FIgLib & SmokeyNet: Dataset and Deep Learning Model for Real-Time Wildland Fire Smoke Detection
Abstract
:1. Introduction
2. Related Work
3. Data
3.1. FIgLib Dataset
3.2. Data Preparation
4. Methods
4.1. Tiling
4.2. Smokeynet Architecture
4.3. Loss
5. Experiments
5.1. Comparable Baselines
5.2. Training Details
5.3. Evaluation Metrics
6. Results
6.1. Experimental Results
6.2. Performance Visualization
6.3. Human Performance Baseline
7. Discussion
7.1. Innovations in the SmokeyNet Architecture
7.2. Comparison of FIgLib to Previous Datasets
7.3. Comparison of SmokeyNet Performance to Previous Work
7.4. Planned Future Work
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Summary of Hyperlinks
- FIgLib Dataset: http://hpwren.ucsd.edu/HPWREN-FIgLib/, (accessed on 16 December 2021)
- Cross-Validation Splits of FIgLib Dataset: https://gitlab.nrp-nautilus.io/-/snippets/63, (accessed on 16 December 2021)
- Codebase for SmokeyNet & Related Experiments: https://gitlab.nrp-nautilus.io/anshumand/pytorch-lightning-smoke-detection, (accessed on 16 December 2021)
- Visualization of SmokeyNet Performance: https://youtu.be/cvXQJao3m1k, (accessed on 16 December 2021)
- HPWREN Archive: http://c1.hpwren.ucsd.edu/archive/, (accessed on 16 December 2021)
Appendix B. Binary Cross-Entropy Loss Equations
Appendix C. Experimental Architecture Details
References
- Wang, D.; Guan, D.; Zhu, S.; Kinnon, M.M.; Geng, G.; Zhang, Q.; Zheng, H.; Lei, T.; Shao, S.; Gong, P.; et al. Economic footprint of California wildfires in 2018. Nat. Sustain. 2021, 4, 252–260. [Google Scholar] [CrossRef]
- Govil, K.; Welch, M.L.; Ball, J.T.; Pennypacker, C.R. Preliminary Results from a Wildfire Detection System Using Deep Learning on Remote Camera Images. Remote Sens. 2020, 12, 166. [Google Scholar] [CrossRef] [Green Version]
- Ko, B.C.; Kwak, J.Y.; Nam, J.Y. Wildfire smoke detection using temporospatial features and random forest classifiers. Opt. Eng. 2012, 51, 017208. [Google Scholar] [CrossRef]
- Jeong, M.; Park, M.; Nam, J.; Ko, B.C. Light-Weight Student LSTM for Real-Time Wildfire Smoke Detection. Sensors 2020, 20, 5508. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Lang, C.; Li, Z.; Feng, S.; Wang, T. Recurrent convolutional network for video-based smoke detection. Multimed. Tools Appl. 2019, 78, 237–256. [Google Scholar] [CrossRef]
- Li, T.; Zhao, E.; Zhang, J.; Hu, C. Detection of Wildfire Smoke Images Based on a Densely Dilated Convolutional Network. Electronics 2019, 8, 1131. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Tran, D.Q.; Jung, D.; Park, S. Wildfire-Detection Method Using DenseNet and CycleGAN Data Augmentation-Based Remote Camera Imagery. Remote Sens. 2020, 12, 3715. [Google Scholar] [CrossRef]
- Zhang, Q.X.; Lin, G.H.; Zhang, Y.M.; Xu, G.; Wang, J.J. Wildland Forest Fire Smoke Detection Based on Faster R-CNN using Synthetic Smoke Images. Procedia Eng. 2018, 211, 441–446. [Google Scholar] [CrossRef]
- Yuan, F.; Zhang, L.; Xia, X.; Wan, B.; Huang, Q.; Li, X. Deep smoke segmentation. Neurocomputing 2019, 357, 248–260. [Google Scholar] [CrossRef]
- Ho, C.C. Machine vision-based real-time early flame and smoke detection. Meas. Sci. Technol. 2009, 20, 045502. [Google Scholar] [CrossRef]
- Toreyin, B.U.; Cetin, A.E. Wildfire detection using LMS based active learning. In Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASP-09), Taipei, Taiwan, 19–24 April 2009; pp. 1461–1464. [Google Scholar]
- Genovese, A.; Labati, R.D.; Piuri, V.; Scotti, F. Wildfire smoke detection using computational intelligence techniques. In Proceedings of the 2011 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings, Ottawa, ON, Canada, 19–21 September 2011; pp. 1–6. [Google Scholar]
