An Interpretation Approach of Ascending–Descending SAR Data for Landslide Identification
Abstract
:1. Introduction
2. Methodology and Implementation Procedure of the Proposed Approach
2.1. Principle and Main Components of the Proposed Approach
2.1.1. Improved R-index Model for SAR Visibility Analysis
2.1.2. Conversion Analysis of Deformation Rates Obtained from the TS-InSAR Analysis
2.1.3. Cluster Extraction of MPs Using Spatial Analysis and Statistics Tools
2.2. Procedure for Implementing the Proposed Interpretation Approach
3. Application of the Proposed Approach: Landslide Identification in Danba
3.1. The Geological Setting of the Study Area and the Parameters of the Adopted SAR Data
3.2. Surface Deformation Monitoring in the Study Area with SBAS-InSAR Technique
3.3. Landslide Identification in the Study Area with the Proposed Interpretation Approach
4. Testing of the Landslide Identification Results in Danba through Field Surveys
5. Discussions
6. Concluding Remarks
- (1)
- With the proposed interpretation approach, the potential landslides or areas affected by landslides in the study area were successfully identified from the SBAS-InSAR analysis results of ascending and descending Sentinel-1A datasets. The potential landslides are mainly distributed on the banks of the Dadu River and its tributaries.
- (2)
- Field surveys were undertaken in the study area and a total of 21 landslides were confirmed in the potential landslide areas obtained with the proposed interpretation approach, through which the landslide identification results were tested and the effectiveness of the proposed approach was illustrated. According to the failure characteristics of these landslides, river erosion and road construction might be important factors triggering these landslides.
- (3)
- Note that the input data of the proposed approach are TS-InSAR analysis results, the obtained map of potential landslide regions in the study area is helpful for the identification of slow-moving landslides, and in order to detect other types of landslides, the integration of multiple remote sensing technologies may provide a promising approach. The cumulative deformation of MPs in the TS-InSAR analysis results is also helpful to determine the trend of the ground surface deformation, and the proposed approach may also be improved through considering the cumulative deformation of MPs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gong, W.; Juang, C.H.; Wasowski, J. Geohazards and human settlements: Lessons learned from multiple relocation events in Badong, China-Engineering geologist’s perspective. Eng. Geol. 2021, 285, 106051. [Google Scholar] [CrossRef]
- Conte, E.; Donato, A.; Pugliese, L.; Troncone, A. Analysis of the Maierato landslide (Calabria, Southern Italy). Landslides 2018, 15, 1935–1950. [Google Scholar] [CrossRef]
- Su, L.J.; Hu, K.H.; Zhang, W.F.; Wang, J.; Lei, Y.; Zhang, C.L.; Peng, C.; Pasuto, A.; Zheng, Q.H. Characteristics and triggering mechanism of Xinmo landslide on 24 June 2017 in Sichuan, China. J. Mt. Sci. 2017, 14, 1689–1700. [Google Scholar] [CrossRef]
- Lin, F.; Wu, L.Z.; Huang, R.Q.; Zhang, H. Formation and characteristics of the Xiaoba landslide in Fuquan, Guizhou, China. Landslides 2018, 15, 669–681. [Google Scholar] [CrossRef]
- Morelli, S.; Pazzi, V.; Frodella, W.; Fanti, R. Kinematic reconstruction of a deep-Seated gravitational slope deformation by geomorphic analyses. Geosciences 2018, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Bekaert, D.P.; Handwerger, A.L.; Agram, P.; Kirschbaum, D.B. InSAR-Based detection method for mapping and monitoring slow-moving landslides in remote regions with steep and mountainous terrain: An application to Nepal. Remote Sens. Environ. 2020, 249, 111983. [Google Scholar] [CrossRef]
- Qu, F.; Qiu, H.; Sun, H.; Tang, M. Post-Failure landslide change detection and analysis using optical satellite Sentinel-2 images. Landslides 2021, 18, 447–455. [Google Scholar] [CrossRef]
