Determination of Weak Terrestrial Water Storage Changes from GRACE in the Interior of the Tibetan Plateau
Abstract
:1. Introduction
2. GRACE Solutions and Destriping Filters
2.1. GRACE Solutions
2.2. Destriping Filters
3. Calculation of GRACE-Derived TWS Change and Aggregated Hydrology Signal
3.1. GRACE-Derived TWS Change
3.2. Aggregated Hydrology Signal
4. Results and Discussion
4.1. Selection of the Solution-Filter Combination
4.1.1. Correlation Check
4.1.2. Filter Dependence of the GRACE-Derived TWS Trends
4.1.3. Solution Dependence of the GRACE-Derived TWS Trends
4.2. Determination of GRACE-Derived TWS Changes inside the Plateau
4.2.1. TWS Changes without Smoothing
Trend Rates
Annual Changes
4.2.2. TWS Changes with Smoothing
4.3. Assessment of the Effectiveness of Destriping Filters and GRACE Solutions
4.4. Additional Tests and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. PCC-Value, RMSE-Value and IOA-Value
Appendix A.2. Error Estimation of the Aggregated Hydrology Signal
Appendix A.3. Complementary Figures and Tables
Destriping Filters | Tongji | WHU | HUST | GRGS | ||||||||
PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | |
Duan P2M8 | 0.27 | 9.09 | 0.53 | 0.28 | 8.92 | 0.55 | 0.26 | 9.85 | 0.53 | 0.38 | 9.76 | 0.58 |
Duan P3M8 | 0.47 | 7.20 | 0.65 | 0.49 | 6.87 | 0.68 | 0.44 | 8.05 | 0.62 | 0.51 | 8.57 | 0.64 |
Duan P4M8 | 0.58 | 5.69 | 0.71 | 0.55 | 5.77 | 0.70 | 0.62 | 5.83 | 0.75 | 0.57 | 6.79 | 0.70 |
S&W P2M8 | 0.56 | 5.86 | 0.66 | 0.54 | 5.89 | 0.67 | 0.51 | 6.49 | 0.65 | 0.61 | 6.78 | 0.68 |
S&W P3M8 | 0.57 | 5.77 | 0.71 | 0.54 | 5.90 | 0.70 | 0.53 | 6.38 | 0.69 | 0.63 | 6.48 | 0.72 |
S&W P4M8 | 0.09 | 8.15 | 0.43 | 0.05 | 8.06 | 0.39 | 0.17 | 8.06 | 0.47 | 0.15 | 8.30 | 0.45 |
Cham P2M8 | 0.27 | 11.35 | 0.52 | 0.12 | 12.50 | 0.41 | −0.23 | 18.95 | 0.28 | 0.28 | 10.39 | 0.50 |
Cham P3M8 | 0.27 | 10.69 | 0.52 | 0.12 | 12.71 | 0.42 | −0.21 | 18.12 | 0.30 | 0.27 | 10.75 | 0.50 |
Cham P4M8 | 0.33 | 9.67 | 0.55 | 0.12 | 13.46 | 0.42 | −0.16 | 16.00 | 0.31 | 0.28 | 10.77 | 0.51 |
notdestriped | 0.30 | 11.83 | 0.54 | 0.15 | 11.58 | 0.45 | −0.20 | 16.97 | 0.28 | 0.21 | 10.68 | 0.47 |
Destriping Filters | IGG | AIUB | XISM | |||||||||
PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | ||||
Duan P2M8 | 0.28 | 10.42 | 0.54 | 0.22 | 9.51 | 0.51 | 0.24 | 9.70 | 0.51 | |||
Duan P3M8 | 0.39 | 8.82 | 0.60 | 0.43 | 7.50 | 0.62 | 0.36 | 8.30 | 0.57 | |||
Duan P4M8 | 0.50 | 6.65 | 0.69 | 0.45 | 6.44 | 0.62 | 0.46 | 6.96 | 0.67 | |||
S&W P2M8 | 0.41 | 7.26 | 0.61 | 0.48 | 6.36 | 0.62 | 0.39 | 7.18 | 0.60 | |||
S&W P3M8 | 0.55 | 6.34 | 0.70 | 0.50 | 6.32 | 0.66 | 0.51 | 6.42 | 0.69 | |||
S&W P4M8 | 0.22 | 7.80 | 0.50 | 0.06 | 8.40 | 0.41 | 0.27 | 7.39 | 0.52 | |||
Cham P2M8 | −0.04 | 16.33 | 0.35 | 0.07 | 21.65 | 0.33 | −0.07 | 16.51 | 0.35 | |||
Cham P3M8 | 0.12 | 13.71 | 0.45 | 0.05 | 13.77 | 0.39 | 0.05 | 13.31 | 0.42 | |||
Cham P4M8 | 0.36 | 9.85 | 0.58 | 0.03 | 13.15 | 0.41 | 0.36 | 9.83 | 0.59 | |||
notdestriped | 0.20 | 17.24 | 0.43 | 0.17 | 14.42 | 0.45 | 0.00 | 16.78 | 0.36 |
Destriping Filters | ITSG | CSR | COST-G | JPL | GFZ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | |
Duan P2M8 | 0.45 | 8.43 | 0.66 | 0.43 | 8.61 | 0.64 | 0.43 | 8.40 | 0.65 | 0.37 | 9.91 | 0.60 | 0.46 | 9.29 | 0.64 |
Duan P3M8 | 0.58 | 6.90 | 0.74 | 0.58 | 6.72 | 0.74 | 0.58 | 6.64 | 0.74 | 0.50 | 8.26 | 0.67 | 0.58 | 7.71 | 0.72 |
