Deriving Nutrient Concentrations from Sentinel-3 OLCI Data in North-Eastern Baltic Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Situ Dataset and Study Area
- R1: south-east area of the Gulf of Finland. It is oligohaline (2.5–6 ppt) open water with measured max Chl-a 29.5 mg m−3 and min SD 0.8 m during 2016–2021. The largest inlet in region R1 is the Narva River. Twelve sampling stations were in this region.
- R2: Pärnu Bay is located in the north-eastern part of the Gulf of Riga. The bay is semi-enclosed, oligohaline (4.0–5.5 ppt), with a large inlet of nutrient rich Pärnu river. During 2016–2021, the measured max Chl-a was 45 mg m−3 and min SD 0.4 m. It is the smallest region by area (411 km2), and the max depth in the mouth of the bay is 12 m. Four sampling stations were included in this region.
- R3: western part of Gulf of Finland, it has mesohaline (4.5–6.5 ppt) and deep water with measured max Chl-a 25.3 mg m−3 and min SD 2 m during 2016–2021. Sixteen sampling stations were in this region.
- R4: Baltic Proper area of the West Estonian archipelago, open sea, with mesohaline (6–7 ppt) water. Region R4 is a shallow area open to waves with measured max Chl-a 15.6 mg m−3 and min SD 3 m during 2016–2021. Seventeen sampling stations were in this region.
- R5: Väinameri Sea or the Sea of Straits (2200 km2); it has mesohaline (3–6.5 ppt) unstratified water, and it is a shallow, concealed area with measured max Chl-a 6.7 mg m−3 and min SD 1.2 m during 2016–2021. Seven sampling stations were in this region.
- R6: north half of Gulf of Riga with mesohaline (4–6 ppt), shallow, sheltered and seasonally stratified waters with measured max Chl-a 71.8 mg m−3 and min SD 0.5 m during 2016–2021. Seven sampling stations were in this region.
2.2. In Situ Parameters
2.3. Sentinel-3 Dataset
2.4. TN and TP Retrieval Methods
- April to November;
- May to September;
- April to May;
- June to September;
- April to June;
- July to September.
2.5. Statistical Analysis
3. Results
3.1. Match-Up In Situ Database
3.2. Total Nitrogen
3.3. Total Phosphorus
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Helcom. State of the Baltic Sea—Second HELCOM holistic assessment 2011–2016. In Baltic Sea Environment Proceedings; Helcom: Helsinki, Finland, 2018; Volume 155, pp. 4–7. [Google Scholar]
- Andersen, J.H.; Carstensen, J.; Conley, D.J.; Dromph, K.; Fleming-Lehtinen, V.; Gustafsson, B.G.; Josefson, A.B.; Norkko, A.; Villnäs, A.; Murray, C. Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biol. Rev. 2017, 92, 135–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Cui, Q.; Gong, F.; Wang, L.; He, X.; Bai, Y. Satellite Retrieval of Surface Water Nutrients in the Coastal Regions of the East China Sea. Remote Sens. 2018, 10, 1896. [Google Scholar] [CrossRef] [Green Version]
- Aigars, J.; Axe, P.; Blomqvist, M.; Carstensen, J.; Claussen, U.; Josefson, A.; Fleming-Lehtinen, V.; Järvinen, M.; Kaartokallio, H.; Kaitala, S.; et al. Eutrophication in the Baltic Sea—An Integrated Thematic Assessment of the Effects of Nutrient Enrichment and Eutrophication in the Baltic Sea Region; Andersen, J.H., Laamanen, M., Eds.; Helsinki Commission: Helsinki, Finland, 2009; ISBN 0357-2994. [Google Scholar]
- Chang, N.-B.; Xuan, Z.; Wimberly, B. Remote Sensing Spatiotemporal Assessment of Nitrogen Concentrations in Tampa Bay, Florida due to a Drought. Terr. Atmos. Ocean. Sci. 2012, 23, 467. [Google Scholar] [CrossRef] [Green Version]
- Gauss, M.; Bartnicki, J.; Jalkanen, J.-P.; Nyiri, A.; Klein, H.; Fagerli, H.; Klimont, Z. Airborne nitrogen deposition to the Baltic Sea: Past trends, source allocation and future projections. Atmos. Environ. 2021, 253, 118377. [Google Scholar] [CrossRef]
- Homepage Copernicus. Available online: https://www.copernicus.eu/en (accessed on 21 October 2021).
