Evaluation of Fengyun-4A Lightning Mapping Imager (LMI) Performance during Multiple Convective Episodes over Beijing
Abstract
:1. Introduction
2. Data and Method
2.1. Space-Borne LMI Lightning Data
2.2. Ground-Based Total Lightning Data of BLNET and Radar Data
2.3. Analysis Method
3. LMI Performance Compared with BLNET
3.1. Overview of LMI and BLNET Detection during the Main Convective Episodes
3.2. Characteristics of LMI Lightning Detection in Different Thunderstorm Categories
3.3. LMI Detection Efficiency Relative to BLNET
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Christian, H.J.; Blakeslee, R.J.; Goodman, S.J. The detection of lightning from geostationary orbit. J. Geophys. Res. 1989, 94, 13329–13337. [Google Scholar] [CrossRef]
- Christian, H.J.; Blakeslee, R.J.; Goodman, S.J.; Mach, M.D. Algorithm Theoretical Basis Document (ATBD) for the Lightning Imaging Sensor (LIS); NASA Technical Report; NASA: Washington, DC, USA, 2000. [Google Scholar]
- Mach, D.M.; Christian, H.J.; Blakeslee, R.J.; Boccipio, D.J.; Goodman, S.J.; Boeck, W.L. Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. J. Geophys. Res. 2007, 112, D09210. [Google Scholar] [CrossRef]
- Goodman, S.J.; Mach, D.M.; Koshak, W.J.; Blakeslee, R.J. Algorithm Theoretical Basis Document (ATBD) for the GLM Lightning Cluster-Filter Algorithm; NOAA/NESDIS Center for Satellite Applications and Research v2.0.; NOAA: Washington, DC, USA, 2010. [Google Scholar]
- Goodman, S.J.; Blakeslee, R.J.; Koshak, W.J.; Mach, D.; Bailey, J.; Buechler, D.; Carey, L.; Schultz, C.; Bateman, M.; McCaul, E., Jr.; et al. The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res. 2013, 125, 34–49. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, Z.; Wei, Z.C.; Lu, F.; Guo, Q. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Hui, W.; Zhang, W.; Lyu, W.; Li, P. Preliminary Observations from the China Fengyun-4A Lightning Mapping Imager and Its Optical Radiation Characteristics. Remote Sens. 2020, 12, 2622. [Google Scholar] [CrossRef]
- Zhang, W.; Hui, W.; Lyu, W.; Cao, D.; Li, P.; Zheng, D.; Fang, X.; Zhang, Y. FY-4A LMI observed lightning activity in super Typhoon Mangkhut (2018) in comparison with WWLLN data. J. Meteorol. Res. 2020, 34, 336–352. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Zheng, L.; Wang, Z. A verification of the lightning detection data from FY-4A LMI as compared with ADTD-2. Atmos. Res. 2021, 248, 105163. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, Z.; Han, W.; He, J.; Chen, M. Case study of a retrieval method of 3D proxy reflectivity from FY-4A lightning data and its impact on the assimilation and forecasting for severe rainfall storms. Remote Sens. 2020, 12, 1165. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Sun, J.; Qie, X.; Zhang, Y.; Zhu, M.; Xiao, X.; Cao, D. A method to update model kinematic states by assimilating satellite-observed total lightning data to improve convective analysis and forecasting. J. Geophys. Res. Atmos. 2020, 125, e2020JD033330. [Google Scholar] [CrossRef]
- Liu, R.; Liu, T.; Pessi, A.; Hui, W.; Cheng, W.; Huang, F. Preliminary study on the influence of FY-4 lightning data assimilation on precipitation predictions. J. Trop. Meteorol. 2019, 25, 528–541. [Google Scholar]
- Boccippio, D.J.; Cummins, K.L.; Christian, H.J.; Good-man, S.J. Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Weather. Rev. 2001, 129, 108–122. [Google Scholar] [CrossRef]
- Qie, X.; Yuan, S.; Chen, Z.; Wang, D.; Liu, D.; Sun, M.; Sun, Z.; Srivastava, A.; Zhang, H.; Lu, J.; et al. Understanding the dynamical-microphysical-electrical processes associated with severe thunderstorms over the Beijing metropolitan region. Sci. China Earth Sci. 2020. [Google Scholar] [CrossRef]
- Cao, D.; Lu, F.; Zhang, X.; Zhang, Z.; Liu, Q. Lightning rate and its relationship with intensity of typhoons over the Northwest Pacific. In Proceedings of the XVI International Conference on Atmospheric Electricity, Nara, Japan, 17–22 June 2018. [Google Scholar]
- Peterson, M. Research applications for the geostationary lightning mapper operational lightning flash data product. J. Geophys. Res. Atmos. 2019, 124, 10205–10231. [Google Scholar] [CrossRef] [PubMed]
- Mach, D.M. Geostationary Lightning Mapper clustering algorithm stability. J. Geophys. Res. Atmos. 2020, 125, e2019JD031900. [Google Scholar] [CrossRef]
- Rudlosky, S.D.; Goodman, S.; Virts, S.; Bruning, C. Initial geostationary lightning mapper observations. Geophys. Res. Lett. 2019, 46, 1097–1104. [Google Scholar] [CrossRef]
