks, T.; Kaczmar, N.; Dechant, C.; Wu, H.; Lipson, H.; Nelson, R.J.; Gore, M.A. Quantitative Phenotyping of Northern Leaf Blight in UAV Images Using Deep Learning. Remote Sens. Basel 2019, 11, 2209. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Computer Vision – ECCV 2014, Proceedings of the 2014 European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer: Cham, Switzerland, 2014; Volume 5, pp. 740–755. [Google Scholar]
- Perez, L.; Wang, J. The effectiveness of data augmentation in image classification using deep learning. Available online: https://arxiv.org/abs/1712.04621 (accessed on 24 July 2020).
- Yu, X.; Wu, X.; Luo, C.; Ren, P. Deep learning in remote sensing scene classification: A data augmentation enhanced convolutional neural network framework. Gisci Remote Sens 2017, 54, 741–758. [Google Scholar] [CrossRef] [Green Version]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Tiede, D.; Aryal, J. Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote Sens. Basel 2019, 11, 196. [Google Scholar] [CrossRef] [Green Version]
- Jung, A.B.; Wada, K.; Crall, J.; Tanaka, S.; Graving, J.; Reinders, C.; Yadav, S.; Banerjee, J.; Vecsei, G.; Kraft, A.; et al. Imgaug. Available online: https://github.com/aleju/imgaug (accessed on 1 February 2020).
- Chen, L.; Barron, J.T.; Papandreou, G.; Murphy, K.; Yuille, A.L. Semantic Image Segmentation with Task-Specific Edge Detection Using CNNs and a Discriminatively Trained Domain Transform. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4545–4554. [Google Scholar]
- Su, H.; Wei, S.; Yan, M.; Wang, C.; Shi, J.; Zhang, X. Object Detection and Instance Segmentation in Remote Sensing Imagery Based on Precise Mask R-CNN. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 1454–1457. [Google Scholar]
- Trier, Ø.D.; Cowley, D.C.; Waldeland, A.U. Using deep neural networks on airborne laser scanning data: Results from a case study of semi-automatic mapping of archaeological topography on Arran, Scotland. Archaeol. Prospect. 2019, 26, 165–175. [Google Scholar] [CrossRef]
- Romero, A.; Gatta, C.; Camps-Valls, G. Unsupervised Deep Feature Extraction for Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1349–1362. [Google Scholar] [CrossRef] [Green Version]
- Hong, D.; Yokoya, N.; Xia, G.-S.; Chanussot, J.; Zhu, X.X. X-ModalNet: A semi-supervised deep cross-modal network for classification of remote sensing data. Isprs. J. Photogramm. 2020, 167, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, W.; Xie, S.M.; Azzari, G.; Lobell, D.B. Weakly Supervised Deep Learning for Segmentation of Remote Sensing Imagery. Remote Sens. Basel 2020, 12, 207. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, T. Object based image analysis for remote sensing. Isprs. J. Photogramm. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
Type | Characteristic |
---|---|
Long-ridge | Long strip shape with flat and narrow tops and convex flanks |
Mesa | Irregular in shape and unclear orientations with flats top and steep sides |
Whaleback | Teardrop shape with blunt heads and tapered tails, some with sharp crests on their backs |
Count | Precision | Recall | Overall Accuracy (%) | ||
---|---|---|---|---|---|
Detection | TP | 2914 | 0.87 | 0.84 | 74 |
FP | 447 | ||||
FN | 556 | ||||
Classification | T | 2648 | - | - | 91 |
F | 266 | ||||
Delineation | T | 2768 | - | - | 95 |
F | 146 |
Count | Precision | Recall | Overall Accuracy (%) | ||
---|---|---|---|---|---|
Detection | TP | 1750 | 0.90 | 0.50 | 48 |
FP | 189 | ||||
FN | 1719 | ||||
Classification | T | 1492 | - | - | 85 |
F | 258 | ||||
Delineation | T | 1627 | - | - | 93 |
F | 123 |
Count | Precision | Recall | Overall Accuracy (%) | ||
---|---|---|---|---|---|
Detection | TP | 1306 | 0.92 | 0.38 | 37 |
FP | 109 | ||||
FN | 2162 | ||||
Classification | T | 1100 | - | - | 84 |
F | 206 | ||||
Delineation | T | 1229 | - | - | 94 |
F | 79 |
Count | Precision | Recall | Overall Accuracy (%) | ||
---|---|---|---|---|---|
Detection | TP | 1042 | 0.94 | 0.30 | 29 |
FP | 67 | ||||
FN | 2426 | ||||
Classification | T | 869 | - | - | 83 |
F | 173 | ||||
Delineation | T | 974 | - | - | 93 |
F | 68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, B.; Chen, N.; Blaschke, T.; Wu, C.Q.; Chen, J.; Xu, Y.; Yang, X.; Du, Z. Automated Characterization of Yardangs Using Deep Convolutional Neural Networks. Remote Sens. 2021, 13, 733. https://doi.org/10.3390/rs13040733
Gao B, Chen N, Blaschke T, Wu CQ, Chen J, Xu Y, Yang X, Du Z. Automated Characterization of Yardangs Using Deep Convolutional Neural Networks. Remote Sensing. 2021; 13(4):733. https://doi.org/10.3390/rs13040733
Chicago/Turabian StyleGao, Bowen, Ninghua Chen, Thomas Blaschke, Chase Q. Wu, Jianyu Chen, Yaochen Xu, Xiaoping Yang, and Zhenhong Du. 2021. "Automated Characterization of Yardangs Using Deep Convolutional Neural Networks" Remote Sensing 13, no. 4: 733. https://doi.org/10.3390/rs13040733
APA StyleGao, B., Chen, N., Blaschke, T., Wu, C. Q., Chen, J., Xu, Y., Yang, X., & Du, Z. (2021). Automated Characterization of Yardangs Using Deep Convolutional Neural Networks. Remote Sensing, 13(4), 733. https://doi.org/10.3390/rs13040733