- Sentinel-3—Missions—Sentinel Online. Available online: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-3 (accessed on 20 October 2021).
- Ansper-Toomsalu, A.; Alikas, K.; Nielsen, K.; Tuvikene, L.; Kangro, K. Synergy between Satellite Altimetry and Optical Water Quality Data towards Improved Estimation of Lakes Ecological Status. Remote Sens. 2021, 13, 770. [Google Scholar] [CrossRef]
- Pozdnyakov, D.; Shuchman, R.; Korosov, A.; Hatt, C. Operational algorithm for the retrieval of water quality in the Great Lakes. Remote Sens. Environ. 2005, 97, 352–370. [Google Scholar] [CrossRef]
- Kutser, T.; Soomets, T.; Toming, K.; Uiboupin, R.; Arikas, A.; Vahter, K.; Paavel, B. Assessing the Baltic Sea Water Quality with Sentinel-3 OLCI Imagery. In Proceedings of the 2018 IEEE/OES Baltic International Symposium (BALTIC), Klaipeda, Lithuania, 12 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Wang, X.; Yang, W. Water quality monitoring and evaluation using remote sensing techniques in China: A systematic review. Ecosyst. Health Sustain. 2019, 5, 47–56. [Google Scholar] [CrossRef] [Green Version]
- IOCCG. Earth Observations in Support of Global Water Quality Monitoring; Greb, S., Dekker, A., Binding, C.E., Eds.; International Ocean Colour Coordinating Group: Dartmouth, NS, Canada, 2018; Volume 17. [Google Scholar]
- Gholizadeh, M.; Melesse, A.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef] [Green Version]
- Kratzer, S.; Kyryliuk, D.; Edman, M.; Philipson, P.; Lyon, S. Synergy of Satellite, In Situ and Modelled Data for Addressing the Scarcity of Water Quality Information for Eutrophication Assessment and Monitoring of Swedish Coastal Waters. Remote Sens. 2019, 11, 2051. [Google Scholar] [CrossRef] [Green Version]
- Toming, K.; Kutser, T.; Uiboupin, R.; Arikas, A.; Vahter, K.; Paavel, B. Mapping Water Quality Parameters with Sentinel-3 Ocean and Land Colour Instrument imagery in the Baltic Sea. Remote Sens. 2017, 9, 1070. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Chen, S.; Liu, X.; Chen, J. Water quality monitoring in a slightly-polluted inland water body through remote sensing—Case study of the Guanting Reservoir in Beijing, China. Front. Environ. Sci. Eng. China 2008, 2, 163–171. [Google Scholar] [CrossRef]
- Soomets, T.; Uudeberg, K.; Jakovels, D.; Brauns, A.; Zagars, M.; Kutser, T. Validation and Comparison of Water Quality Products in Baltic Lakes Using Sentinel-2 MSI and Sentinel-3 OLCI Data. Sensors 2020, 20, 742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutser, T.; Paavel, B.; Verpoorter, C.; Kauer, T.; Vahtmäe, E. Remote Sensing of Water Quality in Optically Complex Lakes. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, B8. [Google Scholar] [CrossRef] [Green Version]
- Matthews, M.W. Remote Sensing of Water Quality Parameters in Zeekoevlei, a Hypertrophic, Cyanobacteria-Dominated Lake, Cape Town, South Africa. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2009. [Google Scholar]
- Chang, N.-B.; Imen, S.; Vannah, B. Remote Sensing for Monitoring Surface Water Quality Status and Ecosystem State in Relation to the Nutrient Cycle: A 40-Year Perspective. Environ. Sci. Technol. 2015, 45, 101–166. [Google Scholar] [CrossRef]
- Matthews, M.W.; Bernard, S.; Winter, K. Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS. Remote Sens. Environ. 2010, 114, 2070–2087. [Google Scholar] [CrossRef]
- Riddick, C.A.L.; Spyrakos, E. CoastObs: Standard and high-level water quality products from Sentinel -2 and -3 over European coastal and transitional waters commercial service platform for user-relevant coastal water monitoring services. In Proceedings of the Earth Living Planet Symposium, Milan, Italy, 16 May 2019. [Google Scholar]
