CO2 Flux over the Contiguous United States in 2016 Inverted by WRF-Chem/DART from OCO-2 XCO2 Retrievals
Abstract
:1. Introduction
2. Materials and Methods
2.1. CO2 Transport Model
2.2. OCO-2 XCO2 Retrievals
2.3. Observation Operator
2.4. Regional CO2 Flux Inversion System
2.5. Experiment Design
2.5.1. The DA_FLUX Experiment
2.5.2. The SIM Experiment
2.6. Evaluation
3. Results and Discussion
3.1. Reginal CO2 Flux Inversion Results
3.1.1. Compared with CT2017 and OCO-2 MIP Models
3.1.2. Uncertainty Reduction by the Inversion System
3.1.3. Compared with CO2 Flux Measurements
3.2. CO2 Concentrations Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- UNFCCC. The Paris Agreement. Available online: http://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf (accessed on 8 June 2021).
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available online: https://www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (accessed on 29 July 2021).
- UNFCCC-SBSTA. Subsidiary Body for Scientific and Technological Advice. Available online: https://unfccc.int/resource/docs/2017/sbsta/eng/07.pdf (accessed on 20 July 2021).
- UNFCCC. INFORMATION PAPER Systematic Observations. Available online: https://unfccc.int/sites/default/files/resource/Mandates_systematic_%20observation.pdf (accessed on 20 July 2021).
- Broquet, G.; Chevallier, F.; Rayner, P.; Aulagnier, C.; Pison, I.; Ramonet, M.; Schmidt, M.; Vermeulen, A.T.; Ciais, P. A European summertime CO2 biogenic flux inversion at mesoscale from continuous in situ mixing ratio measurements. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Broquet, G.; Chevallier, F.; Bréon, F.M.; Kadygrov, N.; Alemanno, M.; Apadula, F.; Hammer, S.; Haszpra, L.; Meinhardt, F.; Morguí, J.A.; et al. Regional inversion of CO2 ecosystem fluxes from atmospheric measurements: Reliability of the uncertainty estimates. Atmos. Chem. Phys. 2013, 13, 9039–9056. [Google Scholar] [CrossRef]
- Peters, W.; Miller, J.B.; Whitaker, J.; Denning, A.S.; Hirsch, A.; Krol, M.C.; Zupanski, D.; Bruhwiler, L.; Tans, P.P. An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. J. Geophys. Res.-Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Peters, W.; Jacobson, A.R.; Sweeney, C.; Andrews, A.E.; Conway, T.J.; Masarie, K.; Miller, J.B.; Bruhwiler, L.M.; Petron, G.; Hirsch, A.I.; et al. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. USA 2007, 104, 18925–18930. [Google Scholar] [CrossRef] [PubMed]
- Peylin, P.; Law, R.M.; Gurney, K.R.; Chevallier, F.; Jacobson, A.R.; Maki, T.; Niwa, Y.; Patra, P.K.; Peters, W.; Rayner, P.J.; et al. Global atmospheric carbon budget: Results from an ensemble of atmospheric CO2 inversions. Biogeosciences 2013, 10, 6699–6720. [Google Scholar] [CrossRef]
- Thompson, R.L.; Patra, P.K.; Chevallier, F.; Maksyutov, S.; Law, R.M.; Ziehn, T.; van der Laan-Luijkx, I.T.; Peters, W.; Ganshin, A.; Zhuravlev, R.; et al. Top-down assessment of the Asian carbon budget since the mid 1990s. Nat. Commun. 2016, 7, 10724. [Google Scholar] [CrossRef]
- Kuze, A.; Suto, H.; Nakajima, M.; Hamazaki, T. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt. 2009, 48, 6716–6733. [Google Scholar] [CrossRef]
- Glumb, R.; Davis, G.; Lietzke, C. The TANSO-FTS-2 instrument for the GOSAT-2 greenhouse gas monitoring mission. In Proceedings of the IGARSS 2014-2014 IEEE International Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1238–1240. [Google Scholar]
