Is It All the Same? Mapping and Characterizing Deprived Urban Areas Using WorldView-3 Superspectral Imagery. A Case Study in Nairobi, Kenya
Abstract
:1. Introduction
- (1)
- Detailed characterization within and between DUAs based on their land cover (LC) indicators and the potential of mapping rarely mapped deprived urban LC classes, such as waste piles and vehicles.
- (2)
- The transferability potential of EO-based LC models across various deprived areas in Nairobi, using multisource and multiresolution satellite data, taking parsimony into consideration.
- (3)
- The potential contribution of infrequently used satellite datasets for the task of urban LC mapping, such as the full multispectral (MS) eight-band bundle of the WordView-3 (WV-3) sensor, along with its full set of shortwave infrared (SWIR) bands.
2. Materials and Methods
2.1. Study Area and Data
2.2. Geographic Object-Based Image Analysis Processing (GEOBIA)
2.2.1. Spectral Layers and Textures
2.2.2. Segmentation
2.2.3. Simulation of Limited Training Data
2.2.4. Descriptive Statistics
2.2.5. Feature Selection
2.2.6. Classification
2.2.7. Validation
3. Results
3.1. Land Cover Mapping Using GEOBIA
3.1.1. Land Cover Mapping Using GEOBIA
3.1.2. Model Evaluation on the Training Data
3.1.3. Model Transferability
3.1.4. Model Scalability
3.2. Inter- and Intra-DUA Variability
3.2.1. Unsupervised Clustering
3.2.2. Description of the Extracted Clusters
3.2.3. Inter-DUA Variability
3.2.4. Intra-DUA Variability
4. Discussion
4.1. On the Potential of Transferability, Interpretability, and Scalability
4.2. On the Potential of Transferability, Interpretability, and Scalability
4.3. Future Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Texture |
---|
Angular second moment |
Contrast |
Correlation |
Variance |
Inverse difference moment |
Sum average |
Sum variance |
Sum entropy |
Entropy |
Difference variance |
Difference entropy |
Information measures of correlation |
Statistic |
---|
Minimum |
Maximum |
Range |
Mean |
Median |
Standard deviation |
Coefficient of variation |
First quartile |
Third quartile |
90% percentile |
RGB | RGBNIR | MS-8 | All |
---|---|---|---|
Blue band texture kernel 9 × 9 entropy 90th percentile neighboring standard deviation | NDVI first quartile | NDVI first quartile | NDVI first quartile |
Blue band texture kernel 9 × 9 sum entropy third quartile neighboring standard deviation | NDVI median | NDVI 90th percentile | NDVI mean |
Green band first quartile | NDVI texture kernel 3 × 3 difference entropy 90th percentile | NDVI texture kernel 19 × 19 information measure of correlation range | NDVI texture kernel 19 × 19 entropy maximum |
Green band median | NDVI texture kernel 3 × 3 difference entropy third quartile | NDVI texture kernel 3 × 3 difference entropy 90th percentile | NDVI texture kernel 3 × 3 difference entropy 90th percentile |
Blue band first quartile | NDVI texture kernel 3 × 3 sum average mean | NDVI third quartile | NDVI third quartile |
Red band first quartile | NDVI texture kernel 9 × 9 correlation 90th percentile | Yellow band texture kernel 9 × 9 correlation maximum neighboring standard deviation | Coastal band texture kernel 19 × 19 contrast third |
Blue band mean | NIR band texture kernel 19 × 19 sum variance max neighboring mean | Red band texture kernel 3 × 3 correlation 90th percentile neighboring mean | Coastal band texture kernel 3 × 3 difference entropy median |
Green band third quartile | Blue band first quartile | Red edge band texture kernel 9 × 9 information measure of correlation minimum neighboring mean | Coastal band texture kernel 3 × 3 difference entropy standard deviation |
Red band median | Green band first quartile | NIR band texture 19 × 19 sum variance maximum neighboring standard deviation | Red band texture kernel 3 × 3 correlation 90th percentile neighboring mean |
