Near-Coast Tide Model Validation Using GNSS Unmanned Surface Vehicle (USV), a Case Study in the Pertuis Charentais (France)
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. PAMELi and the Cyclopée System
3.2. July 2020 Survey Design
3.3. Crossover Methodology
3.4. Model Setup
- The first one (S) is the configuration described above, for which the tidal forcing are prescribed from the MAREST-NEA solution described above.
- For the second configuration (S+), we add empirical uniform biases in phases and amplitudes at the boundaries for M3 and MN4 constituents: +1.75 cm/−72° (M3) and +2.4 cm/+26° (MN4). These two constituents have a purely hydrodynamic numerical origin in the MAREST-NEA solution. The biases were determined through a careful regional comparison with tidal constituents derived from the Topex-Jason satellite altimetry (XTRACK product [33]) and tide gauges records [15,17] over the Bay of Biscay and the Pertuis-Charentais areas. An overview of this comparative study is shown in Figure S2—Supplementary Materials.
4. Results
4.1. Tide Gauge Validation
4.2. Crossover Differences and Residuals
5. Discussion and Perspectives
5.1. Importance of Survey Design: The MN4 Example
5.2. Error Budget Associated to M4
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, L.-L.; Alsdorf, D.; Morrow, R.; Rodriguez, E.; Mognard, N. SWOT: The Surface Water and Ocean Topography Mission: Wide-Swath Altimetric Elevation on Earth; Jet Propulsion Laboratory, National Aeronautics and Space Administration: Pasadena, CA, USA, 2012.
- Morrow, R.; Fu, L.-L.; Ardhuin, F.; Benkiran, M.; Chapron, B.; Cosme, E.; d’Ovidio, F.; Farrar, J.T.; Gille, S.T.; Lapeyre, G.; et al. Global Observations of Fine-Scale Ocean Surface Topography With the Surface Water and Ocean Topography (SWOT) Mission. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef]
- Stammer, D.; Cazenave, A. Satellite Altimetry Over Oceans and Land Surfaces; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-4987-4346-4. [Google Scholar]
- Bonnefond, P.; Verron, J.; Aublanc, J.; Babu, K.N.; Bergé-Nguyen, M.; Cancet, M.; Chaudhary, A.; Crétaux, J.-F.; Frappart, F.; Haines, B.J.; et al. The Benefits of the Ka-Band as Evidenced from the SARAL/AltiKa Altimetric Mission: Quality Assessment and Unique Characteristics of AltiKa Data. Remote Sens. 2018, 10, 83. [Google Scholar] [CrossRef] [Green Version]
- Peng, F.; Deng, X. Validation of Sentinel-3A SAR Mode Sea Level Anomalies around the Australian Coastal Region. Remote Sens. Environ. 2020, 237, 111548. [Google Scholar] [CrossRef]
- Laignel, B.; Ayoub, N.; Birol, F.; Brown, S.; Chao, Y.; Cornuelle, B.; Costa, S.; de Mey, P.; Estournel, C.; Feddersen, F.; et al. Issues and SWOT Contribution in the Coastal Zones and Estuaries White Paper; SWOT White Papers; NASA: Washington, DC, USA, 2015.
- Lyard, F.H.; Allain, D.J.; Cancet, M.; Carrère, L.; Picot, N. FES2014 Global Ocean Tide Atlas: Design and Performance. Ocean Sci. 2021, 17, 615–649. [Google Scholar] [CrossRef]
- Le Provost, C. Generation of overtides and coupound tides (review). In Tidal Hydrodynamics; Parker, B.B., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 1991; pp. 269–289. ISBN 978-0-471-51498-5. [Google Scholar]
- Ayoub, N.; Birol, F.; Brown, S.T.; Chao, Y.; Cornuelle, B.; de Mey, P.; Estournel, C.; Giddings, S.; Gille, S.; Kurapov, A.; et al. Coastal and Estuaries White Paper. Part 2: Coastal Seas and Shelf Processes; SWOT White Papers; NASA: Washington, DC, USA, 2017.
- Bonnefond, P.; Exertier, P.; Laurain, O.; Ménard, Y.; Orsoni, A.; Jeansou, E.; Haines, B.J.; Kubitschek, D.G.; Born, G. Leveling the Sea Surface Using a GPS-Catamaran Special Issue: Jason-1 Calibration/Validation. Mar. Geod. 2003, 26, 319–334. [Google Scholar] [CrossRef]
- Bonnefond, P.; Laurain, O.; Exertier, P.; Calzas, M.; Guinle, T.; Picot, N. Validating a New GNSS-Based Sea Level Instrument (CalNaGeo) at Senetosa Cape. Mar. Geod. 2021. under review. [Google Scholar]
- Brachet, C.; Calzas, M.; Drezen, C.; Fichen, L.; Guillot, A.; Téchiné, P.; Testut, L.; Bonnefond, P.; Laurain, O.; Umr, G.; et al. Mesure du Geoïde Marin Avec le Système CalNaGEO (GNSS). 2019. Available online: http://www.legos.obs-mip.fr/observations/rosame/documents/CalNaGEO_Refmar_2019.pdf (accessed on 21 July 2021).