- Mobley, C. Light and Water: Radiative Transfer in Natural Waters; Academic Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Kutser, T.; Arst, H.; Miller, T.; Käärmann, L.; Milius, A. Telespectrometrical estimation of water transparency, chlorophyll-a and total phosphorus concentration of Lake Peipsi. Int. J. Remote Sens. 1995, 16, 3069–3085. [Google Scholar] [CrossRef]
- Kyryliuk, D.; Kratzer, S. Evaluation of sentinel-3A OLCI products derived using the case-2 regional coastcolour processor over the Baltic Sea. Sensors 2019, 19, 3609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Wu, J.; Qi, J.; Zhang, L.; Huang, H.; Lou, L.; Chen, Y. Empirical estimation of total phosphorus concentration in the mainstream of the Qiantang River in China using Landsat TM data. Int. J. Remote Sens. 2010, 31, 2309–2324. [Google Scholar] [CrossRef]
- Chen, J.; Quan, W. Using Landsat/TM imagery to estimate nitrogen and phosphorus concentration in Taihu Lake, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 273–280. [Google Scholar] [CrossRef]
- Andersson, M. Estimating Phosphorus in Rivers of Central Sweden Using Landsat TM Data. Ph.D. Thesis, Stockholm University, Stockholm, Sweden, 2012. [Google Scholar]
- Sun, D.; Qiu, Z.; Li, Y.; Shi, K.; Gong, S. Detection of Total Phosphorus Concentrations of Turbid Inland Waters Using a Remote Sensing Method. Water Air Soil Pollut. 2014, 225, 1953. [Google Scholar] [CrossRef]
- Isenstein, E.M.; Park, M.-H. Assessment of nutrient distributions in Lake Champlain using satellite remote sensing. J. Environ. Sci. 2014, 26, 1831–1836. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Gao, J.; Yin, H.; Liu, C.; Xia, T.; Wang, J.; Huang, Q. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques. J. Environ. Manag. 2015, 151, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Guo, Y.; Yang, H.; Li, Y.; Zou, J.; Zhang, M.; Lyu, H.; Zhu, A.; Huang, T. Using Remote Sensing to Track Variation in Phosphorus and Its Interaction with Chlorophyll-a and Suspended Sediment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4171–4180. [Google Scholar] [CrossRef]
- Huang, Y.; Fan, D.; Liu, D.; Song, L.; Ji, D.; Hui, E. Nutrient estimation by HJ-1 satellite imagery of Xiangxi Bay, Three Gorges Reservoir, China. Environ. Earth Sci. 2016, 75, 633. [Google Scholar] [CrossRef]
- Du, C.; Wang, Q.; Li, Y.; Lyu, H.; Zhu, L.; Zheng, Z.; Wen, S.; Liu, G.; Guo, Y. Estimation of total phosphorus concentration using a water classification method in inland water. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 29–42. [Google Scholar] [CrossRef]
- Nouchi, V.; Kutser, T.; Wüest, A.; Müller, B.; Odermatt, D.; Baracchini, T.; Bouffard, D. Resolving biogeochemical processes in lakes using remote sensing. Aquat. Sci. 2019, 81, 27. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Deng, R.; Liang, Y.; Xiong, L.; Ai, X.; Qin, Y. Remote sensing retrieval of total phosphorus in the pearl river channels based on the GF-1 remote sensing data. Remote Sens. 2020, 12, 1420. [Google Scholar] [CrossRef]
- Yu, X.; Yi, H.; Liu, X.; Wang, Y.; Liu, X.; Zhang, H. Remote-sensing estimation of dissolved inorganic nitrogen concentration in the Bohai Sea using band combinations derived from MODIS data. Int. J. Remote Sens. 2016, 37, 327–340. [Google Scholar] [CrossRef]
- Bin Chang, N.; Xuan, Z.; Yang, Y.J. Exploring spatiotemporal patterns of phosphorus concentrations in a coastal bay with MODIS images and machine learning models. Remote Sens. Environ. 2013, 134, 100–110. [Google Scholar] [CrossRef]
- Water Act. Available online: https://www.riigiteataja.ee/en/eli/526022019001/consolide (accessed on 21 October 2021).