Blue band 90th percentile | Blue band median | NIR band texture 9 × 9 difference entropy maximum neighboring mean | Red band texture kernel 3 × 3 difference entropy first quartile |
Red band texture kernel 3 × 3 variance 90th percentile | Blue band third quartile | Coastal band first quartile | Red edge band texture kernel 19 × 19 contrast mean |
Red band texture kernel 3 × 3 difference entropy mean | Red band coefficient of variation | Coastal band mean | NIR band texture kernel 19 × 19 difference variance third quartile |
Green band texture kernel 3 × 3 variance 90th percentile | NIR band first quartile | Blue band first quartile | NIR band texture kernel 19 × 19 sum variance maximum neighboring mean |
Blue band texture kernel 3 × 3 correlation third quartile neighboring mean | NIR band median | Green band median | NIR band texture kernel 3 × 3 sum average minimum |
Blue band texture kernel 9 × 9 information measure of correlation 90th percentile | NIR band third quartile | Red band first quartile | NIR second band texture kernel 3 × 3 difference entropy first quartile |
Green band texture kernel 3 × 3 sum average first quartile | Blue band texture kernel 19 × 19 variance median | Red edge band first quartile | Coastal band first quartile |
Green band texture kernel 3 × 3 difference entropy median | Blue band texture kernel 9 × 9 variance median | Red edge band median | Blue band first quartile |
Green band texture kernel 3 × 3 sum average coefficient of variation | Green band texture kernel 19 × 19 variance median | NIR band first quartile | Green band median |
Red band texture kernel 3 × 3 contrast 90th percentile | Green band texture kernel 9 × 9 information measure of correlation third quartile | NIR 2nd band first quartile | Red band coefficient of variation |
Red band texture kernel 9 × 9 variance third quartile | Red band texture kernel 19 × 19 correlation maximum | Blue texture kernel 3 × 3 difference entropy median | Red edge band first quartile |
Blue band texture kernel 9 × 9 angular second moment coefficient of variation | Red band texture kernel 3 × 3 difference entropy first quartile | Blue band texture kernel 9 × 9 information measure of correlation third quartile | Red edge band mean |
Red band texture kernel 9 × 9 contrast mean | Red edge band texture kernel 19 × 19 contrast mean | Red edge band median | |
Red band texture kernel 9 × 9 correlation first quartile | NIR band texture 19 × 19 difference variance third quartile | NIR band first quartile | |
Red band texture kernel 9 × 9 variance first quartile | NIR band texture kernel 3 × 3 sum average minimum | NIR second band first quartile | |
NIR band texture 3 × 3 sum average minimum | NIR second band texture kernel 3 × 3 difference entropy first quartile | NIR second band mean | |
NDVI texture kernel 19 × 19 angular second moment minimum | NIR second band texture kernel 3 × 3 variance median | SWIR first band texture kernel 3 × 3 angular second moment standard deviation neighboring standard deviation | |
SWIR fifth band first quartile | |||
SWIR seventh band first quartile |
Class | Building | Bare, Asphalted Ground | Low Vegetation | Tree | Shadow | Vehicle | Water | Waste Pile |
---|---|---|---|---|---|---|---|---|
Building | 78,567 | 8820 | 106 | 0 | 877 | 265 | 0 | 498 |
Bare, asphalted ground | 7092 | 57,241 | 1154 | 603 | 692 | 188 | 0 | 524 |
Low vegetation | 154 | 712 | 34,955 | 1533 | 0 | 99 | 0 | 25 |
Tree | 22 | 0 | 2212 | 25,447 | 1971 | 0 | 0 | 38 |
Shadow | 381 | 890 | 0 | 382 | 18,190 | 84 | 1 | 0 |
Vehicle | 332 | 0 | 0 | 0 | 0 | 417 | 0 | 19 |
Water | 0 | 148 | 0 | 0 | 317 | 0 | 347 | 0 |
Waste piles | 106 | 88 | 18 | 63 | 3 | 3 | 266 | 1052 |
Class | Building | Bare, Asphalted Ground | Low Vegetation | Tree | Shadow | Vehicle | Water | Waste Pile |
---|---|---|---|---|---|---|---|---|
Building | 78,434 | 9321 | 106 | 0 | 748 | 319 | 143 | 62 |
