Enhancement of Cloud-to-Ground Lightning Activity Caused by the Urban Effect: A Case Study in the Beijing Metropolitan Area
Abstract
:1. Introduction
2. Data and Methods
3. Analysis and Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huff, F.A.; Changnon, S.A. precipitation modification by major urban areas. Bull. Am. Meteorol. Soc. 1973, 54, 1220–1233. [Google Scholar] [CrossRef]
- Westcott, N.E. Summertime Cloud-to-Ground Lightning Activity around Major Midwestern Urban Areas. J. Appl. Meteorol. 1995, 34, 1633–1642. [Google Scholar] [CrossRef]
- Steiger, S.M.; Huffines, G.; Orville, R.E. Cloud-to-ground lightning characteristics over Houston, Texas: 1989–2000. J. Geophys. Res. Space Phys. 2002, 107. [Google Scholar] [CrossRef]
- Soriano, L.R.; de Pablo, F. Effect of small urban areas in central Spain on the enhancement of cloud-to-ground lightning activity. Atmos. Environ. 2002, 36, 2809–2816. [Google Scholar] [CrossRef]
- Orville, R.E.; Huffines, G.; Nielsen-Gammon, J.; Zhang, R.; Ely, B.; Steiger, S.; Phillips, S.; Allen, S.; Read, W. Enhancement of cloud-to-ground lightning over Houston, Texas. Geophys. Res. Lett. 2001, 28, 2597–2600. [Google Scholar] [CrossRef]
- Naccarato, K.P.; Pinto, O., Jr.; Pinto, I.R.C.A. Evidence of thermal and aerosol effects on the cloud-to-ground lightning density and polarity over large urban areas of Southeastern Brazil. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Lal, D.; Pawar, S. Effect of urbanization on lightning over four metropolitan cities of India. Atmos. Environ. 2011, 45, 191–196. [Google Scholar] [CrossRef]
- Kar, S.; Liou, Y.-A.; Ha, K.-J. Aerosol effects on the enhancement of cloud-to-ground lightning over major urban areas of South Korea. Atmos. Res. 2009, 92, 80–87. [Google Scholar] [CrossRef]
- Kar, S.; Liou, Y. Enhancement of cloud-to-ground lightning activity over Taipei, Taiwan in relation to urbanization. Atmos. Res. 2014, 147–148, 111–120. [Google Scholar] [CrossRef]
- Farias, W.; Pinto, O.; Pinto, I.; Naccarato, K. The influence of urban effect on lightning activity: Evidence of weekly cycle. Atmos. Res. 2014, 135–136, 370–373. [Google Scholar] [CrossRef]
- Farias, W.; Pinto, O.; Naccarato, K.; Pinto, I. Anomalous lightning activity over the Metropolitan Region of São Paulo due to urban effects. Atmos. Res. 2009, 91, 485–490. [Google Scholar] [CrossRef]
- Bourscheidt, V.; Pinto, O., Jr.; Naccarato, K.P. The effects of Sao Paulo urban heat island on lightning activity: Decadal analysis (1999–2009). J. Geophys. Res. 2016, 121, 4429–4442. [Google Scholar] [CrossRef] [Green Version]
- Rozoff, C.M.; Cotton, W.R.; Adegoke, J.O. Simulation of St. Louis, Missouri, Land Use Impacts on Thunderstorms. J. Appl. Meteorol. 2003, 42, 716–738. [Google Scholar] [CrossRef]
- Han, J.-Y.; Baik, J.-J. A Theoretical and Numerical Study of Urban Heat Island–Induced Circulation and Convection. J. Atmos. Sci. 2008, 65, 1859–1877. [Google Scholar] [CrossRef]
- van den Heever, S.C.; William, R.C. Urban Aerosol Impacts on Downwind Convective Storms. J. Appl. Meteorol. Clim. 2007, 46, 828–850. [Google Scholar] [CrossRef]
- Ntelekos, A.A.; Smith, J.A.; Donner, L.; Fast, J.D.; Gustafson, W.I., Jr.; Chapman, E.G.; Krajewski, W.F. The effects of aerosols on intense convective precipitation in the northeastern United States. Q. J. R. Meteorol. Soc. 2009, 135, 1367–1391. [Google Scholar] [CrossRef]
- Bréon, F.-M.; Tanré, D.; Generoso, S. Aerosol Effect on Cloud Droplet Size Monitored from Satellite. Science 2002, 295, 834–838. [Google Scholar] [CrossRef]
- Altaratz, O.; Koren, I.; Yair, Y.; Price, C. Lightning response to smoke from Amazonian fires. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, Z.; Guo, J.; Zhao, C.; Cribb, M. The climate impact of aerosols on the lightning flash rate: Is it detectable from long-term measurements? Atmos. Chem. Phys. 2018, 18, 12797–12816. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.B.; Peng, L.; Shi, Z.; Chen, H.R. Lightning flash density in relation to aerosol over Nanjing (China). Atmos. Res. 2016, 174–175, 1–8. [Google Scholar]