Duan P4M8 | 0.64 | 5.48 | 0.79 | 0.66 | 5.13 | 0.80 | 0.62 | 5.41 | 0.78 | 0.64 | 5.26 | 0.80 | 0.60 | 6.46 | 0.76 |
S&W P2M8 | 0.66 | 5.04 | 0.80 | 0.65 | 5.12 | 0.78 | 0.65 | 5.16 | 0.78 | 0.62 | 5.44 | 0.77 | 0.60 | 6.24 | 0.75 |
S&W P3M8 | 0.64 | 5.41 | 0.79 | 0.65 | 5.13 | 0.80 | 0.63 | 5.36 | 0.78 | 0.64 | 5.25 | 0.79 | 0.59 | 6.36 | 0.76 |
S&W P4M8 | 0.15 | 7.70 | 0.46 | 0.13 | 7.64 | 0.46 | 0.13 | 7.67 | 0.45 | 0.14 | 7.45 | 0.44 | 0.18 | 8.13 | 0.49 |
Cham P2M8 | 0.04 | 13.83 | 0.37 | −0.18 | 18.65 | 0.25 | 0.00 | 13.98 | 0.35 | 0.19 | 14.31 | 0.44 | −0.11 | 24.74 | 0.25 |
Cham P3M8 | 0.05 | 13.78 | 0.39 | −0.17 | 19.03 | 0.26 | 0.01 | 13.65 | 0.38 | 0.11 | 13.89 | 0.43 | −0.11 | 18.65 | 0.31 |
Cham P4M8 | 0.05 | 13.85 | 0.39 | −0.02 | 15.03 | 0.35 | 0.07 | 12.91 | 0.43 | 0.21 | 13.31 | 0.48 | 0.00 | 15.66 | 0.39 |
MLAs | 0.21 | 7.71 | 0.52 | 0.48 | 6.42 | 0.64 | - | - | - | 0.37 | 7.14 | 0.59 | 0.18 | 10.09 | 0.48 |
DDK8 | 0.40 | 7.49 | 0.62 | −0.05 | 11.06 | 0.37 | - | - | - | 0.35 | 9.42 | 0.57 | 0.08 | 11.22 | 0.45 |
not destriped | 0.01 | 12.73 | 0.40 | −0.14 | 17.27 | 0.27 | 0.09 | 10.32 | 0.44 | 0.39 | 14.96 | 0.52 | −0.17 | 23.63 | 0.28 |
CSR_M | JPL_M | GSFC_M | |||||||||||||
PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | |||||||
0.15 | 7.58 | 0.46 | 0.01 | 9.88 | 0.40 | −0.01 | 9.85 | 0.43 |
Destriping Filters | ITSG | CSR | COST-G | JPL | GFZ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | |
Duan P2M8 | 0.32 | 11.71 | 0.53 | 0.27 | 12.20 | 0.50 | 0.30 | 11.93 | 0.51 | 0.21 | 13.56 | 0.48 | 0.36 | 12.87 | 0.53 |
Duan P3M8 | 0.52 | 9.79 | 0.62 | 0.49 | 10.10 | 0.58 | 0.52 | 9.95 | 0.59 | 0.38 | 11.60 | 0.54 | 0.55 | 11.02 | 0.60 |
Duan P4M8 | 0.66 | 7.34 | 0.72 | 0.66 | 7.81 | 0.68 | 0.65 | 7.85 | 0.68 | 0.60 | 8.14 | 0.66 | 0.64 | 9.12 | 0.67 |
S&W P2M8 | 0.64 | 7.78 | 0.67 | 0.58 | 8.47 | 0.61 | 0.61 | 8.37 | 0.61 | 0.50 | 9.06 | 0.57 | 0.60 | 9.52 | 0.62 |
S&W P3M8 | 0.69 | 7.26 | 0.73 | 0.67 | 7.79 | 0.68 | 0.67 | 7.81 | 0.68 | 0.61 | 8.05 | 0.66 | 0.66 | 8.95 | 0.68 |
S&W P4M8 | 0.32 | 8.88 | 0.52 | 0.27 | 9.41 | 0.47 | 0.30 | 9.27 | 0.48 | 0.25 | 9.26 | 0.45 | 0.36 | 10.09 | 0.52 |
Cham P2M8 | 0.00 | 15.80 | 0.40 | −0.15 | 20.20 | 0.35 | −0.05 | 16.32 | 0.38 | 0.03 | 17.40 | 0.39 | −0.10 | 26.21 | 0.33 |
Cham P3M8 | 0.01 | 15.86 | 0.42 | −0.14 | 20.52 | 0.36 | −0.03 | 16.01 | 0.42 | 0.02 | 16.74 | 0.42 | −0.08 | 20.52 | 0.39 |
Cham P4M8 | 0.02 | 15.91 | 0.43 | −0.05 | 17.18 | 0.40 | 0.02 | 15.42 | 0.44 | 0.08 | 16.38 | 0.45 | 0.01 | 17.92 | 0.44 |
MLAs | 0.24 | 9.48 | 0.46 | 0.42 | 10.02 | 0.47 | - | - | - | 0.35 | 10.40 | 0.47 | 0.28 | 12.33 | 0.50 |
DDK8 | 0.27 | 11.11 | 0.44 | −0.05 | 13.79 | 0.39 | - | - | - | 0.20 | 13.54 | 0.44 | 0.06 | 14.61 | 0.42 |
not destriped | 0.07 | 14.63 | 0.45 | −0.12 | 18.91 | 0.35 | 0.08 | 13.42 | 0.41 | 0.21 | 18.32 | 0.45 | −0.10 | 25.10 | 0.38 |
CSR_M | JPL_M | GSFC_M | |||||||||||||
PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | |||||||
0.11 | 10.58 | 0.38 | −0.09 | 13.51 | 0.34 | −0.03 | 13.34 | 0.40 |
Destriping Filters | ITSG | CSR | COST-G | JPL | GFZ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | |
Duan P2M8 | 0.49 | 7.93 | 0.69 | 0.49 | 7.85 | 0.68 | 0.48 | 7.72 | 0.68 | 0.44 | 8.95 | 0.64 | 0.49 | 8.46 | 0.67 |
Duan P3M8 | 0.58 | 6.95 | 0.74 | 0.59 | 6.44 | 0.76 | 0.58 | 6.44 | 0.75 | 0.53 | 7.75 | 0.70 | 0.56 | 7.29 | 0.73 |
Duan P4M8 | 0.58 | 6.55 | 0.72 | 0.61 | 5.81 | 0.75 | 0.57 | 6.15 | 0.72 | 0.64 | 5.77 | 0.76 | 0.54 | 6.76 | 0.73 |