Bare, asphalted ground | 7534 | 56,944 | 1090 | 568 | 708 | 199 | 0 | 451 |
Low vegetation | 76 | 747 | 35,016 | 1614 | 0 | 0 | 0 | 25 |
Tree | 22 | 132 | 2364 | 25,958 | 1176 | 0 | 0 | 38 |
Shadow | 498 | 861 | 0 | 478 | 18,006 | 84 | 1 | 0 |
Vehicle | 236 | 0 | 0 | 0 | 0 | 513 | 0 | 19 |
Water | 19 | 138 | 0 | 0 | 306 | 0 | 349 | 0 |
Waste piles | 208 | 458 | 18 | 0 | 3 | 3 | 266 | 643 |
Class | Building | Bare, Asphalted Ground | Low Vegetation | Tree | Shadow | Vehicle | Water | Waste Pile |
---|---|---|---|---|---|---|---|---|
Building | 79,145 | 8560 | 107 | 1 | 933 | 257 | 0 | 130 |
Bare, asphalted ground | 6899 | 57,264 | 1122 | 389 | 766 | 219 | 211 | 624 |
Low vegetation | 124 | 942 | 34,760 | 1491 | 0 | 66 | 0 | 95 |
Tree | 0 | 0 | 2119 | 27,285 | 248 | 0 | 0 | 38 |
Shadow | 374 | 519 | 0 | 1541 | 17,386 | 108 | 0 | 0 |
Vehicle | 207 | 0 | 0 | 0 | 0 | 495 | 0 | 66 |
Water | 9 | 147 | 0 | 0 | 296 | 0 | 360 | 0 |
Waste piles | 195 | 358 | 17 | 0 | 3 | 3 | 266 | 757 |
Class | Building | Bare, Asphalted Ground | Low Vegetation | Tree | Shadow | Vehicle | Water | Waste Pile |
---|---|---|---|---|---|---|---|---|
Building | 80,053 | 6805 | 57 | 31 | 871 | 354 | 97 | 865 |
Bare, asphalted ground | 15,100 | 50,418 | 370 | 756 | 271 | 300 | 0 | 279 |
Low vegetation | 3916 | 6039 | 25,935 | 1284 | 80 | 0 | 0 | 224 |
Tree | 533 | 1379 | 1223 | 23,576 | 2934 | 22 | 1 | 22 |
Shadow | 1056 | 718 | 0 | 289 | 17,753 | 112 | 0 | 0 |
Vehicle | 255 | 0 | 0 | 0 | 0 | 513 | 0 | 0 |
Water | 17 | 138 | 2 | 142 | 443 | 0 | 70 | 0 |
Waste piles | 700 | 159 | 0 | 266 | 3 | 0 | 0 | 471 |
References
- United Nations Department of Economic and Social Affairs Sustainable Development Goals. Available online: https://unstats.un.org/sdgs/report/2021/ (accessed on 2 December 2021).
- Georganos, S. The Use of Very-High-Resolution Earth Observation Satellite Data for Multi-Thematic Urban Mapping in Sub-Saharan Africa: Applications in Population, Household Wealth and Epidemiological Modeling. Ph.D. Thesis, Universite Libre de Bruxelles (ULB), Brussels, Belgium, 2021. [Google Scholar]
- Kuffer, M.; Pfeffer, K.; Sliuzas, R. Slums from Space—15 Years of Slum Mapping Using Remote Sensing. Remote Sens. 2016, 8, 455. [Google Scholar] [CrossRef] [Green Version]
- Aliu, I.R.; Akoteyon, I.S.; Soladoye, O. Living on the margins: Socio-spatial characterization of residential and water deprivations in Lagos informal settlements, Nigeria. Habitat Int. 2021, 107, 102293. [Google Scholar] [CrossRef]
- Muoki, M.A.; Tumuti, D.S.; Rombo, D. Nutrition and public hygiene among children under five years of age in Mukuru slums of Makadara Division, Nairobi. East Afr. Med. J. 2008, 85, 386–397. [Google Scholar] [CrossRef] [Green Version]
- Haddout, S.; Priya, K.L.; Hoguane, A.M.; Ljubenkov, I. Water scarcity: A big challenge to slums in Africa to fight against COVID-19. Sci. Technol. Libr. 2020, 39, 281–288. [Google Scholar] [CrossRef]
- Mollah, S.; Islam, Z. Dhaka Slums: Where Covid is Curiously Quiet. The Daily Star, 26 July 2020. [Google Scholar]
- Brotherhood, L.; Cavalcanti, T.; Da Mata, D.; Santos, C. Slums and Pandemics; CEPR Discussion Paper No. DP15131; CEPR: London, UK, 2020. [Google Scholar]
- Brito, P.L.; Kuffer, M.; Koeva, M.; Pedrassoli, J.C.; Wang, J.; Costa, F.; De Freitas, A.D. The Spatial Dimension of COVID-19: The Potential of Earth Observation Data in Support of Slum Communities with Evidence from Brazil. ISPRS Int. J. Geo-Inf. 2020, 9, 557. [Google Scholar] [CrossRef]
- Auerbach, A.M.; Thachil, T. How does Covid-19 affect urban slums? Evidence from settlement leaders in India. World Dev. 2021, 140, 105304. [Google Scholar] [CrossRef]
- Kuffer, M.; Persello, C.; Pfeffer, K.; Sliuzas, R.; Rao, V. Do we underestimate the global slum population? In Proceedings of the 2019 Joint Urban Remote Sensing Event (JURSE), Piscataway, NJ, USA, 22–24 May 2019; pp. 1–4. [Google Scholar]