- Eldering, A.; Wennberg, P.O.; Crisp, D.; Schimel, D.S.; Gunson, M.R.; Chatterjee, A.; Liu, J.; Schwandner, F.M.; Sun, Y.; O’Dell, C.W.; et al. The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes. Science 2017, 358. [Google Scholar] [CrossRef]
- Eldering, A.; Taylor, T.E.; O’Dell, C.W.; Pavlick, R. The OCO-3 mission: Measurement objectives and expected performance based on 1 year of simulated data. Atmos. Meas. Tech. 2019, 12, 2341–2370. [Google Scholar] [CrossRef]
- Taylor, T.E.; Eldering, A.; Merrelli, A.; Kiel, M.; Somkuti, P.; Cheng, C.; Rosenberg, R.; Fisher, B.; Crisp, D.; Basilio, R.; et al. OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals. Remote. Sens. Environ. 2020, 251. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Yao, L.; Chen, X.; Cai, Z.; Yang, D.; Yin, Z.; Gu, S.; Tian, L.; Lu, N.; et al. The TanSat mission: Preliminary global observations. Sci. Bull. 2018, 63, 1200–1207. [Google Scholar] [CrossRef]
- Karafolas, N.; Sodnik, Z.; Cugny, B.; Buisson, F.; Jouglet, D.; Tauziede, L.; Loesel, J.; Buil, C.; Pascal, V. An improved microcarb dispersive instrumental concept for the measurement of greenhouse gases concentration in the atmosphere. In Proceedings of the International Conference on Space Optics—ICSO 2014, Tenerife, Spain, 17 November 2017. [Google Scholar]
- Bertaux, J.-L.; Hauchecorne, A.; Lefèvre, F.; Bréon, F.-M.; Blanot, L.; Jouglet, D.; Lafrique, P.; Akaev, P. The use of the 1.27 µm O2 absorption band for greenhouse gas monitoring from space and application to MicroCarb. Atmos. Meas. Tech. 2020, 13, 3329–3374. [Google Scholar] [CrossRef]
- Polonsky, I.N.; O’Brien, D.M.; Kumer, J.B.; O’Dell, C.W. Performance of a geostationary mission, geoCARB, to measure CO2, CH4 and CO column-averaged concentrations. Atmos. Meas. Tech. 2014, 7, 959–981. [Google Scholar] [CrossRef]
- Moore, B., III; Crowell, S.M.R.; Rayner, P.J.; Kumer, J.; O’Dell, C.W.; O’Brien, D.; Utembe, S.; Polonsky, I.; Schimel, D.; Lemen, J. The Potential of the Geostationary Carbon Cycle Observatory (GeoCarb) to Provide Multi-scale Constraints on the Carbon Cycle in the Americas. Front. Environ. Sci. 2018, 6. [Google Scholar] [CrossRef]
- Kuhlmann, G.; Broquet, G.; Marshall, J.; Clement, V.; Loscher, A.; Meijer, Y.; Brunner, D. Detectability of CO2 emission plumes of cities and power plants with the Copernicus Anthropogenic CO2 Monitoring (CO2M) mission. Atmos. Meas. Tech. 2019, 12, 6695–6719. [Google Scholar] [CrossRef]
- Janssens-Maenhout, G.; Pinty, B.; Dowell, M.; Zunker, H.; Andersson, E.; Balsamo, G.; Bézy, J.L.; Brunhes, T.; Bösch, H.; Bojkov, B.; et al. Toward an Operational Anthropogenic CO2 Emissions Monitoring and Verification Support Capacity. Bull. Am. Meteorol. Soc. 2020, 101, E1439–E1451. [Google Scholar] [CrossRef]
- Basu, S.; Guerlet, S.; Butz, A.; Houweling, S.; Hasekamp, O.; Aben, I.; Krummel, P.; Steele, P.; Langenfelds, R.; Torn, M.; et al. Global CO2 fluxes estimated from GOSAT retrievals of total column CO2. Atmos. Chem. Phys. 2013, 13, 8695–8717. [Google Scholar] [CrossRef]
- Houweling, S.; Baker, D.; Basu, S.; Boesch, H.; Butz, A.; Chevallier, F.; Deng, F.; Dlugokencky, E.J.; Feng, L.; Ganshin, A.; et al. An intercomparison of inverse models for estimating sources and sinks of CO2 using GOSAT measurements. J. Geophys. Res. Atmos. 2015, 120, 5253–5266. [Google Scholar] [CrossRef]
- Maksyutov, S.; Takagi, H.; Valsala, V.K.; Saito, M.; Oda, T.; Saeki, T.; Belikov, D.A.; Saito, R.; Ito, A.; Yoshida, Y.; et al. Regional CO2 flux estimates for 2009–2010 based on GOSAT and ground-based CO2 observations. Atmos. Chem. Phys. 2013, 13, 9351–9373. [Google Scholar] [CrossRef]