- Luo, Y.; Zhao, L.; Liu, P.; Huang, D. Fire smoke detection algorithm based on motion characteristic and convolutional neural networks. Multimed. Tools Appl. 2018, 77, 15075–15092. [Google Scholar] [CrossRef]
- Pundir, A.S.; Raman, B. Dual Deep Learning Model for Image Based Smoke Detection. Fire Technol. 2019, 55, 2419–2442. [Google Scholar] [CrossRef]
- Ba, R.; Chen, C.; Yuan, J.; Song, W.; Lo, S. SmokeNet: Satellite Smoke Scene Detection Using Convolutional Neural Network with Spatial and Channel-Wise Attention. Remote Sens. 2019, 11, 1702. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Yang, F.; Tang, Q.; Lu, X. An Attention Enhanced Bidirectional LSTM for Early Forest Fire Smoke Recognition. IEEE Access 2019, 7, 154732–154742. [Google Scholar] [CrossRef]
- Khan, S.; Muhammad, K.; Hussain, T.; Del Ser, J.; Cuzzolin, F.; Bhattacharyya, S.; Akhtar, Z.; de Albuquerque, V.H.C. DeepSmoke: Deep learning model for smoke detection and segmentation in outdoor environments. Expert Syst. Appl. 2021, 182, 115125. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, L.; Wu, P.; Gao, C.; Sun, L. Detection of Wildfires along Transmission Lines Using Deep Time and Space Features. Pattern Recognit. Image Anal. 2018, 28, 805–812. [Google Scholar] [CrossRef]
- Li, X.; Chen, Z.; Wu, Q.J.; Liu, C. 3D Parallel Fully Convolutional Networks for Real-Time Video Wildfire Smoke Detection. IEEE Trans. Circuits Syst. Video Technol. 2018, 30, 89–103. [Google Scholar] [CrossRef]
- Jindal, P.; Gupta, H.; Pachauri, N.; Sharma, V.; Verma, O.P. Real-Time Wildfire Detection via Image-Based Deep Learning Algorithm. In Soft Computing: Theories and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 539–550. [Google Scholar]
- Gupta, T.; Liu, H.; Bhanu, B. Early Wildfire Smoke Detection in Videos. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR-20), Milan, Italy, 10–15 January 2021; pp. 8523–8530. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR-16), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS-15), Montreal, QC, Canada, 7–12 December 2015; Volume 28, pp. 91–99. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS-12), Stateline, NV, USA, 3–8 December 2012; pp. 1097–1105. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the International Conference on Learning Representations (ICLR-21), Virtual Event, 3–7 May 2021. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR-09), Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR-16), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Wei, S.E.; Ramakrishna, V.; Kanade, T.; Sheikh, Y. Convolutional Pose Machines. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4724–4732. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV-19), Seoul, Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR-17), Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the International Conference on Machine Learning (ICML-19), PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training data-efficient image transformers & distillation through attention. In Proceedings of the International Conference on Machine Learning (ICML-21), PMLR, Virtual Event, 18–24 July 2021; pp. 10347–10357. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Tran, D.; Wang, H.; Torresani, L.; Ray, J.; LeCun, Y.; Paluri, M. A Closer Look at Spatiotemporal Convolutions for Action Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR-18), Salt Lake City, UT, USA, 18–23 June 2018; pp. 6450–6459. [Google Scholar]
- Zivkovic, Z. Improved adaptive Gaussian mixture model for background subtraction. In Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004), Cambridge, UK, 26 August 2004; Volume 2, pp. 28–31. [Google Scholar]