- Guidelines-for-Measuring-Chlorophyll-a—HELCOM. Available online: https://helcom.fi/wp-content/uploads/2019/08/Guidelines-for-measuring-chlorophyll-a.pdf (accessed on 21 December 2021).
- Davies-Colley, R.J.; Vant, W.N. Absorption of light by yellow substance in freshwater lakes. Limnol. Oceanogr. 1987, 32, 416–425. [Google Scholar] [CrossRef]
- Lindell, T.; Pierson, D.; Premazzi, G.; Zilioti, E. Manual for Monitoring European Lakes Using Remote Sensing Techniques; European Communities: Luxembourg, 1999; ISBN 928285390X. [Google Scholar]
- ESTHub Processing Platform. Available online: https://ehcalvalus.maaamet.ee/calest/calvalus.jsp (accessed on 21 October 2021).
- Brockmann, C.; Doerffer, R.; Peters, M.; Stelzer, K.; Embacher, S.; Ruescas, A. Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. In Living Planet Symposium; ESA: Paris, France, 2016. [Google Scholar]
- Brodie, J.; Schroeder, T.; Rohde, K.; Faithful, J.; Masters, B.; Dekker, A.; Brando, V.; Maughan, M. Dispersal of suspended sediments and nutrients in the Great Barrier Reef lagoon during river-discharge events: Conclusions from satellite remote sensing and concurrent flood-plume sampling. Mar. Freshw. Res. 2010, 61, 651. [Google Scholar] [CrossRef]
- Brandini, F.P.; Boltovskoy, D.; Piola, A.; Kocmur, S.; Röttgers, R.; Cesar Abreu, P.; Mendes Lopes, R. Multiannual trends in fronts and distribution of nutrients and chlorophyll in the southwestern Atlantic (30–62° S). Deep Sea Res. Part I Oceanogr. Res. Pap. 2000, 47, 1015–1033. [Google Scholar] [CrossRef]
- Muslim, I.; Jones, G. The seasonal variation of dissolved nutrients, chlorophyll a and suspended sediments at Nelly Bay, Magnetic Island. Estuar. Coast. Shelf Sci. 2003, 57, 445–455. [Google Scholar] [CrossRef]
- Howarth, R.W.; Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnol. Oceanogr. 2006, 51, 364–376. [Google Scholar] [CrossRef] [Green Version]
- Redfield, A.C. On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In James Johnstone Memorial Volume; Liverpool University Press: Liverpool, UK, 1934; pp. 176–192. [Google Scholar]
- Guildford, S.J.; Hecky, R.E. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnol. Oceanogr. 2000, 45, 1213–1223. [Google Scholar] [CrossRef] [Green Version]
- Ekholm, P. N:P Ratios in Estimating Nutrient Limitation in Aquatic Systems. Finn. Environ. Inst. 2008, 11–14. [Google Scholar]