S&W P2M8 | 0.64 | 5.72 | 0.76 | 0.65 | 5.32 | 0.77 | 0.63 | 5.45 | 0.75 | 0.65 | 5.31 | 0.78 | 0.57 | 6.16 | 0.75 |
S&W P3M8 | 0.57 | 6.51 | 0.71 | 0.60 | 5.83 | 0.74 | 0.56 | 6.12 | 0.72 | 0.62 | 5.81 | 0.75 | 0.52 | 6.74 | 0.72 |
S&W P4M8 | 0.05 | 8.62 | 0.37 | 0.04 | 8.24 | 0.38 | 0.03 | 8.37 | 0.37 | 0.07 | 8.07 | 0.36 | 0.08 | 8.55 | 0.41 |
Cham P2M8 | 0.06 | 13.67 | 0.35 | −0.18 | 18.50 | 0.19 | 0.03 | 13.59 | 0.33 | 0.27 | 13.44 | 0.47 | −0.11 | 24.49 | 0.22 |
Cham P3M8 | 0.07 | 13.56 | 0.37 | −0.17 | 18.91 | 0.19 | 0.03 | 13.27 | 0.33 | 0.16 | 13.19 | 0.42 | −0.13 | 18.33 | 0.26 |
Cham P4M8 | 0.06 | 13.63 | 0.36 | 0.00 | 14.69 | 0.31 | 0.09 | 12.48 | 0.39 | 0.27 | 12.50 | 0.50 | −0.01 | 15.22 | 0.34 |
MLAs | 0.18 | 8.30 | 0.49 | 0.48 | 6.04 | 0.67 | - | - | - | 0.36 | 6.87 | 0.60 | 0.11 | 10.07 | 0.45 |
DDK8 | 0.45 | 6.87 | 0.68 | −0.04 | 10.64 | 0.32 | - | - | - | 0.41 | 8.14 | 0.64 | 0.08 | 10.34 | 0.44 |
not destriped | −0.01 | 12.68 | 0.36 | −0.15 | 17.12 | 0.23 | 0.09 | 9.73 | 0.42 | 0.47 | 13.87 | 0.56 | −0.21 | 23.39 | 0.23 |
CSR_M | JPL_M | GSFC_M | |||||||||||||
PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | |||||||
0.16 | 7.41 | 0.45 | 0.06 | 8.94 | 0.41 | 0.00 | 9.02 | 0.41 |
Destriping Filters | ITSG | CSR | COST-G | JPL | GFZ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | |
Duan P2M8 | 0.26 | 13.96 | 0.48 | 0.20 | 14.53 | 0.45 | 0.23 | 14.25 | 0.46 | 0.13 | 15.87 | 0.44 | 0.31 | 15.17 | 0.48 |
Duan P3M8 | 0.47 | 12.03 | 0.55 | 0.43 | 12.46 | 0.51 | 0.47 | 12.29 | 0.52 | 0.32 | 13.87 | 0.49 | 0.51 | 13.32 | 0.54 |
Duan P4M8 | 0.65 | 9.52 | 0.64 | 0.64 | 10.16 | 0.59 | 0.64 | 10.13 | 0.59 | 0.55 | 10.50 | 0.56 | 0.64 | 11.34 | 0.61 |
S&W P2M8 | 0.60 | 10.14 | 0.57 | 0.53 | 10.92 | 0.51 | 0.57 | 10.80 | 0.52 | 0.43 | 11.54 | 0.47 | 0.57 | 11.89 | 0.55 |
S&W P3M8 | 0.68 | 9.44 | 0.65 | 0.65 | 10.13 | 0.59 | 0.67 | 10.09 | 0.60 | 0.57 | 10.40 | 0.57 | 0.66 | 11.16 | 0.61 |
S&W P4M8 | 0.38 | 10.65 | 0.49 | 0.32 | 11.33 | 0.43 | 0.36 | 11.15 | 0.45 | 0.29 | 11.21 | 0.41 | 0.42 | 12.01 | 0.50 |
Cham P2M8 | -0.02 | 17.43 | 0.41 | −0.14 | 21.52 | 0.38 | −0.07 | 18.08 | 0.38 | −0.04 | 19.40 | 0.37 | −0.09 | 27.37 | 0.36 |
Cham P3M8 | -0.01 | 17.52 | 0.42 | −0.12 | 21.80 | 0.39 | −0.04 | 17.78 | 0.42 | −0.02 | 18.68 | 0.41 | −0.06 | 21.97 | 0.42 |
Cham P4M8 | 0.00 | 17.57 | 0.43 | −0.06 | 18.83 | 0.41 | 0.00 | 17.27 | 0.44 | 0.03 | 18.40 | 0.43 | 0.02 | 19.60 | 0.45 |
MLAs | 0.24 | 11.39 | 0.42 | 0.38 | 12.44 | 0.40 | - | - | - | 0.33 | 12.71 | 0.41 | 0.32 | 14.21 | 0.48 |
DDK8 | 0.21 | 13.49 | 0.38 | −0.06 | 15.78 | 0.38 | - | - | - | 0.14 | 15.99 | 0.39 | 0.05 | 16.79 | 0.39 |
not destriped | 0.08 | 16.27 | 0.45 | −0.11 | 20.30 | 0.38 | 0.07 | 15.54 | 0.38 | 0.13 | 20.41 | 0.43 | −0.06 | 26.28 | 0.41 |
CSR_M | JPL_M | GSFC_M | |||||||||||||
PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | |||||||
0.10 | 12.81 | 0.33 | −0.12 | 15.81 | 0.31 | −0.03 | 15.60 | 0.37 |
References
- Matsuo, K.; Heki, K. Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth Planet. Sci. Lett. 2010, 290, 30–36. [Google Scholar] [CrossRef]
- Xiang, L.W.; Wang, H.S.; Steffen, H.; Wu, P.; Jia, L.L.; Jiang, L.M.; Shen, Q. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data. Earth Planet. Sci. Lett. 2016, 449, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Swenson, S.; Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33, L08402. [Google Scholar] [CrossRef]