- Zivkovic, Z.; Van Der Heijden, F. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognit. Lett. 2006, 27, 773–780. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV-17), Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Barnich, O.; Van Droogenbroeck, M. ViBe: A Universal Background Subtraction Algorithm for Video Sequences. IEEE Trans. Image Process. 2010, 20, 1709–1724. [Google Scholar] [CrossRef] [Green Version]
- Caron, M.; Touvron, H.; Misra, I.; Jégou, H.; Mairal, J.; Bojanowski, P.; Joulin, A. Emerging Properties in Self-Supervised Vision Transformers. arXiv 2021, arXiv:2104.14294. [Google Scholar]
- Pan, H.; Badawi, D.; Cetin, A.E. Fourier Domain Pruning of MobileNet-V2 with Application to Video Based Wildfire Detection. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR-20), Milan, Italy, 10–15 January 2021; pp. 1015–1022. [Google Scholar]
- Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531. [Google Scholar]
Model | # Fires | # Images |
---|---|---|
Train | 144 | 11.3 K |
Validation | 64 | 4.9 K |
Test | 62 | 4.9 K |
Omitted | 45 | 3.7 K |
Total | 315 | 24.8 K |
Model | Params (M) | Time (ms/it) | A | F1 | P | R | TTD (mins) |
---|---|---|---|---|---|---|---|
Variants of SmokeyNet: | |||||||
ResNet34 + LSTM + ViT | 56.9 | 51.6 | 83.49 | 82.59 | 89.84 | 76.45 | 3.12 |
ResNet34 + LSTM + ViT (3 frames) | 56.9 | 80.3 | 83.62 | 82.83 | 90.85 | 76.11 | 2.94 |
MobileNet + LSTM + ViT | 36.6 | 28.3 | 81.79 | 80.71 | 88.34 | 74.31 | 3.92 |
MobileNetFPN + LSTM + ViT | 40.4 | 32.5 | 80.58 | 80.68 | 82.36 | 79.12 | 2.43 |
EfficientNetB0 + LSTM + ViT | 52.3 | 67.9 | 82.55 | 81.68 | 88.45 | 75.89 | 3.56 |
TinyDeiT + LSTM + ViT | 22.9 | 45.6 | 79.74 | 79.01 | 84.25 | 74.44 | 3.61 |
ResNet34 (1 frame) | 22.3 | 29.7 | 79.40 | 78.90 | 81.62 | 76.58 | 2.81 |
ResNet34 + LSTM | 38.9 | 53.3 | 79.35 | 79.21 | 82.00 | 76.74 | 2.64 |
ResNet34 + ViT (1 frame) | 40.3 | 30.8 | 82.53 | 81.30 | 88.58 | 75.19 | 2.95 |
ResNet34 + Transformer + ViT | 58.9 | 50.6 | 82.74 | 81.39 | 90.69 | 73.95 | 3.18 |
ResNet34 + ResNet18-3D | 38.0 | 57.5 | 83.10 | 82.26 | 88.91 | 76.65 | 2.87 |
MobileNet + LSTM + ViT (MOG2) | 57.3 | 55.5 | 83.12 | 82.65 | 88.79 | 77.43 | 3.72 |
ResNet50 (1 frame) | 26.1 | 50.4 | 68.51 | 74.30 | 63.35 | 89.89 | 1.01 |
FasterRCNN (1 frame) | 41.3 | 55.6 | 71.56 | 66.92 | 81.34 | 56.88 | 5.01 |
MaskRCNN (1 frame) | 43.9 | 56.9 | 73.24 | 69.94 | 81.08 | 61.51 | 4.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dewangan, A.; Pande, Y.; Braun, H.-W.; Vernon, F.; Perez, I.; Altintas, I.; Cottrell, G.W.; Nguyen, M.H. FIgLib & SmokeyNet: Dataset and Deep Learning Model for Real-Time Wildland Fire Smoke Detection. Remote Sens. 2022, 14, 1007. https://doi.org/10.3390/rs14041007
Dewangan A, Pande Y, Braun H-W, Vernon F, Perez I, Altintas I, Cottrell GW, Nguyen MH. FIgLib & SmokeyNet: Dataset and Deep Learning Model for Real-Time Wildland Fire Smoke Detection. Remote Sensing. 2022; 14(4):1007. https://doi.org/10.3390/rs14041007
Chicago/Turabian StyleDewangan, Anshuman, Yash Pande, Hans-Werner Braun, Frank Vernon, Ismael Perez, Ilkay Altintas, Garrison W. Cottrell, and Mai H. Nguyen. 2022. "FIgLib & SmokeyNet: Dataset and Deep Learning Model for Real-Time Wildland Fire Smoke Detection" Remote Sensing 14, no. 4: 1007. https://doi.org/10.3390/rs14041007
APA StyleDewangan, A., Pande, Y., Braun, H. -W., Vernon, F., Perez, I., Altintas, I., Cottrell, G. W., & Nguyen, M. H. (2022). FIgLib & SmokeyNet: Dataset and Deep Learning Model for Real-Time Wildland Fire Smoke Detection. Remote Sensing, 14(4), 1007. https://doi.org/10.3390/rs14041007