- Chen, L.; Zhang, Y.; Lu, W.; Zheng, D.; Zhang, Y.; Chen, S.; Huang, Z. Performance Evaluation for a Lightning Loca-tion System Based on Observations of Artificially Triggered Lightning and Natural Lightning Flashes. J. Atmos. Ocean. Technol. 2012, 29, 1835–1844. [Google Scholar] [CrossRef]
- Cummins, K.L.; Murphy, M.J.; Bardo, E.A.; Hiscox, W.L.; Pyle, R.B.; Pifer, A.E. A Combined TOA/MDF Technology Upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res. Space Phys. 1998, 103, 9035–9044. [Google Scholar] [CrossRef]
- Orville, R.E.; Huffines, G.R.; Burrows, W.R.; Holle, R.L.; Cummins, K.L. The North American Lightning Detection Network (NALDN)—First Results: 1998–2000. Mon. Weather Rev. 2002, 130, 2098–2109. [Google Scholar] [CrossRef]
- Schulz, W.; Cummins, K.; Diendorfer, G.; Dorninger, M. Cloud-to-ground lightning in Austria: A 10-year study using data from a lightning location system. J. Geophys. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef]
- Cummer, S.A.; Lyons, W.A. Implications of lightning charge moment changes for sprite initiation. J. Geophys. Res. Space Phys. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Cummer, S.A.; Lyons, W.A.; Stanley, M.A. Three years of lightning impulse charge moment change measurements in the United States. J. Geophys. Res. Atmos. 2013, 118, 5176–5189. [Google Scholar] [CrossRef]
- Dai, J.; Wang, Y.; Chen, L.; Tao, L.; Gu, J.; Wang, J.; Xu, X.; Lin, H.; Gu, Y. A comparison of lightning activity and convective indices over some monsoon-prone areas of China. Atmos. Res. 2009, 91, 438–452. [Google Scholar] [CrossRef]
- Siingh, D.S.; Kumar, P.R.; Kulkarni, M.; Singh, R.; Singh, A. Lightning, convective rain and solar activity—Over the South/Southeast Asia. Atmos. Res. 2013, 120–121, 99–111. [Google Scholar] [CrossRef]
- Siingh, D.; Buchunde, P.; Singh, R.; Nath, A.; Kumar, S.; Ghodpage, R. Lightning and convective rain study in different parts of India. Atmos. Res. 2014, 137, 35–48. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, G.; Guo, S.; Zamora, M.L.; Ying, Q.; Lin, Y.; Wang, W.; Hu, M.; Wang, Y. Formation of Urban Fine Particulate Matter. Chem. Rev. 2015, 115, 3803–3855. [Google Scholar] [CrossRef]
- Pinto, O.; Pinto, I.R.C.; Diniz, J.H.; Filho, A.C.; Cherchiglia, L.C.; Carvalho, A.M. A seven-year study about the negative cloud-to-ground lightning flash characteristics in Southeastern Brazil. J. Atmos. Solar Terr. Phys. 2003, 65, 739–748. [Google Scholar] [CrossRef]
- Holle, R.L. Diurnal Variations of NLDN-Reported Cloud-to-Ground Lightning in the United States. Mon. Weather Rev. 2014, 142, 1037–1052. [Google Scholar] [CrossRef]
- Chronis, T.G.; Cummins, K.L.; Said, R.K.; Koshak, W.J.; McCaul, E.W.; Williams, E.R.; Stano, G.T.; Grant, M.R. Climatological diurnal variation of negative CG lightning peak current over the continental United States. J. Geophys. Res. Atmos. 2015, 120, 582–589. [Google Scholar] [CrossRef]
- Guo, J.; Deng, M.; Lee, S.S.; Wang, F.; Li, Z.; Zhai, P.; Liu, H.; Lv, W.; Yao, W.; Li, X. Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part I: Observational analyses. J. Geophys. Res. Atmos. 2016, 121, 6472–6488. [Google Scholar] [CrossRef]
- Holle, R.L.; Cummins, K.L.; Brooks, W.A. Seasonal, Monthly, and Weekly Distributions of NLDN and GLD360 Cloud-to-Ground Lightning. Mon. Weather Rev. 2016, 144, 2855–2870. [Google Scholar] [CrossRef] [Green Version]
- Pinto, I.R.C.A.; Pinto, O.; Rocha, R.M.L.; Diniz, J.H.; Carvalho, A.M.; Filho, A.C. Cloud-to-ground lightning in southeastern Brazil in 1993: 2. Time variations and flash characteristics. J. Geophys. Res. Space Phys. 1999, 104, 31381–31387. [Google Scholar] [CrossRef] [Green Version]
- Orville, R.E.; Silver, A.C. Lighting Ground Flash Density in the Contiguous United States: 1992–95. Mon. Weather Rev. 1997, 125, 631–638. [Google Scholar] [CrossRef]
- Orville, R.E.; Huffines, G.R. Lightning Ground Flash Measurements over the Contiguous United States: 1995–97. Mon. Weather Rev. 1999, 127, 2693–2703. [Google Scholar] [CrossRef]