- Zhao, F.; Meng, X.; Zhang, Y.; Chen, G.; Su, X.; Yue, D. Landslide susceptibility mapping of karakorum highway combined with the application of SBAS-InSAR technology. Sensors 2019, 19, 2685. [Google Scholar] [CrossRef] [Green Version]
- Mohan, A.; Singh, A.K.; Kumar, B.; Dwivedi, R. Review on remote sensing methods for landslide detection using machine and deep learning. Trans. Emerg. Telecommun. Technol. 2021, 32, e3998. [Google Scholar] [CrossRef]
- Wasowski, J.; Bovenga, F. Remote sensing of landslide motion with emphasis on satellite multi-Temporal interferometry applications: An overview. Landslide Hazards Risks Disasters 2022, 365–438. [Google Scholar] [CrossRef]
- Travelletti, J.; Delacourt, C.; Allemand, P.; Malet, J.P.; Schmittbuhl, J.; Toussaint, R.; Bastard, M. Correlation of multi-Temporal ground-Based optical images for landslide monitoring: Application, potential and limitations. ISPRS J. Photogramm. Remote Sens. 2012, 70, 39–55. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, C.; Stumpf, A.; Malet, J.P.; Gançarski, P.; Puissant, A.; Passat, N. Hierarchical extraction of landslides from multiresolution remotely sensed optical images. ISPRS J. Photogramm. Remote Sens. 2014, 87, 122–136. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Gong, W.; Tang, H.; Juang, C.H.; Deng, Q.; Chen, J.; Ye, X. UAV photogrammetry-Based remote sensing and preliminary assessment of the behavior of a landslide in Guizhou, China. Eng. Geol. 2021, 289, 106172. [Google Scholar] [CrossRef]
- Hilley, G.E.; Bürgmann, R.; Ferretti, A.; Novali, F.; Rocca, F. Dynamics of slow-Moving landslides from permanent scatterer analysis. Science 2004, 304, 1952–1955. [Google Scholar] [CrossRef] [Green Version]
- Cascini, L.; Fornaro, G.; Peduto, D. Advanced low-and full-Resolution DInSAR map generation for slow-Moving landslide analysis at different scales. Eng. Geol. 2010, 112, 29–42. [Google Scholar] [CrossRef]
- Chen, Q.; Cheng, H.; Yang, Y.; Liu, G.; Liu, L. Quantification of mass wasting volume associated with the giant landslide Daguangbao induced by the 2008 Wenchuan earthquake from persistent scatterer InSAR. Remote Sens. Environ. 2014, 152, 125–135. [Google Scholar] [CrossRef]
- Colesanti, C.; Wasowski, J. Investigating landslides with space-Borne Synthetic Aperture Radar (SAR) interferometry. Eng. Geol. 2006, 88, 173–199. [Google Scholar] [CrossRef]
- Zhao, C.; Lu, Z.; Zhang, Q.; de La Fuente, J. Large-Area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sens. Environ. 2012, 124, 348–359. [Google Scholar] [CrossRef]
- Rosi, A.; Tofani, V.; Tanteri, L.; Stefanelli, C.T.; Agostini, A.; Catani, F.; Casagli, N. The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: Geomorphological features and landslide distribution. Landslides 2018, 15, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Bai, S.; Tofani, V.; Casagli, N. Landslides detection through optimized hot spot analysis on persistent scatterers and distributed scatterers. ISPRS J. Photogramm. Remote Sens. 2019, 156, 147–159. [Google Scholar] [CrossRef]
- Cigna, F.; Bianchini, S.; Casagli, N. How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): The PSI-Based matrix approach. Landslides 2013, 10, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Di Maio, C.; Fornaro, G.; Gioia, D.; Reale, D.; Schiattarella, M.; Vassallo, R. In situ and satellite long-Term monitoring of the Latronico landslide, Italy: Displacement evolution, damage to buildings, and effectiveness of remedial works. Eng. Geol. 2018, 245, 218–235. [Google Scholar] [CrossRef]
- Wasowski, J.; Bovenga, F. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Eng. Geol. 2014, 174, 103–138. [Google Scholar] [CrossRef]
- Dai, K.; Li, Z.; Tomás, R.; Liu, G.; Yu, B.; Wang, X.; Cheng, H.; Chen, J.; Stockamp, J. Monitoring activity at the Daguangbao mega-Landslide (China) using Sentinel-1 TOPS time series interferometry. Remote Sens. Environ. 2016, 186, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Ren, T.; Gong, W.; Bowa, V.M.; Tang, H.; Chen, J.; Zhao, F. An Improved R-Index Model for Terrain Visibility Analysis for Landslide Monitoring with InSAR. Remote Sens. 2021, 13, 1938. [Google Scholar] [CrossRef]