- Chupin, C.; Ballu, V.; Testut, L.; Tranchant, Y.-T.; Calzas, M.; Poirier, E.; Coulombier, T.; Laurain, O.; Bonnefond, P.; Team FOAM Project. Mapping Sea Surface Height Using New Concepts of Kinematic GNSS Instruments. Remote Sens. 2020, 12, 2656. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Ye, F.; Stanev, E.V.; Grashorn, S. Seamless Cross-Scale Modeling with SCHISM. Ocean Model. 2016, 102, 64–81. [Google Scholar] [CrossRef] [Green Version]
- Pouvreau, N. REFMAR: Une coordination pour l’observation du niveau de la mer. Houille Blanche 2014, 37–43. [Google Scholar] [CrossRef]
- André, G.; Míguez, B.M.; Ballu, V.; Testut, L.; Wöppelmann, G. Measuring Sea Level with GPS-Equipped Buoys: A Multi-Instruments Experiment at Aix Island. Int. Hydrogr. Rev. 2013. Available online: hwww.psmsl.org/about_us/news/2013/workshop_2013/posters/Poster_GPSbuoys_multipurpose.pdf (accessed on 21 July 2021).
- Le Cann, B. Barotropic Tidal Dynamics of the Bay of Biscay Shelf: Observations, Numerical Modelling and Physical Interpretation. Cont. Shelf Res. 1990, 10, 723–758. [Google Scholar] [CrossRef]
- Bertin, X.; Bruneau, N.; Breilh, J.-F.; Fortunato, A.B.; Karpytchev, M. Importance of Wave Age and Resonance in Storm Surges: The Case Xynthia, Bay of Biscay. Ocean Model. 2012, 42, 16–30. [Google Scholar] [CrossRef]
- Dodet, G.; Bertin, X.; Bouchette, F.; Gravelle, M.; Testut, L.; Wöppelmann, G. Characterization of Sea-Level Variations Along the Metropolitan Coasts of France: Waves, Tides, Storm Surges and Long-Term Changes. J. Coast. Res. 2019, 88, 10. [Google Scholar] [CrossRef]
- Pairaud, I.L.; Lyard, F.; Auclair, F.; Letellier, T.; Marsaleix, P. Dynamics of the Semi-Diurnal and Quarter-Diurnal Internal Tides in the Bay of Biscay. Part 1: Barotropic Tides. Cont. Shelf Res. 2008, 28, 1294–1315. [Google Scholar] [CrossRef]
- Clarke, A.J.; Battisti, D.S. The Effect of Continental Shelves on Tides. Deep Sea Res. Part Oceanogr. Res. Pap. 1981, 28, 665–682. [Google Scholar] [CrossRef]
- Ray, R.D. First Global Observations of Third-Degree Ocean Tides. Sci. Adv. 2020, 6, eabd4744. [Google Scholar] [CrossRef]
- Huthnance, J.M. On Shelf-Sea ‘Resonance’ with Application to Brazilian M3 Tides. Deep Sea Res. Part Oceanogr. Res. Pap. 1980, 27, 347–366. [Google Scholar] [CrossRef]
- Nicolle, A.; Karpytchev, M.; Benoit, M. Amplification of the Storm Surges in Shallow Waters of the Pertuis Charentais (Bay of Biscay, France). Ocean Dyn. 2009, 59, 921–935. [Google Scholar] [CrossRef]
- Nicolle, A.; Karpytchev, M. Evidence for Spatially Variable Friction from Tidal Amplification and Asymmetry in the Pertuis Breton (France). Cont. Shelf Res. 2007, 27, 2346–2356. [Google Scholar] [CrossRef]
- Coulombier, T.; Ballu, V.; Pineau, P.; Lachaussee, N.; Poirier, E.; Guillot, A.; Calzas, M.; Drezen, C.; Fichen, L.; Plumejeaud, C.; et al. PAMELi, un drone marin de surface au service de l’interdisciplinarité. In Proceedings of the XVèmes Journées Nationales Génie Côtier-Génie Civil, La Rochelle, France, 29–31 May 2018; pp. 337–344. [Google Scholar]
- Takasu, T.; Yasuda, A. Development of the Low-Cost RTK-GPS Receiver with an Open Source Program Package RTKLIB; International Convention Center: Jeju, Korea, 2009. [Google Scholar]
- Zhang, Y.; Baptista, A.M. SELFE: A Semi-Implicit Eulerian–Lagrangian Finite-Element Model for Cross-Scale Ocean Circulation. Ocean Model. 2008, 21, 71–96. [Google Scholar] [CrossRef]
- MNT. Topo-Bathymétrique Côtier des Pertuis Charentais (Projet Homonim); SHOM: Brest, France, 2015. [Google Scholar] [CrossRef]
- Louvart, L.; Grateau, C. The Litto3D Project. In Proceedings of the Europe Oceans 2005, Brest, France, 20–23 June 2005; Volume 2, pp. 1244–1251. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.; Iredell, M.; et al. NCEP Climate Forecast System Version 2 (CFSv2) Selected Hourly Time-Series Products. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, USA. 2011. Available online: https://doi.org/10.5065/D6N877VB (accessed on 21 July 2021).