- Cummer, S.A.; Inan, U.S. Modeling ELF radio atmospheric propagation and extracting lightning currents from ELF obser-vations. Radio Sci. 2000, 35, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Avila, E.E.; Pereyra, R.G.; Varela, G.G.A.; Caranti, G.M. The effect of the cloud-droplet spectrum on electrical-charge transfer during individual ice-ice collisions. Q. J. R. Meteorol. Soc. 1999, 125, 1669–1679. [Google Scholar] [CrossRef]
- Zhao, P.; Yin, Y.; Xiao, H. The effects of aerosol on development of thunderstorm electrification: A numerical study. Atmos. Res. 2015, 153, 376–391. [Google Scholar] [CrossRef]
- Lyons, W.A.; Uliasz, M.; Nelson, T.E. Large Peak Current Cloud-to-Ground Lightning Flashes during the Summer Months in the Contiguous United States. Mon. Weather Rev. 1998, 126, 2217–2233. [Google Scholar] [CrossRef]
- Rakov, V.A.; Uman, M.A. Lightning: Physics and Effects; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Dwyer, J.R. The initiation of lightning by runaway air breakdown. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Gurevich, A.V.; Zybin, K.P. Runaway breakdown and the mysteries of lightning. Phys. Today 2005, 58, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T. Riming Electrification as a Charge Generation Mechanism in Thunderstorms. J. Atmos. Sci. 1978, 35, 1536–1548. [Google Scholar] [CrossRef]
- Williams, E.R.; Zhang, R.; Rydock, J. Mixed-Phase Microphysics and Cloud Electrification. J. Atmos. Sci. 1991, 48, 2195–2203. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, D.; Lensky, I.M. Satellite–Based Insights into Precipitation Formation Processes in Continental and Maritime Convective Clouds. Bull. Am. Meteorol. Soc. 1998, 79, 2457–2476. [Google Scholar] [CrossRef] [Green Version]
- Koren, I.; Martins, J.V.; Remer, L.A.; Afargan, H. Smoke Invigoration Versus Inhibition of Clouds over the Amazon. Science 2008, 321, 946–949. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, D. Suppression of Rain and Snow by Urban and Industrial Air Pollution. Science 2000, 287, 1793–1796. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O. Flood or Drought: How Do Aerosols Affect Precipitation? Science 2008, 321, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- Torres, O.; Bhartia, P.K.; Herman, J.R.; Ahmad, Z.; Gleason, J. Derivation of aerosol properties from satellite meas-urements of backscattered ultraviolet radiation: Theoretical basis. J. Geophys. Res. 1998, 103, 17099–17110. [Google Scholar] [CrossRef]
- Torres, O.; Bhartia, P.K.; Herman, J.R.; Sinyuk, A.; Ginoux, P.; Holben, B. A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AERONET Measurements. J. Atmos. Sci. 2002, 59, 398–413. [Google Scholar] [CrossRef] [Green Version]
Number | Average Flash Number (fl) | Average Thunderstorm Lifetime (h) | Average Flash Rate (fl h−1) | |
---|---|---|---|---|
Local convection (small scale) | 63 | 110 | 4.02 | 82.31 |
Frontal systems (synoptic scale) | 569 | 1917 | 12.02 | 139.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Lu, G.; Shi, T.; Ma, M.; Zhu, B.; Liu, D.; Peng, C.; Wang, Y. Enhancement of Cloud-to-Ground Lightning Activity Caused by the Urban Effect: A Case Study in the Beijing Metropolitan Area. Remote Sens. 2021, 13, 1228. https://doi.org/10.3390/rs13071228
Wang Y, Lu G, Shi T, Ma M, Zhu B, Liu D, Peng C, Wang Y. Enhancement of Cloud-to-Ground Lightning Activity Caused by the Urban Effect: A Case Study in the Beijing Metropolitan Area. Remote Sensing. 2021; 13(7):1228. https://doi.org/10.3390/rs13071228
Chicago/Turabian StyleWang, Yongping, Gaopeng Lu, Tao Shi, Ming Ma, Baoyou Zhu, Dongxia Liu, Changzhi Peng, and Yu Wang. 2021. "Enhancement of Cloud-to-Ground Lightning Activity Caused by the Urban Effect: A Case Study in the Beijing Metropolitan Area" Remote Sensing 13, no. 7: 1228. https://doi.org/10.3390/rs13071228
APA StyleWang, Y., Lu, G., Shi, T., Ma, M., Zhu, B., Liu, D., Peng, C., & Wang, Y. (2021). Enhancement of Cloud-to-Ground Lightning Activity Caused by the Urban Effect: A Case Study in the Beijing Metropolitan Area. Remote Sensing, 13(7), 1228. https://doi.org/10.3390/rs13071228