- Jekeli, C. Alternative methods to smooth the Earth’s gravity field. In Report No. 327, Reports of the Department of Geodetic Science and Surveying; Ohio State University: Columbus, OH, USA, 1981. [Google Scholar]
- Kusche, J.; Schmidt, R.; Petrovic, S.; Rietbroek, R. Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. J. Geodesy 2009, 83, 903–913. [Google Scholar] [CrossRef] [Green Version]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Wiese, D.N.; Landerer, F.W.; Long, D.; Longuevergne, L.; Chen, J.L. Global evaluation of new GRACE mascon products for hydrologic applications. Water Resour. Res. 2016, 52, 9412–9429. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Sun, A.; Schmied, H.M.; van Beek, L.P.H.; Wiese, D.N.; Wada, Y.; Long, D.; Reedy, R.C.; et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl. Acad. Sci. USA 2018, 115, E1080–E1089. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Halpenny, J.; van der Wal, W.; Klatt, C.; James, T.; Rivera, A. Detectability of groundwater storage change within the Great Lakes Water Basin using GRACE. J. Geophys. Res. 2012, 117, 08401. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Jia, L.; Steffen, H.; Wu, P.; Jiang, L.; Hsu, H.; Xiang, L.; Wang, Z.; Hu, B. Increased water storage in North America and Scandinavia from GRACE gravity data. Nat. Geosci. 2013, 6, 38–42. [Google Scholar] [CrossRef]
- Bonin, J.A.; Chambers, D.P. Quantifying the resolution level where the GRACE satellites can separate Greenland’s glacial mass balance from surface mass balance. Cryosphere 2015, 9, 1761–1772. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Shum, C.K.; Zhong, M.; Pan, Y. Groundwater Storage Changes in China from Satellite Gravity: An Overview. Remote. Sens. 2018, 10, 674. [Google Scholar] [CrossRef] [Green Version]
- Jing, W.; Zhang, P.; Zhao, X. A comparison of different GRACE solutions in terrestrial water storage trend estimation over Tibetan Plateau. Sci. Rep. 2019, 9, 1765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erkan, K.; Shum, C.K.; Wang, L.; Guo, J.; Jekeli, C.; Lee, H.; Panero, W.R.; Duan, J.; Huang, Z.; Wang, H. Geodetic Constraints on the Qinghai-Tibetan Plateau Present-Day Geophysical Processes. Terr. Atmospheric Ocean. Sci. 2011, 22, 241–253. [Google Scholar] [CrossRef] [Green Version]
- Yi, S.; Sun, W. Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models. J. Geophys. Res. Solid Earth 2014, 119, 2504–2517. [Google Scholar] [CrossRef]
- Jiao, J.J.; Zhang, X.; Liu, Y.; Kuang, X. Increased Water Storage in the Qaidam Basin, the North Tibet Plateau from GRACE Gravity Data. PLoS ONE 2015, 10, e0141442. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Shen, W.-B.; Hwang, C.; Liao, C.-M.; Zhang, T.; Zhang, G. Seasonal Mass Changes and Crustal Vertical Deformations Constrained by GPS and GRACE in Northeastern Tibet. Sensors 2016, 16, 1211. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Mu, D.; Liu, X.; Yan, H.; Sun, Z. Water Storage Changes over the Tibetan Plateau Revealed by GRACE Mission. Acta Geophys. 2016, 64, 463–476. [Google Scholar] [CrossRef] [Green Version]
- Zou, F.; Tenzer, R.; Jin, S. Water Storage Variations in Tibet from GRACE, ICESat, and Hydrological Data. Remote. Sens. 2019, 11, 1103. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhao, N.; Guo, J.; Sun, Y.; Guo, B.; Mou, N. Equivalent water height changes over Qinghai-Tibet Plateau determined from GRACE with an independent component analysis approach. Arab. J. Geosci. 2020, 13, 179. [Google Scholar] [CrossRef]