- Carstensen, J.; Conley, D.J.; Almroth-Rosell, E.; Asmala, E.; Bonsdorff, E.; Fleming-Lehtinen, V.; Gustafsson, B.G.; Gustafsson, C.; Heiskanen, A.S.; Janas, U.; et al. Factors regulating the coastal nutrient filter in the Baltic Sea. Ambio 2020, 49, 1194–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kankaanpää, H.T.; Sipiä, V.O.; Kuparinen, J.S.; Ott, J.L.; Carmichael, W.W. Nodularin analyses and toxicity of a Nodularia spumigena (Nostocales, Cyanobacteria) water-bloom in the western Gulf of Finland, Baltic Sea, in August 1999. Phycologia 2001, 40, 268–274. [Google Scholar] [CrossRef]
- Kahru, M.; Leppänen, J.M.; Rud, O.; Savchuk, O.P. Cyanobacteria blooms in the Gulf of Finland triggered by saltwater inflow into the Baltic Sea. Mar. Ecol. Prog. Ser. 2000, 207, 13–18. [Google Scholar] [CrossRef]
- Neumann, T.; Schernewski, G. Eutrophication in the Baltic Sea and shifts in nitrogen fixation analyzed with a 3D ecosystem model. J. Mar. Syst. 2008, 74, 592–602. [Google Scholar] [CrossRef]
- Moore, T.S.; Dowell, M.D.; Bradt, S.; Ruiz Verdu, A. An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters. Remote Sens. Environ. 2014, 143, 97–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, T.S.; Campbell, J.W.; Feng, H. A fuzzy logic classification scheme for selecting and blending satellite ocean color algorithms. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1764–1776. [Google Scholar] [CrossRef]
- Zhang, J. Nutrient elements in large Chinese estuaries. Cont. Shelf Res. 1996, 16, 1023–1045. [Google Scholar] [CrossRef]
TP (TN) | |||||||
---|---|---|---|---|---|---|---|
R1 | R2 | R3 | R4 | R5 | R6 | Total | |
April | 20 | 10 (5) | 33 (29) | 18 | 4 | 16 (12) | 101 |
May | 22 | 33 (28) | 49 | 25 | 5 | 32 (28) | 166 |
June | 31 | 12 | 56 | 21 | 13 | 23 | 156 |
July | 37 | 18 | 44 | 33 | 20 | 34 | 186 |
August | 25 | 14 | 23 | 18 | 5 | 8 | 93 |
September | 4 | 10 | 3 | 2 | 0 | 9 | 28 |
October | 4 | 0 | 0 | 3 | 0 | 2 | 9 |
November | 0 | 0 | 1 | 1 | 0 | 0 | 2 |
Total | 143 | 97 (87) | 209 (205) | 121 | 47 | 125 (117) | 741 (719) |
Formula |
---|
1. Ba + Bb |
2. Ba − Bb |
3. Ba/Bb |
4. Ba * Bb |
5. Ba + Bb + Bc |
6. Ba + Bb * Bc |
7. (Ba + Bb) * Bc |
8. (Ba − Bb) * Bc |
9. (Ba + Bb)/Bc |
10. Ba * Bb/Bc |
11. (Ba − Bb)/(Ba + Bb) |
12. (Ba/Bb) * (Ba/Bb) |
13. Ba/Bb − Ba/Bc |
14. Ba − (Bb + Bc)/2 |
15. Ba/(Bb + Bc) |
Band | Centre (nm) | L2 Product | L2 Product Description |
---|---|---|---|
1 | 400 | iop_apig | Absorption coefficient of phytoplankton pigments at 443 nm (m−1) |
2 | 412.5 | iop_adet | Absorption coefficient of detritus at 443 nm (m−1) |