- Guo, R.; Sumin, L.I.; Chen, Y.N.; Li, X.; Yuan, L. Identification and monitoring landslides in longitudinal range-Gorge region with InSAR fusion integrated visibility analysis. Landslides 2021, 18, 551–568. [Google Scholar] [CrossRef]
- Cascini, L.; Fornaro, G.; Peduto, D. Analysis at medium scale of low-Resolution DInSAR data in slow-moving landslide-Affected areas. ISPRS J. Photogramm. Remote Sens. 2009, 64, 598–611. [Google Scholar] [CrossRef]
- Plank, S.; Singer, J.; Minet, C.; Thuro, K. Pre-Survey suitability evaluation of the differential synthetic aperture radar interferometry method for landslide monitoring. Int. J. Remote Sens. 2012, 33, 6623–6637. [Google Scholar] [CrossRef]
- Herrera, G.; Gutiérrez, F.; García-Davalillo, J.C.; Guerrero, J.; Notti, D.; Galve, J.P.; Fernández-Merodo, J.A.; Cooksley, G. Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees). Remote Sens. Environ. 2013, 128, 31–43. [Google Scholar] [CrossRef]
- Notti, D.; Herrera, G.; Bianchini, S.; Meisina, C.; García-Davalillo, J.C.; Zucca, F. A methodology for improving landslide PSI data analysis. Int. J. Remote Sens. 2014, 35, 2186–2214. [Google Scholar] [CrossRef]
- Meisina, C.; Zucca, F.; Notti, D.; Colombo, A.; Cucchi, A.; Savio, G.; Giannico, C.; Bianchi, M. Geological interpretation of PSInSAR data at regional scale. Sensors 2008, 8, 7469–7492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, P.; Casagli, N.; Catani, F.; Tofani, V. Persistent Scatterers Interferometry Hotspot and Cluster Analysis (PSI-HCA) for detection of extremely slow-Moving landslides. Int. J. Remote Sens. 2012, 33, 466–489. [Google Scholar] [CrossRef]
- Solari, L.; Del Soldato, M.; Montalti, R.; Bianchini, S.; Raspini, F.; Thuegaz, P.; Bertolo, D.; Tofani, V.; Casagli, N. A Sentinel-1 based hot-Spot analysis: Landslide mapping in north-Western Italy. Int. J. Remote Sens. 2019, 40, 7898–7921. [Google Scholar] [CrossRef]
- Bianchini, S.; Cigna, F.; Righini, G.; Proietti, C.; Casagli, N. Landslide hotspot mapping by means of persistent scatterer interferometry. Environ. Earth Sci. 2012, 67, 1155–1172. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, W.; Cheng, Y.; Li, Z. Landslide Detection in the Linzhi–Ya’an Section along the Sichuan–Tibet Railway Based on InSAR and Hot Spot Analysis Methods. Remote Sens. 2021, 13, 3566. [Google Scholar] [CrossRef]
- Zhu, K.; Xu, P.; Cao, C.; Zheng, L.; Liu, Y.; Dong, X. Preliminary identification of geological hazards from songpinggou to feihong in mao county along the minjiang river using SBAS-InSAR technique integrated multiple spatial analysis methods. Sustainability 2021, 13, 1017. [Google Scholar] [CrossRef]
- Cigna, F.; Bateson, L.B.; Jordan, C.J.; Dashwood, C. Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-Band SAR and InSAR applications: Nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery. Remote Sens. Environ. 2014, 152, 441–466. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Meng, X.; Jordan, C.; Novellino, A.; Dijkstra, T.; Chen, G. Investigating slow-Moving landslides in the Zhouqu region of China using InSAR time series. Landslides 2018, 15, 1299–1315. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 127–145. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Yan, Y.; Cui, Y.; Liu, D.; Tang, H.; Li, Y.; Tian, X.; Zhang, L.; Hu, S. Seismic signal characteristics and interpretation of the 2020 “6.17” Danba landslide dam failure hazard chain process. Landslides 2021, 18, 2175–2192. [Google Scholar] [CrossRef]
- Chen, F.; Deng, J.H.; Gao, M.Z.; Wang, D.K.; Meng, Y.L.; Huang, R.T. Geological cause and stability evaluation of Moluocun landslide, Danba county. Rock Soil Mech. 2012, 33, 1781–1786. [Google Scholar]
- Bai, Y.J.; Wang, Y.S.; Ge, H.; Tie, Y.B. Slope structures and formation of rock-soil aggregate landslides in deeply incised valleys. J. Mt. Sci. 2020, 17, 316–328. [Google Scholar] [CrossRef]
