Interseismic Fault Coupling and Slip Rate Deficit on the Central and Southern Segments of the Tanlu Fault Zone Based on Anhui CORS Measurements
Abstract
:1. Introduction
2. Tectonic Setting
3. Data and Methods
3.1. Data Processing
3.2. Modeling Approach
3.3. Block Definition and Fault Geometry
4. Results
4.1. Fault Coupling Ratios
4.2. Fault Slip Rate Deficit
4.3. Velocity Profiles Analysis
5. Discussion
5.1. Checkboard Tests
5.2. Comparison with Previous Studies
5.3. Strain Characteristics
5.4. Implication for Future Seismic Hazard
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GPS | Global Positioning System |
InSAR | Interferometric synthetic aperture radar |
AHCORS | Anhui Continuously Operating Reference System |
CMONOC | Crustal Movement Observation Network of China |
IGS | International GNSS Service |
VMF1 | Vienna Mapping Function 1 |
FES2004 | Finite 79 Element Solutions 2004 |
SOPAC | Scripps Orbits and Permanent Array Center |
ITRF2008 | International Terrestrial Reference Frame 2008 |
3D | Three-dimensional |
References
- Fang, Z.; Ding, M.; Ji, F.; Xiang, H. Geological analysis of the seismicity in the Tancheng-Lujiang fault zone, East China. Seismol. Geol. 1980, 2, 39–45. [Google Scholar]
- Zhang, P.; Gan, W.; Shen, Z.; Wang, M. A coupling model of rigid-block movement and continuous deformation: Patterns of the present-day formation of China’s continent and its vicinity. Acta Geol. Sin. 2005, 79, 748–756. [Google Scholar]
- Wu, D.; Zhang, Y.; Fang, Z.; Zhang, S. On the activity of the Tancheng-Lujiang fault zone in China. Seismol. Geol. 1981, 3, 15–26. [Google Scholar]
- Li, J.; Chao, H.; Cui, Z.; Zhao, Q. Seismic fault of the 1668 Tacheng earthquake (M = 8) and its fracture mechanism. Seismol. Geol. 1994, 16, 229–237. [Google Scholar]
- Gao, W.; Zheng, L. Active fault segmentation and the identification of potential seismic zones along the Tanlu fault. Earthq. Res. China 1991, 7, 87–91. (In Chinese) [Google Scholar]
- Wang, M.; Li, Q.; Wang, F.; Wang, Y.; Shi, H.; Zhang, P.; Shen, Z. Far-field coseismic displacements associated with the 2011 Tohoku-oki earthquake in Japan observed by Global Positioning System. Chin. Sci. Bull. 2011, 56, 2419–2424. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Shan, X.; Song, X.; Jiang, Y.; Gan, W.; Qu, C.; Wang, Z. Fault locking and slip rate deficit on the middle and southern segment of the Tancheng-Lujia fault inverted from GPS data. Chin. J. Geophys. 2016, 59, 4022–4034. (In Chinese) [Google Scholar]
- Meng, G.; Su, X.; Wu, W.; Nikolay, S.; Takahashi, H.; Ohzono, M.; Gerasimenko, M. Crustal deformation of Northeastern China following the 2011 Mw 9.0 Tohoku, Japan earthquake estimated from GPS observations: Strain heterogeneity and seismicity. Remote Sens. 2019, 11, 3029. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, Q.; Yang, S.; Qiao, X.; Nie, Z.; Zou, R.; Ding, K.; He, P.; Chen, G. Geodetic imaging mega-thrust coupling beneath the Himalaya. Tectonophysics 2018, 747–748, 225–238. [Google Scholar] [CrossRef]