- Loomis, B.D.; Richey, A.S.; Arendt, A.A.; Appana, R.; Deweese, Y.-J.C.; Forman, B.A.; Kumar, S.V.; Sabaka, T.J.; Shean, D.E. Water Storage Trends in High Mountain Asia. Front. Earth Sci. 2019, 7, 235. [Google Scholar] [CrossRef]
- Duan, X.J.; Guo, J.Y.; Shum, C.K.; van der Wal, W. On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions. Journal of Geodesy 2009, 83, 1095–1106. [Google Scholar] [CrossRef] [Green Version]
- Chambers, D.P. Evaluation of new GRACE time-variable gravity data over the ocean. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Bettadpur, S. UTCSR Level-2 Processing Standards Document for Level-2 Product Release 0005; GRACE 327-742, CSR-GR-12-xx; Center for Space Research University: Austin, TX, USA, 2012; p. 17. [Google Scholar]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Oelke, C.; Zhang, T. Modeling the Active-Layer Depth over the Tibetan Plateau. Arct. Antarct. Alp. Res. 2007, 39, 714–722. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.Q.; Yao, T.D.; Xie, H.J.; Kang, S.C.; Lei, Y.B. Increased mass over the Tibetan Plateau: From lakes or glaciers? Geophys. Res. Lett. 2013, 40, 2125–2130. [Google Scholar] [CrossRef]
- Gardner, A.S.; Moholdt, G.; Graham Cogley, J.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Tad Pfeffer, W.; Kaser, G.; et al. A reconciled es-timate of glacier contributions to sea level rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Farinotti, D.; Longuevergne, L.; Moholdt, G.; Duethmann, D.; Mölg, T.; Bolch, T.; Vorogushyn, S.; Güntner, A. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci. 2015, 8, 716–722. [Google Scholar] [CrossRef]
- Crétaux, J.-F.; Arsen, A.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Bergé-Nguyen, M.; Gennero, M.-C.; Nino, F.; Del Rio, R.A.; Cazenave, A.; et al. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Adv. Space Res. 2011, 47, 1497–1507. [Google Scholar] [CrossRef]
- Bi, H.; Ma, J.; Zheng, W.; Zeng, J. Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau. J. Geophys. Res. Atmos. 2016, 121, 2658–2678. [Google Scholar] [CrossRef] [Green Version]
- Deng, M.; Meng, X.; Ma, Y.; An, Y. Analysis on soil moisture characteristics of tibetan plateau based on GLDAS. J. Arid. Meteorol. 2018, 36, 595–602. [Google Scholar]
- Zhang, G.; Yao, T.; Shum, C.K.; Yi, S.; Yang, K.; Xie, H.; Feng, W.; Bolch, T.; Wang, L.; Behrangi, A.; et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett. 2017, 44, 5550–5560. [Google Scholar] [CrossRef]
- Chao, N.; Chen, G.; Li, J.; Xiang, L.; Wang, Z.; Tian, K. Groundwater Storage Change in the Jinsha River Basin from GRACE, Hydrologic Models, and In Situ Data. Ground Water 2020, 58 5, 5,735–748. [Google Scholar] [CrossRef]
- Qiao, B.; Nie, B.; Liang, C.; Xiang, L.; Zhu, L. Spatial Difference of Terrestrial Water Storage Change and Lake Water Storage Change in the Inner Tibetan Plateau. Remote. Sens. 2021, 13, 1984. [Google Scholar] [CrossRef]
- Kvas, A.; Behzadpour, S.; Ellmer, M.; Klinger, B.; Strasser, S.; Zehentner, N.; Mayer-Gürr, T. ITSG-Grace2018: Overview and evaluation of a new GRACE-only gravity field time series. J. Geophys. Res. Solid Earth 2019, 124, 9332–9344. [Google Scholar] [CrossRef] [Green Version]
- Meyer, U.; Jaeggi, A.; Dahle, C.; Flechtner, F.; Kvas, A.; Behzadpour, S.; Mayer-Gürr, T.; Lemoine, J.M.; Bourgogne, S. International Combination Service for Time-variable Gravity Fields (COST-G) Monthly GRACE Series. GFZ Data Serv. 2020. [Google Scholar] [CrossRef]