- Habitat, U. Urbanization and development: Emerging futures. World Cities Rep. 2016, 3, 4–51. [Google Scholar]
- Grippa, T.; Linard, C.; Lennert, M.; Georganos, S.; Mboga, N.; Vanhuysse, S.; Gadiaga, A.; Wolff, E. Improving urban population distribution models with very-high resolution satellite information. Data 2019, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Georganos, S.; Gadiaga, A.N.; Linard, C.; Grippa, T.; Vanhuysse, S.; Mboga, N.; Wolff, E.; Dujardin, S.; Lennert, M. Modelling the Wealth Index of Demographic and Health Surveys within Cities Using Very High-Resolution Remotely Sensed Information. Remote Sens. 2019, 11, 2543. [Google Scholar] [CrossRef] [Green Version]
- Georganos, S.; Brousse, O.; Dujardin, S.; Linard, C.; Casey, D.; Milliones, M.; Parmentier, B.; Van Lipzig, N.P.M.; Demuzere, M.; Grippa, T.; et al. Modelling and mapping the intra-urban spatial distribution of Plasmodium falciparum parasite rate using very-high-resolution satellite derived indicators. Int. J. Health Geogr. 2020, 19, 38. [Google Scholar] [CrossRef]
- Kuffer, M.; Thomson, D.R.; Boo, G.; Mahabir, R.; Grippa, T.; Vanhuysse, S.; Engstrom, R.; Ndugwa, R.; Makau, J.; Darin, E.; et al. The Role of Earth Observation in an Integrated Deprived Area Mapping “System” for Low-to-Middle Income Countries. Remote Sens. 2020, 12, 982. [Google Scholar] [CrossRef] [Green Version]
- Stark, T.; Wurm, M.; Zhu, X.X.; Taubenböck, H. Satellite-Based Mapping of Urban Poverty with Transfer-Learned Slum Morphologies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5251–5263. [Google Scholar] [CrossRef]
- Friesen, J.; Friesen, V.; Dietrich, I.; Pelz, P.F. Slums, space, and state of health—A link between settlement morphology and health data. Int. J. Environ. Res. Public Health 2020, 17, 2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georganos, S.; Vanhuysse, S.; Abascal, Á.; Kuffer, M. Extracting Urban Deprivation Indicators Using Superspectral Very-High-Resolution Satellite Imagery. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 2114–2117. [Google Scholar]
- Tapiador, F.J.; Avelar, S.; Tavares-corrêa, C.; Zah, R.; Tapiador, F.J.; Avelar, S.; Tavares-corrêa, C. Deriving fine-scale socioeconomic information of urban areas using very high-resolution satellite imagery. Int. J. Remote Sens. 2017, 1161, 6437–6456. [Google Scholar] [CrossRef]
- Avelar, S.; Zah, R.; Tavares-Corrêa, C. Linking socioeconomic classes and land cover data in Lima, Peru: Assessment through the application of remote sensing and GIS. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 27–37. [Google Scholar] [CrossRef]
- Duque, J.C.; Patino, J.E.; Ruiz, L.A.; Pardo-Pascual, J.E. Measuring intra-urban poverty using land cover and texture metrics derived from remote sensing data. Landsc. Urban Plan. 2015, 135, 11–21. [Google Scholar] [CrossRef]
- Hacker, K.P.; Seto, K.C.; Costa, F.; Corburn, J.; Reis, M.G.; Ko, A.I.; Diuk-Wasser, M.A. Urban slum structure: Integrating socioeconomic and land cover data to model slum evolution in Salvador, Brazil. Int. J. Health Geogr. 2013, 12, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Kalogirou, S.; Wolff, E. Less is more: Optimizing classification performance through feature selection in a very-high-resolution remote sensing. GISci. Remote Sens. 2017, 55, 221–242. [Google Scholar] [CrossRef]
- United Nations Human Settlements Programme. State of the World’s Cities 2010/2011: Bridging the Urban Divide; Earthscan: London, UK, 2010. [Google Scholar]
- Amnesty International. The Unseen Majority: Nairobi’s Two Million Slum-Dwellers. Amnesty Int. 2009, 1–39. [Google Scholar]
- Kenya National Bureau of Statistics. The 2019 Kenya Population and Housing Census: Population by County and Sub-County; Kenya National Bureau of Statistics: Nairobi, Kenya, 2019.