- Yuan, S.; Qie, X.; Jiang, R.; Wang, D.; Sun, Z.; Srivastava, A.; Williams, E. Origin of an uncommon multiple-stroke positive cloud-to-ground lightning flash with different terminations. J. Geophys. Res. Atmos. 2020, 125, 32098. [Google Scholar] [CrossRef]
- Wang, Y.; Qie, X.; Wang, D.; Liu, M.; Su, D.; Wang, Z.; Liu, D.; Wu, Z.; Sun, Z.; Tian, Y. Beijing Lightning Network (BLNET) and the observation on preliminary breakdown processes. Atmos. Res. 2016, 171, 121–132. [Google Scholar] [CrossRef]
- Srivastava, A.; Tian, Y.; Qie, X.; Wang, D.; Sun, Z.; Yuan, S.; Wang, Y.; Chen, Z.; Xu, W.; Zhang, H.; et al. Performance assessment of Beijing Lightning Network (BLNET) and comparison with other lightning location networks across Beijing. Atmos. Res. 2017, 197, 76–83. [Google Scholar] [CrossRef]
- Chen, Z.; Qie, X.; Yair, Y.; Liu, D.; Xiao, X.; Wang, D.; Yuan, S. Electrical evolution of a rapidly developing MCS during its vigorous vertical growth phase. Atmos. Res. 2020, 246, 105201. [Google Scholar] [CrossRef]
- Virts, S.; Koshak, J. Mitigation of Geostationary Lightning Mapper geolocation errors. J. Atmos. Ocean. Technol. 2020, 37, 1725–1736. [Google Scholar] [CrossRef]
- Marchand, M.; Hilburn, K.; Miller, S.D. Geostationary Lightning Mapper and Earth Networks lightning detection over the contiguous United States and dependence on flash characteristics. J. Geophys. Res. Atmos. 2019, 124, 11552–11567. [Google Scholar] [CrossRef]
- Wang, D.; Qie, X.; Yuan, S.; Sun, Z.; Chen, Z.; Li, J.; Zang, H.; Liu, M.; Srivastava, A.; Liu, D. Spatial and temporal distribution of lightning activity and contribution of thunderstorms with different lightning-producing capabilities in Beijing Metropolitan Region. Chin. J. Atmos. Sci. 2020, 44, 225–238. [Google Scholar]
- Weiss, S.A.; MacGorman, D.R.; Calhoun, K.M. Lightning in the anvils of supercell thunderstorms. Mon. Weather. Rev. 2012, 140, 2064–2079. [Google Scholar] [CrossRef]
- Bruning, E.C.; MacGorman, D.R. Theory and observations of controls of lightning flash size spectra. J. Atmos. Res. 2013, 70, 4012–4029. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, D.; Zhang, Y.; Wu, T.; Takaqi, N. Charge regions indicated by LMA lightning flashes in Hokuriku’s winter thunderstorms. J. Geophys. Res. Atmos. 2019, 124, 7179–7206. [Google Scholar] [CrossRef]
- Dye, J.E.; Jones, J.J.; Winn, W.P.; Cerni, T.A.; Gardiner, B.; Lamb, D.; Pitter, R.L.; Hallett, J.; Saunders, C.P. Early electrification and precipitation development in a small, isolated Montana cumulonimbus. J. Geophys. Res. 1986, 91, 1231–1247. [Google Scholar] [CrossRef]
- Carey, L.D.; Rutledge, S.A. A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Theor. Appl. Clim. 1996, 59, 33–64. [Google Scholar] [CrossRef]
- Deierling, W.; Petersen, W.A. Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res. 2008, 113, D16210. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, S.; Morimoto, T.; Ushio, T.; Kawasaki, Z. A fifth-power relationship for lightning activity from the Tropical Rainfall Measuring Mission satellite observations. J. Geophys. Res. Atmos. 2009, 114, D09104. [Google Scholar] [CrossRef]
Convective Episodes | Date | LMI Event | LMI Group | LMI Flash | BLNET Flash |
---|---|---|---|---|---|
CE1 | 2018.08.05 | 5797 | 1825 | 573 | 10,571 |
CE2 | 2018.08.06 | 2096 | 925 | 308 | 4271 |
CE3 | 2018.08.07 | 4489 | 1277 | 382 | 2721 |
CE4 | 2018.08.11 | 2180 | 717 | 234 | 5191 |
CE5 | 2018.08.12 | 2370 | 664 | 207 | 4096 |
CE6 | 2018.08.13 | 2644 | 773 | 189 | 894 |
CE7 | 2019.07.13 | 2836 | 989 | 311 | 2197 |
CE8 | 2019.08.06 | 3432 | 1233 | 394 | 2555 |
Period | Average Reflectivity for LMI (dBZ) | Average Flash Radiance (μJ sr−1 m−2) | Average Reflectivity for BLNET (dBZ) |
---|---|---|---|
22:12–22:48 | 15.86 | 70.35 | 23.36 |
23:12–23:48 | 22.48 | 89.708 | 26.05 |
00:12–00:48 | 24.53 | 103.708 | 30.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Qie, X.; Sun, J.; Xiao, X.; Zhang, Y.; Cao, D.; Yang, J. Evaluation of Fengyun-4A Lightning Mapping Imager (LMI) Performance during Multiple Convective Episodes over Beijing. Remote Sens. 2021, 13, 1746. https://doi.org/10.3390/rs13091746
Chen Z, Qie X, Sun J, Xiao X, Zhang Y, Cao D, Yang J. Evaluation of Fengyun-4A Lightning Mapping Imager (LMI) Performance during Multiple Convective Episodes over Beijing. Remote Sensing. 2021; 13(9):1746. https://doi.org/10.3390/rs13091746
Chicago/Turabian StyleChen, Zhixiong, Xiushu Qie, Juanzhen Sun, Xian Xiao, Yuxin Zhang, Dongjie Cao, and Jing Yang. 2021. "Evaluation of Fengyun-4A Lightning Mapping Imager (LMI) Performance during Multiple Convective Episodes over Beijing" Remote Sensing 13, no. 9: 1746. https://doi.org/10.3390/rs13091746