- Watkins, M.M.; Yuan, D.N. JPL Level-2 Processing Standards Document for Level-2 Product Release 05.1; Jet Propulsion Laboratory–JPL, California Institute of Technology: Pasadena, CA, USA, 2014; Available online: http://icgem.gfz-potsdam.de/L2-JPL_ProcStds_v5.1.pdf (accessed on 27 October 2021).
- Dahle, C.; Flechtner, F.; Gruber, C.; König, D.; König, R.; Michalak, G.; Neumeyer, K.H. GFZ GRACE Level-2 Processing Standards Document for Level-2 Product Release 0005; Scientific Technical Report-Data; Deutsches GeoForschungsZentrum GFZ: Potsdam, Germany, 2012; Volume 12, Available online: https://gfzpublic.gfz-potsdam.de/pubman/faces/ViewItemFullPage.jsp?itemId=item_108022_6 (accessed on 27 October 2021).
- Chen, Q.; Shen, Y.; Zhang, X.; Chen, W.; Hsu, H. Tongji-GRACE01: A GRACE-only static gravity field model recovered from GRACE Level-1B data using modified short arc approach. Adv. Space Res. 2015, 56, 941–951. [Google Scholar] [CrossRef]
- Guo, X.; Zhao, Q.; Ditmar, P.; Liu, J. A new time-series of GRACE monthly gravity field solutions obtained by accounting for the colored noise in the K-Band range-rate measurements. GFZ Data Serv. 2017. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, Z.; Luo, Z. A New Hybrid Processing Strategy to Improve Temporal Gravity Field Solution. J. Geophys. Res. Solid Earth 2019, 124, 9415–9432. [Google Scholar] [CrossRef]
- Lemoine, J.M.; Biancale, R.; Reinquin, F.; Bourgogne, S.; Gégout, P. CNES/GRGS RL04 Earth gravity field models, from GRACE and SLR data. GFZ Data Serv. 2019. [Google Scholar] [CrossRef]
- Wang, C.Q.; Xu, H.Z.; Zhong, M.; Feng, W.; Ran, J.J.; Yang, F. An investigation on GRACE temporal gravity field recovery using the dynamic approach. Chin. J. Geophys. 2015, 58, 756–766. [Google Scholar]
- Meyer, U.; Jäggi, A.; Jean, Y.; Beutler, G. AIUB-RL02: An improved time-series of monthly gravity fields from GRACE data. Geophys. J. Int. 2016, 205, 1196–1207. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Xia, Z.; Sun, Z.; Pang, Z. Application of an Improved Dynamic Method Baseline Method to Satellite Gravtimetry Data Processing. Geomat. Inf. Sci. Wuhan Univ. 2011, 36, 280–284. [Google Scholar]
- Peltier, W.R.; Argus, D.F.; Drummond, R. Space geodesy constrains ice-age ter-minal deglaciation: The global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth 2015, 120, 450–487. [Google Scholar] [CrossRef] [Green Version]
- Watkins, M.M.; Wiese, D.N.; Yuan, D.-N.; Boening, C.; Landerer, F.W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- Loomis, B.D.; Luthcke, S.B.; Sabaka, T.J. Regularization and error characterization of GRACE mascons. J. Geod. 2019, 93, 1381–1398. [Google Scholar] [CrossRef]
- Zhong, B.; Li, Q.; Chen, J.; Luo, Z.; Zhou, H. Improved Estimation of Regional Surface Mass Variations from GRACE Intersatellite Geopotential Differences Using a Priori Constraints. Remote. Sens. 2020, 12, 2553. [Google Scholar] [CrossRef]
- Landerer, F. Monthly Estimates of Degree-1 (Geocenter) Gravity Coefficients, Generated from GRACE (04-2002-06/2017) and GRACE—FO (06/2018 onward) RL06 Solutions, GRACE Technical Note 13, The GRACE Project, NASA Jet Propulsion Laboratory. 2021. Available online: https://podaac-tools.jpl.nasa.gov/drive/files/allData/grace/docs/TN-13_GEOC_CSR_RL06.txt (accessed on 13 June 2021).