- Liu, C.; Ji, L.; Zhu, L.; Zhao, C. InSAR-Constrained interseismic deformation and potential seismogenic asperities on the Altyn Tagh fault at 91.5–95° E, northern Tibetan plateau. Remote Sens. 2018, 10, 943. [Google Scholar] [CrossRef] [Green Version]
- Qiao, X.; Qu, C.; Shan, X.; Zhao, D.; Liu, L. Interseismic slip and coupling along the Haiyuan fault zone constrained by InSAR and GPS measurements. Remote Sens. 2021, 13, 3333. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, Z.; Niu, A.; Wu, Y.; Zhan, W.; Wei, W. Characteristics of fault locking and fault slip deficit in the main Himalaya thrust fault. Geomat. Inf. Sci. Wuhan Univ. 2017, 42, 1756–1764. [Google Scholar]
- Guo, L.; Ying, F. Primary study on horizontal deformation and tectonic activity using GPS results in northern part of North China. Earthq. Res. China 1998, 14, 11–19. (In Chinese) [Google Scholar]
- Xu, C.; Li, Z.; Wang, H. The temporal and spatial variation characteristics of crustal deformation of active tectonic blocks in north China. J. Geod. Geodyn. 2002, 22, 33–40. (In Chinese) [Google Scholar]
- Wang, W.; Yang, S.; Wang, Q. Crustal block rotations in Chinese mainland revealed by GPS measurements. Earthq. Sci. 2009, 22, 639–649. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, Y.; Zhang, F.; Chen, C.; Yin, H.; Jia, Y. Faults blocking characteristics and seismic hazard analysis in the middle and southern segments of the Tanlu Faults Zone. Acta Geol. Sin. 2020, 94, 467–479. [Google Scholar]
- Wang, M.; Shen, Z. Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J. Geophys. Res. 2020, 125, e2019JB018774. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Liu, C.; Kusky, T. Cenozoic evolution of the Tan-Lu Fault Zone (East China)-constrained from seismic data. Gondwana Res. 2015, 28, 1079–1095. [Google Scholar] [CrossRef]
- Jiang, R.; Cao, K.; Zeng, J.; Liu, K.; Li, C.; Wang, A.; Yu, J.; Peng, B.; Lao, J.; Zhao, L. Late Cenozoic tectonic evolution of the southern segment of the Tan-Lu fault zone, Eastern China. J. Asian Earth Sci. 2019, 182, 103932.1–103932.19. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, G.; Zhai, M.; Gu, C.; Liu, S. Quaternary faulting of the Jiangsu part of the Tan-Lu Fault Zone, East China: Evidence from field investigations and OSL dating. J. Asian Earth Sci. 2015, 114, 89–102. [Google Scholar] [CrossRef]
- Gilder, A.; Leloup, H.; Courtillot, V.; Chen, Y.; Coe, R.; Zhao, X.; Xiao, W.; Halim, N.; Cogné, J.; Zhu, R. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) fault via Middle Triassic to Early Cenozoic paleomagnetic data. J. Geophys. Res. 1999, 104, 365–375. [Google Scholar] [CrossRef]
- Tang, Y.; Shen, Z.; Lin, A.; Zhang, J. Extending of the Tancheng-Lujiang fault zone at the Anhui section and its neotectonic activity. Seismol. Geol. 1988, 2, 48–52. [Google Scholar]
- Zhu, G.; Hu, W.; Song, L.; Liu, B. Quaternary activity along the Tan-Lu fault zone in the Bohai Bay, East China: Evidence from seismic profiles. J. Asian Earth Sci. 2015, 114, 5–17. [Google Scholar] [CrossRef]