- Abascal, Á.; Rothwell, N.; Shonowo, A.; Thomson, D.R.; Elias, P.; Elsey, H.; Yeboah, G.; Kuffer, M. “Domains of Deprivation Framework” for Mapping Slums, Informal Settlements, and Other Deprived Areas in LMICs to Improve Urban Planning and Policy: A Scoping Review. Preprints 2021. [Google Scholar]
- Asadzadeh, S.; De Souza Filho, C.R. Investigating the capability of WorldView-3 superspectral data for direct hydrocarbon detection. Remote Sens. Environ. 2016, 173, 162–173. [Google Scholar] [CrossRef]
- Herrmann, I.; Bdolach, E.; Montekyo, Y.; Rachmilevitch, S.; Townsend, P.A.; Karnieli, A. Assessment of maize yield and phenology by drone-mounted superspectral camera. Precis. Agric. 2020, 21, 51–76. [Google Scholar] [CrossRef]
- Guo, X.; Li, P. Mapping plastic materials in an urban area: Development of the normalized difference plastic index using WorldView-3 superspectral data. ISPRS J. Photogramm. Remote Sens. 2020, 169, 214–226. [Google Scholar] [CrossRef]
- GRASS Development Team Geographic Resources Analysis Support System (GRASS GIS) Software, Version 7.2 2017. Available online: http://wgbis.ces.iisc.ernet.in/grass/download/index.html (accessed on 2 December 2021).
- Grippa, T.; Lennert, M.; Beaumont, B.; Vanhuysse, S.; Stephenne, N.; Wolff, E. An Open-Source Semi-Automated Processing Chain for Urban Object-Based Classification. Remote Sens. 2017, 9, 358. [Google Scholar] [CrossRef] [Green Version]
- Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.; Grout, J.; Corlay, S.; et al. Jupyter Notebooks—A publishing format for reproducible computational workflows. In Proceedings of the 20th International Conference on Electronic Publishing, Göttingen, Germany, 7–9 June 2016; pp. 87–90. [Google Scholar]
- Kuffer, M.; Wang, J.; Thomson, D.R.; Georganos, S.; Abascal, A.; Owusu, M.; Vanhuysse, S. Spatial Information Gaps on Deprived Urban Areas (Slums) in Low-and-Middle-Income-Countries: A User-Centered Approach. Urban Sci. 2021, 5, 72. [Google Scholar] [CrossRef]
- Grippa, T.; Georganos, S.; Vanhuysse, S.G.; Lennert, M.; Wolff, E. A local segmentation parameter optimization approach for mapping heterogeneous urban environments using VHR imagery. Remote Sens. Technol. Appl. Urban Environ. II 2017, 20, 104310G. [Google Scholar] [CrossRef]
- Momsen, E.; Metz, M. Grass Development Team Module i.segment. In Geographic Resources Analysis Support System (GRASS) Software; Version 7.0; GRASS Development Team: Bonn, Germany, 2015. [Google Scholar]
- Johnson, B.; Bragais, M.; Endo, I.; Magcale-Macandog, D.; Macandog, P. Image Segmentation Parameter Optimization Considering Within- and Between-Segment Heterogeneity at Multiple Scale Levels: Test Case for Mapping Residential Areas Using Landsat Imagery. ISPRS Int. J. Geo-Inf. 2015, 4, 2292–2305. [Google Scholar] [CrossRef] [Green Version]