- Cancet, M.; Toublanc, F.; Lyard, F.; Dibarboure, G.; Picot, N.; Guinle, T. Bathymetry Improvement and Tidal Modelling at Regional Scales. In Proceedings of the OSTST Meeting, Ponta Delgada, Azores, Portugal, 28 September 2018; Available online: https://ostst.aviso.altimetry.fr/fileadmin/user_upload/TID_02_Cancet.pdf (accessed on 21 July 2021).
- Birol, F.; Fuller, N.; Lyard, F.; Cancet, M.; Niño, F.; Delebecque, C.; Fleury, S.; Toublanc, F.; Melet, A.; Saraceno, M.; et al. Coastal Applications from Nadir Altimetry: Example of the X-TRACK Regional Products. Adv. Space Res. 2017, 59, 936–953. [Google Scholar] [CrossRef]
- Codiga, D. Unified Tidal Analysis and Prediction Using the UTide Matlab Functions; Graduate School of Oceanography, University of Rhode Island: Narragansett, RI, USA, 2011. [Google Scholar]
- Foreman, M. Manual for Tidal Heights Analysis and Prediction. In Pacific Marine Science Report 77-10; Institute of Ocean Sciences: Sidney, Australia, 1977; Available online: http://www.omg.unb.ca/GGE/5013_LABS/heights.pdf (accessed on 21 July 2021).
- Song, D.; Yan, Y.; Wu, W.; Diao, X.; Ding, Y.; Bao, X. Tidal Distortion Caused by the Resonance of Sexta-Diurnal Tides in a Micromesotidal Embayment. J. Geophys. Res. Oceans 2016, 121, 7599–7618. [Google Scholar] [CrossRef]
SBDO Sables d’Olonne | LROC La Rochelle | AIX Aix Island | BOURC Bourcefranc-le-Ch. | COT La Cotinière | ||||||
---|---|---|---|---|---|---|---|---|---|---|
A (m) | g (deg.) | A (m) | g (deg.) | A (m) | g (deg.) | A (m) | g (deg.) | A (m) | g (deg.) | |
K1 | 0.062 | 74.52 | 0.064 | 74.29 | 0.062 | 75.93 | 0.060 | 84.39 | 0.063 | 71.94 |
O1 | 0.071 | 324.81 | 0.074 | 324.23 | 0.075 | 323.88 | 0.073 | 326.13 | 0.072 | 321.58 |
N2 | 0.324 | 77.63 | 0.363 | 78.87 | 0.371 | 78.56 | 0.340 | 87.61 | 0.327 | 73.21 |
S2 | 0.560 | 129.84 | 0.630 | 131.77 | 0.642 | 131.51 | 0.585 | 139.94 | 0.559 | 124.95 |
M2 | 1.558 | 97.27 | 1.750 | 98.24 | 1.787 | 97.92 | 1.692 | 104.97 | 1.571 | 93.07 |
M3 | 0.025 | 335.34 | 0.032 | 338.51 | 0.033 | 338.84 | 0.029 | 350.38 | 0.024 | 325.23 |
M4 | 0.153 | 4.04 | 0.247 | 8.77 | 0.255 | 6.71 | 0.222 | 33.02 | 0.136 | 342.35 |
MS4 | 0.058 | 85.02 | 0.098 | 94.56 | 0.095 | 96.64 | 0.114 | 122.53 | 0.051 | 60.82 |
MN4 | 0.069 | 316.02 | 0.108 | 321.17 | 0.114 | 318.15 | 0.076 | 346.42 | 0.061 | 294.45 |
M6 | 0.014 | 314.28 | 0.042 | 309.79 | 0.039 | 301.36 | 0.033 | 351.87 | 0.011 | 224.59 |
Astronomical | K1 | O1 | M2 | N2 | S2 | K2 | MU2 | NU2 | M3 |
Shallow-water | M4 | M6 | MN4 | MS4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tranchant, Y.-T.; Testut, L.; Chupin, C.; Ballu, V.; Bonnefond, P. Near-Coast Tide Model Validation Using GNSS Unmanned Surface Vehicle (USV), a Case Study in the Pertuis Charentais (France). Remote Sens. 2021, 13, 2886. https://doi.org/10.3390/rs13152886
Tranchant Y-T, Testut L, Chupin C, Ballu V, Bonnefond P. Near-Coast Tide Model Validation Using GNSS Unmanned Surface Vehicle (USV), a Case Study in the Pertuis Charentais (France). Remote Sensing. 2021; 13(15):2886. https://doi.org/10.3390/rs13152886
Chicago/Turabian StyleTranchant, Yann-Treden, Laurent Testut, Clémence Chupin, Valérie Ballu, and Pascal Bonnefond. 2021. "Near-Coast Tide Model Validation Using GNSS Unmanned Surface Vehicle (USV), a Case Study in the Pertuis Charentais (France)" Remote Sensing 13, no. 15: 2886. https://doi.org/10.3390/rs13152886