- Herring, T.; King, R.; McClusky, S. Documentation of the MIT GPS Analysis Software: GAMIT Release 10.4; Massachusetts Institute of Technology: Cambridge, MA, USA, 2010. [Google Scholar]
- Boehm, J.; Werl, B.; Schuh, H. Troposphere mapping functions for GPS and very-long baseline interferometry from European centre for medium-range weather forecasts operational analysis data. J. Geophys. Res. 2006, 111, 1–9. [Google Scholar] [CrossRef]
- Lyard, F.; Lefevre, F.; Letellier, T.; Francis, O. Modeling the Global Ocean Tides: Modern insights from FES2004. Ocean. Dyn. 2006, 56, 394–415. [Google Scholar] [CrossRef]
- McCaffrey, R. Block kinematics of the Pacific–North America plate boundary in the southwestern US from inversion of GPS, seismological, and geologic data. J. Geophys. Res. 2005, 110, B07401. [Google Scholar]
- McCaffrey, R.; Qamar, A.; King, R.; Wells, R.; Khazaradze, G.; Williams, C.; Stevens, C.; Vollick, J.; Zwick, P. Fault locking, block rotation and crustal deformation in the Pacific Northwest. Geophys. J. Int. 2007, 169, 1315–1340. [Google Scholar] [CrossRef] [Green Version]
- McCaffrey, R.; Long, M.; Goldfinger, C.; Zwick, P.; Nabelek, J.; Johnson, C.; Smith, C. Rotation and plate locking at the southern Cascadia subduction zone. Geophys. Res. Lett. 2000, 27, 3117–3120. [Google Scholar] [CrossRef]
- McCaffrey, R.; King, R.; Payne, S.; Lancaster, M. Active tectonics of northwestern U.S. inferred from GPS-derived surface velocities. J. Geophys. Res. 2013, 118, 709–723. [Google Scholar] [CrossRef] [Green Version]
- Manaker, D.; Calais, E.; Freed, A.; Ali, S.; Przybylski, P.; Mattioli, G.; Jansma, P.; Prépetit, C.; de Chabalier, J. Interseismic plate coupling and strain partitioning in the Northeastern Caribbean. Geophys. J. Int. 2008, 174, 889–903. [Google Scholar] [CrossRef]
- McCaffrey, R. Crustal Block Rotations and Plate Coupling. Plate Boundary Zones. 2002, 30, 101–122. [Google Scholar]
- Savage, J.; Gan, W.; Svarc, J. Strain accumulation and rotation in the Eastern California Shear Zone. J. Geophys. Res. 2001, 106, 21995–22007. [Google Scholar] [CrossRef]
- Mao, A.; Harrison, C.; Dixon, T. Noise in GPS coordinate time series. J. Geophys. Res. 1999, 104, 2797–2816. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Deng, Q.; Zhang, G.; Ma, J.; Gan, W.; Min, W.; Mao, F.; Wang, Q. Active tectonic blocks and strong earthquakes in the continent of China. Sci. China 2003, 46, 13–24. [Google Scholar]
- Deng, Q. China Active Tectonic Map (1:4,000,000); Seismological Press: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Zhou, C.; Diao, G.; Geng, J.; Li, Y.; Xu, P.; Hu, X.; Feng, X.; Li, D. 3-D characteristics inversion of hypocenter fault-plane of the 1668 Tancheng great earthquake. Prog. Geophys. 2013, 28, 2814–2824. (In Chinese) [Google Scholar]
- Guo, L.; Bo, W.; Yang, G.; Guo, H. Characteristics of horizontal deformation-strain field in north China from 1999 to 2009. J. Geod. Geodyn. 2011, 31, 15–19. (In Chinese) [Google Scholar]