- Deng, F.; Jones, D.B.A.; Henze, D.K.; Bousserez, N.; Bowman, K.W.; Fisher, J.B.; Nassar, R.; O’Dell, C.; Wunch, D.; Wennberg, P.O.; et al. Inferring regional sources and sinks of atmospheric CO2 from GOSAT XCO2 data. Atmos. Chem. Phys. 2014, 14, 3703–3727. [Google Scholar] [CrossRef]
- Liu, J.; Bowman, K.W.; Lee, M. Comparison between the Local Ensemble Transform Kalman Filter (LETKF) and 4D-Var in atmospheric CO2 flux inversion with the Goddard Earth Observing System-Chem model and the observation impact diagnostics from the LETKF. J. Geophys. Res. Atmos. 2016, 121, 13,066–13,087. [Google Scholar] [CrossRef]
- Chevallier, F.; Palmer, P.I.; Feng, L.; Boesch, H.; O’Dell, C.W.; Bousquet, P. Toward robust and consistent regional CO2 flux estimates from in situ and spaceborne measurements of atmospheric CO2. Geophys. Res. Lett. 2014, 41, 1065–1070. [Google Scholar] [CrossRef]
- Deng, F.; Jones, D.B.A.; O’Dell, C.W.; Nassar, R.; Parazoo, N.C. Combining GOSAT XCO2 observations over land and ocean to improve regional CO2 flux estimates. J. Geophys. Res. Atmos. 2016, 121, 1896–1913. [Google Scholar] [CrossRef]
- Crowell, S.; Baker, D.; Schuh, A.; Basu, S.; Jacobson, A.R.; Chevallier, F.; Liu, J.; Deng, F.; Feng, L.; McKain, K.; et al. The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network. Atmos. Chem. Phys. 2019, 19, 9797–9831. [Google Scholar] [CrossRef]
- Chevallier, F.; Remaud, M.; O’Dell, C.W.; Baker, D.; Peylin, P.; Cozic, A. Objective evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions. Atmos. Chem. Phys. 2019, 19, 14233–14251. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, F.; Wang, J.; Ju, W.; Chen, J.M. Terrestrial ecosystem carbon flux estimated using GOSAT and OCO-2 XCO2 retrievals. Atmos. Chem. Phys. 2019, 19, 12067–12082. [Google Scholar] [CrossRef]
- Villalobos, Y.; Rayner, P.; Thomas, S.; Silver, J. The potential of Orbiting Carbon Observatory-2 data to reduce the uncertainties in CO2 surface fluxes over Australia using a variational assimilation scheme. Atmos. Chem. Phys. 2020, 20, 8473–8500. [Google Scholar] [CrossRef]
- Zheng, T.; French, N.H.F.; Baxter, M. Development of the WRF-CO2 4D-Var assimilation system v1.0. Geosci. Model Dev. 2018, 11, 1725–1752. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, M.; Kou, X.; Tian, X.; Ma, X. A regional carbon data assimilation system and its preliminary evaluation in East Asia. Atmos. Chem. Phys. 2015, 15, 1087–1104. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, M.; Wei, C.; Mizzi, A.P.; Huang, Y.; Gu, Q. Assimilation of OCO-2 retrievals with WRF-Chem/DART: A case study for the Midwestern United States. Atmos. Environ. 2021, 246, 118106. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Anderson, J.; Hoar, T.; Raeder, K.; Liu, H.; Collins, N.; Torn, R.; Avellano, A. The Data Assimilation Research Testbed A Community Facility. Bull. Am. Meteorol. Soc. 2009, 90, 1283–1296. [Google Scholar] [CrossRef]
- Anderson, J.L. An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev. 2001, 129, 2884–2903. [Google Scholar] [CrossRef]
- Anderson, J.L. A Local Least Squares Framework for Ensemble Filtering. Mon. Weather Rev. 2003, 131, 634–642. [Google Scholar] [CrossRef]
- NCEP. NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. 2000. Available online: https://data.ucar.edu/dataset/ncep-fnl-operational-model-global-tropospheric-analyses-continuing-from-july-19993 (accessed on 29 July 2021).