- Thomson, D.R.; Kuffer, M.; Boo, G.; Hati, B.; Grippa, T.; Elsey, H.; Linard, C.; Mahabir, R.; Kyobutungi, C.; Maviti, J.; et al. Need for an Integrated Deprived Area “Slum” Mapping System (IDEAMAPS) in Low-and Middle-Income Countries (LMICs). Soc. Sci. 2020, 9, 80. [Google Scholar] [CrossRef]
- Genuer, R.; Poggi, J.-M.; Tuleau-Malot, C. VSURF: An R Package for Variable Selection Using Random Forests. R J. 2015, 7, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; Team, R.C.; et al. Caret: Classification and Regression Training; R Package Version 6.0-21; CRAN: Wien, Austria, 2014. [Google Scholar]
- Jozdani, S.E.; Johnson, B.A.; Chen, D. Comparing deep neural networks, ensemble classifiers, and support vector machine algorithms for object-based urban land use/land cover classification. Remote Sens. 2019, 11, 1713. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, T.; Zhang, B.; Li, F.; Toure, B.; Omosa, I.B.; Chiramba, T.; Abdel-Monem, M.; Pradhan, M. Water and wastewater treatment in Africa--current practices and challenges. CLEAN–Soil Air Water 2014, 42, 1029–1035. [Google Scholar] [CrossRef]
- Taubenbock, H.; Wurm, M.; Setiadi, N.; Gebert, N.; Roth, A.; Strunz, G.; Birkmann, J.; Dech, S. Integrating remote sensing and social science. 2009 Jt. Urban Remote Sens. Event 2009, 1–7. [Google Scholar] [CrossRef]
- Ezeh, A.; Oyebode, O.; Satterthwaite, D.; Chen, Y.; Ndugwa, R.; Sartori, J.; Mberu, B.; Haregu, T.; Watson, S.I.; Caiaff, W.; et al. The history, geography, and sociology of slums and the health problems of people who live in slums. Lancet 2017, 389, 547–558. [Google Scholar] [CrossRef]
- Duque, J.C.; Patino, J.E.; Betancourt, A. Exploring the potential of machine learning for automatic slum identification from VHR imagery. Remote Sens. 2017, 9, 895. [Google Scholar] [CrossRef] [Green Version]
Multispectral Bands | Wavelength (nm) | SWIR Bands | Wavelength (nm) |
---|---|---|---|
Coastal | 397–454 | SWIR-1 | 1184–1235 |
Blue | 445–517 | SWIR-2 | 1546–1598 |
Green | 507–586 | SWIR-3 | 1636–1686 |
Yellow | 580–629 | SWIR-4 | 1702–1759 |
Red | 626–696 | SWIR-5 | 2137–2191 |
Red edge | 698–749 | SWIR-6 | 2174–2232 |
Near-IR1 | 765–899 | SWIR-7 | 2228–2292 |
Near-IR2 | 857–1039 | SWIR-8 | 2285–2373 |
Panchromatic band | 450–800 |
Class | Samples | Deprivation Domain Captured |
---|---|---|
Building | 2839 | Unplanned morphology (e.g., density) |
Ground surface | 842 | Unplanned morphology (open space) |
Low vegetation (grass, bushes) | 186 | Environmental assets (green space) |
Tall vegetation | 249 | Environmental assets (green space) |
Shadow | 414 | Unplanned morphology (e.g., distance between buildings, height) |
Vehicles | 270 | Road infrastructure (accessibility), economic activity |
Water | 28 | Physical and health-related hazard (e.g., floods, water-borne diseases) |
Waste piles | 149 | Health-related hazards (e.g., due to air, soil and water pollution, and vector-borne diseases) |
Source | Total Number of Features | Features Retained after VSURF Selection |