- Payne, S.; McCaffrey, R.; King, R.; Kattenhorn, S. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements. Geophys. J. Int. 2012, 189, 101–122. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Xu, X.; Wei, L.; Wang, Q.; Shu, P. Evidence of long recurrence times and low slip rate along the 1668 Tancheng earthquake fault. Chin. Sci. Bull. 2019, 64, 1168–1178. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Tao, T.; Gao, F.; Qu, X.; Wang, Q. Interseismic coupling beneath the Sikkim-Bhutan Himalaya constrained by GPS measurements and its implication for strain segmentation and seismic activity. Remote Sens. 2020, 12, 2202. [Google Scholar] [CrossRef]
- Li, Y.; Hao, M.; Song, S.; Zhu, L.; Cui, D.; Zhuang, W.; Yang, F.; Wang, Q. Interseismic fault slip deficit and coupling distribution on the Anninghe-Zemuhe-Daliangshan-Xiaojiang fault zone, southeastern Tibetan Plateau, based on GPS measurements. J. Asian Earth Sci. 2021, 219, 104899. [Google Scholar] [CrossRef]
- Poyraz, F. Determining the strain upon the eastern section of the North Anatolian zone (NAFZ). Arab. J. Geosci. 2015, 8, 1787–1799. [Google Scholar] [CrossRef]
- Pearson, C.; Snay, R. Strain partitioning along the western margin of North America. J. Struct. Geol. 2014, 64, 67–78. [Google Scholar] [CrossRef]
- Craig, T.; Calais, E. Strain accumulation in the New Madrid and Wabash Valley Seismic Zones from 14 years of continuous GPS observation. J. Geophys. Res. 2014, 119, 9110–9129. [Google Scholar] [CrossRef]
- Scholz, C. The Mechanics of Earthquakes and Faulting; Cambridge University Press: Cambridge, UK, 2002; 225p. [Google Scholar]
- Scholz, C. Earthquakes and friction laws. Nature 1998, 391, 37–42. [Google Scholar] [CrossRef]
- Zhang, P. Beware of slowly slipping faults. Nature 2013, 6, 323–324. [Google Scholar] [CrossRef]
- Li, Y.; Shan, X.; Qu, C.; Wang, Z. Fault locking and slip rate deficit of the Haiyuan-Liupanshan fault zone in the northeastern margin of the Tibetan Plateau. J. Geodyn. 2016, 102, 47–57. [Google Scholar] [CrossRef]
- Versaci, M.; Angiulli, G.; Barba, P.; Morabito, F. Joint use of eddy current imaging and fuzzy similarities to assess the integrity of steel plates. Open Phys. 2020, 18, 230–240. [Google Scholar] [CrossRef]
- Ghaderpour, E. JUST: MATLAB and python software for change detection and time series analysis. GPS Solut. 2021, 25, 85. [Google Scholar] [CrossRef]
Data Processing Strategy | Option |
---|---|
Sampling interval | set sint = ‘30′ |
Number of epochs | set nepc = ‘2880′ |
Start time for processing | set stime = ‘0 0′ |
Choice of Experiment | RELAX. |
Type of Analysis | 1-ITER |
Choice of Observable | LC_AUTCLN |
Zenith Delay Estimation | Y |
Met obs source | GPT 50 |
DMap | VMF1 |
WMap | VMF1 |
Use otl.grid | Y |
Use atml.grid | Y |
Use atl.grid | Y |
Station | Ve_I a | Ve_E b | dVe c | Vn_I d | Vn_E e | dVn f |
---|---|---|---|---|---|---|
AQSS | 33.831 | 7.488 | 0.234 | −10.813 | −1.414 | 0.168 |
AQYX | 33.672 | 7.353 | 0.166 | −11.961 | −2.509 | 0.120 |
BZGY | 34.786 | 8.504 | 0.161 | −9.981 | −0.568 | 0.155 |
BZLX | 34.122 | 7.830 | 0.148 | −10.666 | −1.254 | 0.127 |
BZMC | 33.767 | 7.509 | 0.157 | −11.812 | −2.325 | 0.143 |
CHCH | 33.850 | 7.669 | 0.155 | −12.460 | −2.677 | 0.104 |