- Li, M.H.; Zheng, W.M.; Chen, Q.G. Development characteristic of geological hazard in Danba County and its cause discussion. J. Nat. Disasters 2008, 17, 49–53. [Google Scholar]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Liao, M.; Xu, Q.; Zhang, L.; Tang, M.; Gong, J. Detection and displacement characterization of landslides using multi-Temporal satellite SAR interferometry: A case study of Danba County in the Dadu River Basin. Eng. Geol. 2018, 240, 95–109. [Google Scholar] [CrossRef]
- Yin, Y.; Zheng, W.; Liu, Y.; Zhang, J.; Li, X. Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China. Landslides 2010, 7, 359–365. [Google Scholar] [CrossRef]
- Ao, M.; Zhang, L.; Shi, X.; Liao, M.; Dong, J. Measurement of the three-dimensional surface deformation of the Jiaju landslide using a surface-Parallel flow model. Remote Sens. Lett. 2019, 10, 776–785. [Google Scholar] [CrossRef]
- Zou, Q.; Jiang, H.; Cui, P.; Zhou, B.; Jiang, Y.; Qin, M.; Liu, Y.; Li, C. A new approach to assess landslide susceptibility based on slope failure mechanisms. Catena 2021, 204, 105388. [Google Scholar] [CrossRef]
- Mondini, A.C. Measures of spatial autocorrelation changes in multitemporal SAR images for event landslides detection. Remote Sens. 2017, 9, 554. [Google Scholar] [CrossRef] [Green Version]
- Santangelo, M.; Cardinali, M.; Bucci, F.; Fiorucci, F.; Mondini, A.C. Exploring event landslide mapping using Sentinel-1 SAR backscatter products. Geomorphology 2022, 397, 108021. [Google Scholar] [CrossRef]
SAR Satellite | Flight Direction | Radar Azimuth | Radar Incidence |
---|---|---|---|
Sentinel-1A | Ascending | 77.34° | 43.32° |
Descending | −77.26° | 38.34° |
Level of Visibility | Sentinel-1A (Ascending) | Sentinel-1A (Descending) | ||
---|---|---|---|---|
R-index(im) | Area (km2) | R-index(im) | Area (km2) | |
Good visibility | 0.67~1.00 | 586.07 | 0.62~1.00 | 599.31 |
Medium visibility | 0.00~0.67 | 462.16 | 0.00~0.62 | 528.16 |
Poor visibility | 0.00 | 209.77 | 0.00 | 130.53 |
Landslide No. | Latitude (°N) | Longitude (°E) | Slope (°) | Aspect (°) | Area (km2) |
---|---|---|---|---|---|
1 | 30.91 | 101.88 | 15~25 | 105 | 0.02 |
2 | 30.93 | 101.87 | 15~25 | 100 | 1.20 |
3 | 30.95 | 101.87 | 15~25 | 90 | 0.74 |
4 | 30.96 | 101.88 | 25~40 | 130 | 0.37 |
5 | 30.96 | 101.88 | 30~45 | 266 | 0.08 |
6 | 30.93 | 101.93 | 20~45 | 130 | 1.17 |
7 | 30.95 | 101.96 | 30~45 | 177 | 0.06 |
8 | 30.88 | 101.90 | 20~40 | 200 | 0.42 |
9 | 30.87 | 101.90 | 15~30 | 50 | 0.27 |
10 | 30.86 | 101.93 | 20~35 | 236 | 0.32 |
11 | 30.85 | 101.94 | 15~20 | 227 | 0.98 |
12 | 30.87 | 101.94 | 20~35 | 200 | 0.02 |
13 | 30.84 | 101.94 | 15~30 | 310 | 0.02 |
14 | 30.84 | 101.94 | 20~25 | 290 | 0.001 |
15 | 30.84 | 101.94 | 25~30 | 260 | 0.005 |
16 | 30.84 | 101.94 | 15~25 | 307 | 0.29 |
17 | 30.83 | 101.97 | 25~30 | 280 | 2.18 |
18 | 30.89 | 101.94 | 15~35 | 300 | 6.21 |
19 | 30.78 | 101.94 | 25~35 | 60 | 0.64 |
20 | 30.89 | 101.83 | 20~25 | 40 | 0.05 |
21 | 30.90 | 101.86 | 20~40 | 130 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, T.; Gong, W.; Gao, L.; Zhao, F.; Cheng, Z. An Interpretation Approach of Ascending–Descending SAR Data for Landslide Identification. Remote Sens. 2022, 14, 1299. https://doi.org/10.3390/rs14051299
Ren T, Gong W, Gao L, Zhao F, Cheng Z. An Interpretation Approach of Ascending–Descending SAR Data for Landslide Identification. Remote Sensing. 2022; 14(5):1299. https://doi.org/10.3390/rs14051299
Chicago/Turabian StyleRen, Tianhe, Wenping Gong, Liang Gao, Fumeng Zhao, and Zhan Cheng. 2022. "An Interpretation Approach of Ascending–Descending SAR Data for Landslide Identification" Remote Sensing 14, no. 5: 1299. https://doi.org/10.3390/rs14051299
APA StyleRen, T., Gong, W., Gao, L., Zhao, F., & Cheng, Z. (2022). An Interpretation Approach of Ascending–Descending SAR Data for Landslide Identification. Remote Sensing, 14(5), 1299. https://doi.org/10.3390/rs14051299