- Eldering, A.; O’Dell, C.W.; Wennberg, P.O.; Crisp, D.; Gunson, M.R.; Viatte, C.; Avis, C.; Braverman, A.; Castano, R.; Chang, A.; et al. The Orbiting Carbon Observatory-2: First 18 months of science data products. Atmos. Meas. Tech. 2017, 10, 549–563. [Google Scholar] [CrossRef]
- Crisp, D.; Pollock, H.R.; Rosenberg, R.; Chapsky, L.; Lee, R.A.M.; Oyafuso, F.A.; Frankenberg, C.; O’Dell, C.W.; Bruegge, C.J.; Doran, G.B.; et al. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmos. Meas. Tech. 2017, 10, 59–81. [Google Scholar] [CrossRef]
- Osterman, G.; Eldering, A.; Avis, C.; Chafin, B.; O’Dell, C.; Frankenberg, C.; Fisher, B.; Mandrake, L.; Wunch, D.; Granat, R.; et al. Orbiting Carbon Observatory–2 (OCO-2) Data Product User’s Guide, Operational L1 and L2 Data Versions 8 and Lite File Version 9, Version 1, Revision J., October 10, 2018. Available online: https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO2_DUG.V9.pdf (accessed on 8 June 2021).
- Wunch, D.; Wennberg, P.O.; Osterman, G.; Fisher, B.; Naylor, B.; Roehl, C.M.; O’Dell, C.; Mandrake, L.; Viatte, C.; Kiel, M.; et al. Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON. Atmos. Meas. Tech. 2017, 10, 2209–2238. [Google Scholar] [CrossRef]
- OCO-2 Science Team/Michael Gunson; Eldering, A. OCO-2 Level 2 Bias-Corrected XCO2 and Other Select Fields from the Full-Physics Retrieval Aggregated as Daily Files, Retrospective Processing V9r. 2018. Available online: https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_FP_9r/summary (accessed on 29 July 2021).
- Kiel, M.; O’Dell, C.W.; Fisher, B.; Eldering, A.; Nassar, R.; MacDonald, C.G.; Wennberg, P.O. How bias correction goes wrong: Measurement of XCO2 affected by erroneous surface pressure estimates. Atmos. Meas. Tech. 2019, 12, 2241–2259. [Google Scholar] [CrossRef]
- Connor, B.J.; Boesch, H.; Toon, G.; Sen, B.; Miller, C.; Crisp, D. Orbiting Carbon Observatory: Inverse method and prospective error analysis. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Ma, C.; Wang, T.; Mizzi, A.P.; Anderson, J.L.; Zhuang, B.; Xie, M.; Wu, R. Multiconstituent Data Assimilation with WRF-Chem/DART: Potential for Adjusting Anthropogenic Emissions and Improving Air Quality Forecasts Over Eastern China. J. Geophys. Res. Atmos. 2019, 124, 7393–7412. [Google Scholar] [CrossRef]
- Mizzi, A.P.; Edwards, D.P.; Anderson, J.L. Assimilating compact phase space retrievals (CPSRs): Comparison with independent observations (MOZAIC in situ and IASI retrievals) and extension to assimilation of truncated retrieval profiles. Geosci. Model Dev. 2018, 11, 3727–3745. [Google Scholar] [CrossRef]
- Liu, X.; Mizzi, A.P.; Anderson, J.L.; Fung, I.Y.; Cohen, R.C. Assimilation of satellite NO2 observations at high spatial resolution using OSSEs. Atmos. Chem. Phys. 2017, 17, 7067–7081. [Google Scholar] [CrossRef]
- Mizzi, A.P.; Arellano, A.F., Jr.; Edwards, D.P.; Anderson, J.L.; Pfister, G.G. Assimilating compact phase space retrievals of atmospheric composition with WRF-Chem/DART: A regional chemical transport/ensemble Kalman filter data assimilation system. Geosci. Model Dev. 2016, 9, 965–978. [Google Scholar] [CrossRef]
- Kang, J.-S.; Kalnay, E.; Liu, J.; Fung, I.; Miyoshi, T.; Ide, K. “Variable localization” in an ensemble Kalman filter: Application to the carbon cycle data assimilation. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Kang, J.-S.; Kalnay, E.; Miyoshi, T.; Liu, J.; Fung, I. Estimation of surface carbon fluxes with an advanced data assimilation methodology. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Gaspari, G.; Cohn, S.E. Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc. 1999, 125, 723–757. [Google Scholar] [CrossRef]
- Liu, Y.; Kalnay, E.; Zeng, N.; Asrar, G.; Chen, Z.; Jia, B. Estimating surface carbon fluxes based on a local ensemble transform Kalman filter with a short assimilation window and a long observation window: An observing system simulation experiment test in GEOS-Chem 10.1. Geosci. Model Dev. 2019, 12, 2899–2914. [Google Scholar] [CrossRef]
- Novick, K.A.; Biederman, J.A.; Desai, A.R.; Litvak, M.E.; Moore, D.J.P.; Scott, R.L.; Torn, M.S. The AmeriFlux network: A coalition of the willing. Agric. For. Meteorol. 2018, 249, 444–456. [Google Scholar] [CrossRef]
- Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey, M.; et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 2020, 7, 225. [Google Scholar] [CrossRef]
- Wunch, D.; Toon, G.C.; Blavier, J.F.; Washenfelder, R.A.; Notholt, J.; Connor, B.J.; Griffith, D.W.; Sherlock, V.; Wennberg, P.O. The total carbon column observing network. Philos. Trans. R. Soc. A 2011, 369, 2087–2112. [Google Scholar] [CrossRef]
- Wennberg, P.O.; Roehl, C.M.; Wunch, D.; Toon, G.C.; Blavier, J.-F.; Washenfelder, R.; Keppel-Aleks, G.; Allen, N.T.; Ayers, J. TCCON data from Park Falls (US); Release GGG2014.R1; 2017. Available online: https://data.caltech.edu/records/295 (accessed on 29 July 2021).