- Loomis, B.D.; Rachlin, K.E.; Wiese, D.N.; Landerer, F.W.; Luthcke, S.B. Replacing GRACE/GRACE-FO C30 With Satellite Laser Ranging: Impacts on Antarctic Ice Sheet Mass Change. Geophys. Res. Lett. 2020, 47, e2019GL085488. [Google Scholar] [CrossRef]
- Xiang, L.; Wang, H.; Jia, L. The variability of terrestrial water storage changes in the tibetan plateau and adjacent areas retrieved by GRACE data. J. Geod. Geodyn. 2017, 37, 311–318. [Google Scholar]
- Piretzidis, D.; Sra, G.; Karantaidis, G.; Sideris, M.G.; Kabirzadeh, H. Identifying presence of correlated errors using machine learning algorithms for the selective de-correlation of GRACE harmonic coefficients. Geophys. J. Int. 2018, 215, 375–388. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Wang, H.; Xiang, L.; Jia, L.; Jiang, L.; Wang, Z.; Hu, B.; Gao, P. Load Love numbers and Green’s functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0. Comput. Geosci. 2012, 49, 190–199. [Google Scholar] [CrossRef]
- Li, X.D.; Long, D.; Huang, Q.; Han, P.F.; Zhao, F.Y.; Wada, Y. A High Temporal Resolution Lake Data Set from Multisource Altimetric Missions and Landsat Archives of Water Level and Storage Changes on the Tibetan Plateau during 2000–2017. Pangaea 2019. Available online: https://doi.pangaea.de/10.1594/PANGAEA.898411 (accessed on 14 January 2021).
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Save, H.; Bettadpur, S.; Tapley, B.D. Reducing errors in the GRACE gravity solutions using regularization. J. Geodesy 2012, 86, 695–711. [Google Scholar] [CrossRef]
- Boergens, E.; Güntner, A.; Dobslaw, H.; Dahle, C. Quantifying the Central European droughts in 2018 and 2019 with GRACE Follow-On. Geophys. Res. Lett. 2020, 47, e2020GL087285. [Google Scholar] [CrossRef]
- Velicogna, I.; Mohajerani, Y.; Geruo, A.; Landerer, F.; Mouginot, J.; Noel, B.; Rignot, E.; Sutterley, T.; Broeke, M.V.D.; Wessem, M.; et al. Continuity of Ice Sheet Mass Loss in Greenland and Antarctica From the GRACE and GRACE Follow-On Missions. Geophys. Res. Lett. 2020, 47, 2020-087291. [Google Scholar] [CrossRef] [Green Version]
- Jacob, T.; Wahr, J.M.; Pfeffer, W.T.; Swenson, S.C. Recent contributions of glaciers and ice caps to sea level rise. Nature 2012, 482, 514–518. [Google Scholar] [CrossRef]
- Mu, Y.; Liu, X.; Wang, L. A Pearson’s correlation coefficient based decision tree and its parallel implementation. Inf. Sci. 2018, 435, 40–58. [Google Scholar] [CrossRef]
- Willmott, C.J. Some Comments on the Evaluation of Model Performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
Reference | GRACE Solution/Model | Time Span | Destriping Filter | Smoothing Filter | Shown in Figures | Anomalies |
---|---|---|---|---|---|---|
Matsuo and Heki [1] | CSR SH RL04 | 05/2003-04/2009 | Cham P5M11 | G400 | 3(b) | 1, E/N |
Erkan et al. [14] | CSR SH RL04 | 01/2003-12/2009 | Duan P2M? | G300 | 8 | 2, E/N |
Yi and Sun [15] | CSR SH RL05 | 01/2003-12/2012 | Cham P4M6 | G300 | 6(a) | 1, W/N |
Jiao et al. [16] | JPL Level-3 | 01/2003-12/2012 | S&W P?M? | G300 | 1 | 1, E/N |
Xiang et al. [2] | 3 SH models | 01/2003-12/2009 | S&W P2M8 | G340 | A.3(a) | 1, E/N |
Pan et al. [17] | CSR SH RL05 | 04/2002-12/2014 | Cham P4M6 | G350 | 3 | 1, W/N |
Guo et al. [18] | GRGS SH RL03 | 01/2003-12/2012 | – | G300 | 3(d) | 3, E/N |