CHJU | 33.475 | 7.249 | 0.152 | −12.544 | −2.890 | 0.105 |
CZDY | 33.518 | 7.346 | 0.136 | −11.340 | −1.590 | 0.110 |
CZLA | 33.876 | 7.769 | 0.150 | −12.224 | −2.311 | 0.120 |
CZMG | 33.769 | 7.632 | 0.153 | −12.219 | −2.400 | 0.130 |
CZQJ | 33.485 | 7.358 | 0.149 | −11.351 | −1.465 | 0.128 |
CZQY | 36.731 | 10.539 | 0.204 | −11.237 | −1.446 | 0.129 |
CZST | 34.930 | 8.702 | 0.175 | −12.303 | −2.595 | 0.128 |
CZTC | 33.338 | 7.294 | 0.149 | −11.851 | −1.808 | 0.128 |
CZZT | 35.710 | 9.424 | 0.205 | −12.047 | −2.490 | 0.097 |
FYFN | 33.736 | 7.380 | 0.147 | −11.544 | −2.265 | 0.120 |
FYFY | 34.555 | 8.217 | 0.141 | −10.189 | −0.879 | 0.121 |
FYJS | 35.317 | 8.953 | 0.147 | −10.143 | −0.924 | 0.119 |
FYLQ | 34.635 | 8.261 | 0.155 | −9.803 | −0.595 | 0.125 |
FYTH | 32.688 | 6.348 | 0.141 | −11.228 | −1.939 | 0.113 |
FYYS | 32.883 | 6.583 | 0.158 | −9.438 | −0.014 | 0.115 |
HFCF | 33.092 | 6.871 | 0.161 | −11.345 | −1.712 | 0.124 |
HFFD | 34.026 | 7.820 | 0.170 | −11.239 | −1.535 | 0.138 |
HSHS | 33.885 | 7.713 | 0.176 | −11.645 | −1.793 | 0.130 |
HSQM | 32.905 | 6.693 | 0.174 | −11.953 | −2.196 | 0.123 |
LAHS | 33.551 | 7.237 | 0.164 | −11.113 | −1.666 | 0.130 |
LALA | 33.863 | 7.569 | 0.145 | −10.967 | −1.480 | 0.099 |
MASM | 33.091 | 6.979 | 0.156 | −11.844 | −1.899 | 0.133 |
SZDS | 34.521 | 8.285 | 0.140 | −14.830 | −5.385 | 0.122 |
SZSX | 32.867 | 6.741 | 0.156 | −10.695 | −0.902 | 0.143 |
SZXX | 33.922 | 7.736 | 0.159 | −12.062 | −2.473 | 0.125 |
XCGD | 33.422 | 7.372 | 0.167 | −12.799 | −2.664 | 0.127 |
XCJD | 33.703 | 7.566 | 0.167 | −9.387 | 0.553 | 0.125 |
XCJN | 33.578 | 7.434 | 0.172 | −12.919 | −3.008 | 0.125 |
XCJX | 33.686 | 7.551 | 0.178 | −11.446 | −1.494 | 0.128 |
XCLX | 34.776 | 8.710 | 0.164 | −12.279 | −2.195 | 0.121 |
XCNG | 34.176 | 8.082 | 0.181 | −12.847 | −2.809 | 0.130 |
Segment | ||
---|---|---|
a | −0.76/0.16 | −0.44/0.22 |
b | −0.57/0.11 | −0.40/0.15 |
c | −0.35/0.16 | −0.29/0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, T.; Chen, H.; Li, S.; Qu, X.; Zhu, Y. Interseismic Fault Coupling and Slip Rate Deficit on the Central and Southern Segments of the Tanlu Fault Zone Based on Anhui CORS Measurements. Remote Sens. 2022, 14, 1093. https://doi.org/10.3390/rs14051093
Tao T, Chen H, Li S, Qu X, Zhu Y. Interseismic Fault Coupling and Slip Rate Deficit on the Central and Southern Segments of the Tanlu Fault Zone Based on Anhui CORS Measurements. Remote Sensing. 2022; 14(5):1093. https://doi.org/10.3390/rs14051093
Chicago/Turabian StyleTao, Tingye, Hao Chen, Shuiping Li, Xiaochuan Qu, and Yongchao Zhu. 2022. "Interseismic Fault Coupling and Slip Rate Deficit on the Central and Southern Segments of the Tanlu Fault Zone Based on Anhui CORS Measurements" Remote Sensing 14, no. 5: 1093. https://doi.org/10.3390/rs14051093
APA StyleTao, T., Chen, H., Li, S., Qu, X., & Zhu, Y. (2022). Interseismic Fault Coupling and Slip Rate Deficit on the Central and Southern Segments of the Tanlu Fault Zone Based on Anhui CORS Measurements. Remote Sensing, 14(5), 1093. https://doi.org/10.3390/rs14051093