---|---|---|
RGB | 3613 | 21 |
RGBNIR | 6013 | 27 |
MS-8 | 10813 | 26 |
All | 14,173 | 28 |
Class | Total | Dense Labeling (Pixels) | Non-Dense Labeling (Segments) |
---|---|---|---|
Building | 89,133 | 87,901 | 1232 |
Ground surface | 67,494 | 67,006 | 488 |
Low vegetation | 37,478 | 37,184 | 294 |
Tall vegetation | 29,690 | 29,504 | 186 |
Shadow | 19,928 | 19,683 | 245 |
Vehicle | 768 | 607 | 161 |
Inland water | 812 | 653 | 159 |
Waste piles | 1599 | 1388 | 211 |
Source | Overall Accuracy (%) | Training Time (s) |
---|---|---|
All FS | 89.4 | 7.62 |
All | 89.9 | 99.00 |
MS-8 FS | 89.2 | 5.20 |
MS-8 | 89.5 | 80.04 |
RGBNIR FS | 89.2 | 6.57 |
RGBNIR | 89.5 | 58.60 |
RGB FS | 85.2 | 3.96 |
RGB | 86.1 | 49.88 |
Class | ALL | MS | RGBNIR | RGB |
---|---|---|---|---|
Overall accuracy | 87.57 | 87.43 | 88.07 | 80.51 |
Building | 92.04 | 91.72 | 92.39 | 86.26 |
Bare soil | 89.29 | 88.55 | 89.38 | 83.68 |
Low vegetation | 94.86 | 94.77 | 94.94 | 94.37 |
Tree | 94.43 | 94.50 | 93.87 | 93.36 |
Shadow | 90.86 | 92.55 | 93.72 | 89.22 |
Vehicle | 69.67 | 72.89 | 71.50 | 69.66 |
Water | 78.16 | 72.90 | 71.41 | 70.68 |
Waste pile | 74.29 | 75.77 | 71.96 | 62.42 |
Settlement | Total Area km2 | A% | B% | C% | D% | E% | F% |
---|---|---|---|---|---|---|---|
Biafra | 1.275 | 47.3 | 0.2 | 3.9 | 25.7 | 21.4 | 1.6 |
Embakasi | 0.945 | 53.2 | 0.0 | 2.6 | 12.2 | 22.8 | 9.3 |
Imara | 4.020 | 24.4 | 1.4 | 2.1 | 10.3 | 15.4 | 46.4 |
Kariobangi | 0.970 | 20.9 | 0.3 | 4.1 | 13.1 | 50.5 | 11.1 |
Kiambu | 0.885 | 16.4 | 5.9 | 13.6 | 20.1 | 21.5 | 22.6 |
Kibera | 2.677 | 21.8 | 0.3 | 11.8 | 4.4 | 22.1 | 39.6 |
Korogocho | 1.445 | 24.9 | 10.0 | 6.6 | 15.2 | 26.3 | 17.0 |
Mathare | 2.205 | 22.1 | 2.4 | 11.9 | 8.5 | 27.4 | 27.7 |
Pumwani | 0.672 | 22.7 | 3.7 | 5.6 | 9.7 | 20.1 | 38.3 |
Soweto | 2.387 | 26.3 | 0.0 | 7.2 | 14.6 | 32.7 | 19.3 |
Waruku | 2.652 | 16.8 | 0.0 | 26.7 | 4.7 | 34.6 | 17.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georganos, S.; Abascal, A.; Kuffer, M.; Wang, J.; Owusu, M.; Wolff, E.; Vanhuysse, S. Is It All the Same? Mapping and Characterizing Deprived Urban Areas Using WorldView-3 Superspectral Imagery. A Case Study in Nairobi, Kenya. Remote Sens. 2021, 13, 4986. https://doi.org/10.3390/rs13244986
Georganos S, Abascal A, Kuffer M, Wang J, Owusu M, Wolff E, Vanhuysse S. Is It All the Same? Mapping and Characterizing Deprived Urban Areas Using WorldView-3 Superspectral Imagery. A Case Study in Nairobi, Kenya. Remote Sensing. 2021; 13(24):4986. https://doi.org/10.3390/rs13244986
Chicago/Turabian StyleGeorganos, Stefanos, Angela Abascal, Monika Kuffer, Jiong Wang, Maxwell Owusu, Eléonore Wolff, and Sabine Vanhuysse. 2021. "Is It All the Same? Mapping and Characterizing Deprived Urban Areas Using WorldView-3 Superspectral Imagery. A Case Study in Nairobi, Kenya" Remote Sensing 13, no. 24: 4986. https://doi.org/10.3390/rs13244986