Feng et al. [12] | CSR SH RL05 | 04/2002-12/2014 | – | G100 | 12(c) | 5, W/N, E/N, M/N, M/S, E/S |
Zou er al. [19] | CSR SH RL05 | 08/2002-12/2016 | Cham P4M6 | G250 | 3(a) | 2, W/N |
Jing et al. [13] | 3 SH models | 01/2003-12/2016 | – | LOESS | 5(a-c) | 1, M/N |
Liu et al. [20] | GRGS SH RL03 | 01/2003-12/2014 | – | G250 | 6(d) | 3, M/N, M/S, M/M |
Jing et al. [13] | JPL_M | 01/2003-12/2016 | – | – | 5(d) | 1, M/N |
Jing et al. [13] | CSR_M | 01/2003-12/2016 | – | – | 5(e) | 3, M/N |
Loomis et al. [21] | GSFC_M | 01/2003-07/2016 | – | – | 2(a) | 1, M/N |
Destriping Filters | ITSG | CSR | COST-G | JPL | GFZ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | |
Duan P2M8 | 0.39 | 9.79 | 0.60 | 0.35 | 10.16 | 0.57 | 0.37 | 9.91 | 0.58 | 0.29 | 11.52 | 0.54 | 0.41 | 10.85 | 0.59 |
Duan P3M8 | 0.56 | 7.96 | 0.69 | 0.54 | 8.08 | 0.67 | 0.55 | 7.95 | 0.68 | 0.44 | 9.65 | 0.61 | 0.57 | 9.07 | 0.66 |
Duan P4M8 | 0.66 | 5.81 | 0.79 | 0.67 | 5.95 | 0.77 | 0.65 | 6.10 | 0.76 | 0.63 | 6.22 | 0.75 | 0.63 | 7.36 | 0.73 |
S&W P2M8 | 0.66 | 5.89 | 0.76 | 0.62 | 6.38 | 0.71 | 0.64 | 6.33 | 0.71 | 0.56 | 6.90 | 0.68 | 0.61 | 7.52 | 0.70 |
S&W P3M8 | 0.68 | 5.72 | 0.79 | 0.67 | 5.94 | 0.76 | 0.66 | 6.05 | 0.76 | 0.63 | 6.16 | 0.75 | 0.64 | 7.21 | 0.74 |
S&W P4M8 | 0.25 | 7.79 | 0.52 | 0.21 | 8.07 | 0.49 | 0.22 | 8.01 | 0.49 | 0.20 | 7.90 | 0.47 | 0.28 | 8.70 | 0.53 |
Cham P2M8 | 0.02 | 14.57 | 0.39 | −0.17 | 19.23 | 0.30 | −0.02 | 14.92 | 0.37 | 0.11 | 15.67 | 0.41 | −0.11 | 25.32 | 0.29 |
Cham P3M8 | 0.03 | 14.57 | 0.41 | −0.15 | 19.58 | 0.31 | −0.01 | 14.60 | 0.41 | 0.07 | 15.11 | 0.43 | −0.10 | 19.40 | 0.36 |
Cham P4M8 | 0.03 | 14.63 | 0.41 | −0.03 | 15.88 | 0.38 | 0.04 | 13.93 | 0.44 | 0.15 | 14.64 | 0.46 | 0.01 | 16.58 | 0.42 |
MLAs | 0.23 | 8.14 | 0.50 | 0.45 | 7.91 | 0.56 | - | - | - | 0.37 | 8.45 | 0.54 | 0.24 | 10.89 | 0.50 |
DDK8 | 0.34 | 9.03 | 0.53 | −0.05 | 12.17 | 0.39 | - | - | - | 0.28 | 11.31 | 0.50 | 0.07 | 12.70 | 0.44 |
not destriped | 0.04 | 13.41 | 0.43 | −0.13 | 17.88 | 0.32 | 0.08 | 11.62 | 0.43 | 0.30 | 16.48 | 0.48 | −0.14 | 24.21 | 0.33 |
CSR_M | JPL_M | GSFC_M | |||||||||||||
PCC | RMSE | IOA | PCC | RMSE | IOA | PCC | RMSE | IOA | |||||||
0.13 | 8.75 | 0.42 | −0.04 | 11.48 | 0.37 | −0.02 | 11.37 | 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, L.; Wang, H.; Steffen, H.; Qiao, B.; Feng, W.; Jia, L.; Gao, P. Determination of Weak Terrestrial Water Storage Changes from GRACE in the Interior of the Tibetan Plateau. Remote Sens. 2022, 14, 544. https://doi.org/10.3390/rs14030544
Xiang L, Wang H, Steffen H, Qiao B, Feng W, Jia L, Gao P. Determination of Weak Terrestrial Water Storage Changes from GRACE in the Interior of the Tibetan Plateau. Remote Sensing. 2022; 14(3):544. https://doi.org/10.3390/rs14030544
Chicago/Turabian StyleXiang, Longwei, Hansheng Wang, Holger Steffen, Baojin Qiao, Wei Feng, Lulu Jia, and Peng Gao. 2022. "Determination of Weak Terrestrial Water Storage Changes from GRACE in the Interior of the Tibetan Plateau" Remote Sensing 14, no. 3: 544. https://doi.org/10.3390/rs14030544
APA StyleXiang, L., Wang, H., Steffen, H., Qiao, B., Feng, W., Jia, L., & Gao, P. (2022). Determination of Weak Terrestrial Water Storage Changes from GRACE in the Interior of the Tibetan Plateau. Remote Sensing, 14(3), 544. https://doi.org/10.3390/rs14030544