- Wennberg, P.O.; Wunch, D.; Roehl, C.M.; Blavier, J.-F.; Toon, G.C.; Allen, N.T. TCCON Data from Lamont (US); Release GGG2014.R1; 2016. Available online: https://data.caltech.edu/records/279 (accessed on 29 July 2021).
- Iraci, L.T.; Podolske, J.R.; Hillyard, P.W.; Roehl, C.; Wennberg, P.O.; Blavier, J.-F.; Landeros, J.; Allen, N.; Wunch, D.; Zavaleta, J.; et al. TCCON Data from Edwards (US); Release GGG2014.R1; 2016. Available online: https://data.caltech.edu/records/270 (accessed on 29 July 2021).
- Wennberg, P.O.; Wunch, D.; Roehl, C.M.; Blavier, J.-F.; Toon, G.C.; Allen, N.T. TCCON Data from Caltech (US); Release GGG2014.R1; 2015. Available online: https://data.caltech.edu/records/285 (accessed on 29 July 2021).
- Cooperative Global Atmospheric Data Integration Project. Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1957–2018. 2019. Available online: https://gml.noaa.gov/ccgg/obspack/providerlist/obspack_co2_1_GLOBALVIEWplus_v4.2_2019-03-19.html (accessed on 29 July 2021).
- Masarie, K.A.; Peters, W.; Jacobson, A.R.; Tans, P.P. ObsPack: A framework for the preparation, delivery, and attribution of atmospheric greenhouse gas measurements. Earth Syst. Sci. Data 2014, 6, 375–384. [Google Scholar] [CrossRef]
- Chevallier, F.; Bréon, F.-M.; Rayner, P.J. Contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks: Theoretical study in a variational data assimilation framework. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Lauvaux, T.; Schuh, A.E.; Uliasz, M.; Richardson, S.; Miles, N.; Andrews, A.E.; Sweeney, C.; Diaz, L.I.; Martins, D.; Shepson, P.B.; et al. Constraining the CO2 budget of the corn belt: Exploring uncertainties from the assumptions in a mesoscale inverse system. Atmos. Chem. Phys. 2012, 12, 337–354. [Google Scholar] [CrossRef]
Model Options | Configurations |
---|---|
Domain center | 34.939 °N, −96.275 °W |
Grid resolution | 50 km |
nx, ny, nz | 103, 82, 45 |
Time step | 240 s |
Microphysics process | WSM 5-class simple ice scheme |
Cumulus parameterization | Kain-Fritsch scheme |
Longwave atmospheric radiation | RRTM scheme |
Shortwave atmospheric radiation | Dudhia scheme |
Planetary boundary layer scheme | MYNN 2.5 level TKE |
Surface layer scheme | MYNN |
Land surface scheme | Unified Noah Land surface model |
Chemical option | chem_opt = 16 (CO2 only) |
Month | Prior Fluxes (Pg C) | Posterior Fluxes (Pg C) |
---|---|---|
1 | 0.35 ± 0.03 | 0.33 ± 0.01 |
2 | 0.32 ± 0.008 | 0.27 ± 0.001 |
3 | 0.28 ± 0.02 | 0.19 ± 0.02 |
4 | 0.12 ± 0.05 | 0.05 ± 0.03 |
5 | −0.05 ± 0.06 | −0.1 ± 0.05 |
6 | −0.21 ± 0.05 | −0.17 ± 0.05 |
7 | −0.20 ± 0.05 | −0.07 ± 0.02 |
8 | −0.08 ± 0.002 | −0.02 ± 0.001 |
9 | 0.04 ± 0.03 | 0.07 ± 0.02 |
10 | 0.21 ± 0.03 | 0.16 ± 0.03 |
11 | 0.35 ± 0.01 | 0.19 ± 0.03 |
12 | 0.37 ± 0.02 | 0.19 ± 0.04 |
Annual | 1.51 ± 0.11 | 1.08 ± 0.03 |
Month in 2016 | Percentage of Mean Uncertainty Reduction over All Grid Cells | Number of Representative Mean XCO2 Retrievals of OCO-2 | Mean Uncertainty of the Prior CO2 Flux over All Grid Cells (g C m−2 d−1) |
---|---|---|---|
1 | 14.82% | 303 | 0.16 |
2 | 12.91% | 458 | 0.16 |
3 | 12.80% | 347 | 0.17 |
4 | 19.59% | 449 | 0.22 |
5 | 18.30% | 504 | 0.22 |
6 | 36.17% | 695 | 0.31 |
7 | 38.42% | 727 | 0.32 |
8 | 30.18% | 429 | 0.22 |
9 | 24.42% | 620 | 0.21 |
10 | 21.72% | 575 | 0.17 |
11 | 10.33% | 566 | 0.14 |
12 | 9.53% | 344 | 0.14 |
Annual | 14.71% | 6017 | 0.085 |
Dataset | Flux Measurements (g C m−2 d−1) | Flux | ||
---|---|---|---|---|
PRIOR (g C m−2 d−1) | CT2017 (g C m−2 d−1) | DA_FLUX (g C m−2 d−1) | ||
AmeriFlux | −0.25 | 0.71 | 0.85 | 0.46 |
ONEFlux | −0.52 | 0.36 | 0.35 | 0.24 |
All | −0.38 | 0.54 | 0.60 | 0.35 |
Dataset | Flux | RMSE (g C m−2 d−1) | MBE (g C m−2 d−1) | CORR |
---|---|---|---|---|
AmeriFlux | PRIOR | 0.98 | 0.97 | 0.97 |
CT2017 | 1.15 | 1.10 | 0.92 | |
DA_FLUX | 0.80 | 0.71 | 0.95 | |
ONEFlux | PRIOR | 0.94 | 0.88 | 0.85 |
CT2017 | 0.94 | 0.86 | 0.75 | |
DA_FLUX | 0.83 | 0.76 | 0.83 | |
All dataset | PRIOR | 0.95 | 0.94 | 0.97 |
CT2017 | 1.06 | 1.02 | 0.92 | |
DA_FLUX | 0.79 | 0.73 | 0.94 |
Observation Type | Experiment | RMSE (ppm) | MBE (ppm) | CORR |
---|---|---|---|---|
TCCON | SIM | 0.70 | 0.36 | 0.95 |
DA_FLUX | 0.81 | 0.17 | 0.92 | |
CT2017 | 0.69 | −0.11 | 0.94 | |
Tower | SIM | 2.83 | 1.41 | 0.92 |
DA_FLUX | 2.63 | −0.05 | 0.89 | |
CT2017 | 2.71 | 0.70 | 0.89 | |
Aircraft | SIM | 0.95 | −0.20 | 0.94 |
DA_FLUX | 0.68 | −0.05 | 0.97 | |
CT2017 | 0.65 | −0.10 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Li, M.; Wang, M.; Mizzi, A.P.; Huang, Y.; Wei, C.; Jin, J.; Gu, Q. CO2 Flux over the Contiguous United States in 2016 Inverted by WRF-Chem/DART from OCO-2 XCO2 Retrievals. Remote Sens. 2021, 13, 2996. https://doi.org/10.3390/rs13152996
Zhang Q, Li M, Wang M, Mizzi AP, Huang Y, Wei C, Jin J, Gu Q. CO2 Flux over the Contiguous United States in 2016 Inverted by WRF-Chem/DART from OCO-2 XCO2 Retrievals. Remote Sensing. 2021; 13(15):2996. https://doi.org/10.3390/rs13152996
Chicago/Turabian StyleZhang, Qinwei, Mingqi Li, Maohua Wang, Arthur Paul Mizzi, Yongjian Huang, Chong Wei, Jiuping Jin, and Qianrong Gu. 2021. "CO2 Flux over the Contiguous United States in 2016 Inverted by WRF-Chem/DART from OCO-2 XCO2 Retrievals" Remote Sensing 13, no. 15: 2996. https://doi.org/10.3390/rs13152996