3 | 442.5 | iop_agelb | Absorption coefficient of coloured dissolved organic matter (CDOM) at 443 nm (m−1) |
4 | 490 | iop_bpart | Scattering coefficient of marine particles at 443 nm (m−1) |
5 | 510 | iop_bwit | Scattering coefficient of white particles at 443 nm (m−1) |
6 | 560 | iop_adg | Detritus + CDOM absorption at 443 nm (m−1) |
7 | 620 | iop_atot | Phytoplankton + detritus + CDOM absorption at 443 nm (m−1) |
8 | 665 | iop_btot | Total particle scattering at 443 nm (m−1) |
9 | 673.75 | kd489 | Irradiance attenuation coefficient (Kd) at 489 nm (m−1) |
10 | 681.25 | kdmin | Mean Kd at the three bands with minimum Kd (m−1) |
11 | 708.75 | kd_z90max | Depth where 90% of the water-leaving irradiance comes from (m−1) |
12 | 753.75 | conc_tsm | TSS dry weight concentration (g m−3) |
16 | 778.75 | conc_chl | Chl-a concentration (µg L−1) |
17 | 865 | ||
18 | 885 |
Unique Stations | TN µmolN L−1 | TP µmolP L−1 | TN:TP | Chl-a mg m−3 | SD m | |
---|---|---|---|---|---|---|
R1 | 12 | 23.2 (139) | 0.82 (139) | 32.5 (139) | 6.8 (105) | 3.3 (113) |
Spring | 22.5 (73) | 0.88 (73) | 30.4 (73) | 7.8 (59) | 3.4 (60) | |
Summer | 23.9 (66) | 0.75 (66) | 34.8 (66) | 5.6 (46) | 3.2 (53) | |
R2 | 4 | 37.6 (87) | 0.61 (97) | 65 (87) | 8.9 (78) | 1.2 (93) |
Spring | 45.1 (45) | 0.57 (55) | 80.9 (45) | 10.7 (42) | 1.3 (52) | |
Summer | 29.6 (42) | 0.66 (42) | 47.9 (42) | 6.7 (36) | 1.1 (41) | |
R3 | 16 | 20.9 (204) | 0.74 (208) | 31.8 (204) | 6.4 (205) | 4.7 (170) |
Spring | 20.6 (135) | 0.78 (138) | 29.8 (134) | 6.9 (136) | 5.3 (115) | |
Summer | 21.5 (70) | 0.64 (70) | 35.7 (70) | 5.3 (69) | 3.7 (55) | |
R4 | 17 | 18.6 (117) | 0.56 (117) | 35.7 (117) | 4.5 (106) | 5.8 (89) |
Spring | 17.6 (64) | 0.59 (64) | 32.7 (64) | 5.0 (57) | 6.6 (49) | |
Summer | 19.9 (53) | 0.53 (53) | 39.3 (53) | 4.0 (49) | 4.7 (40) | |
R5 | 7 | 20.6 (47) | 0.44 (47) | 58.5 (47) | 2.1 (26) | 4.1 (41) |
Spring | 21.8 (22) | 0.38 (22) | 76.8 (22) | 1.2 (13) | 4.5 (21) | |
Summer | 19.6 (25) | 0.49 (25) | 42.3 (25) | 2.9 (12) | 3.8 (20) | |
R6 | 7 | 25.9 (114) | 0.62 (122) | 45.6 (114) | 7.2 (121) | 2.4 (95) |
Spring | 26.8 (63) | 0.63 (71) | 46.0 (63) | 9.0 (70) | 2.4 (54) | |
Summer | 24.9 (51) | 0.60 (51) | 45.2 (51) | 4.8 (51) | 2.4 (41) | |
R1–R6 | 63 | 23.8 (708) | 0.67 (730) | 40.7 (708) | 6.4 (641) | 3.7 (601) |
Spring | 24.3 (401) | 0.70 (423) | 41.2 (401) | 7.4 (377) | 4.0 (351) | |
Summer | 23.3 (307) | 0.63 (307) | 39.9 (307) | 5.1 (264) | 3.1 (250) |
Chl-a | SD | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TN | TP | TN | TP | ||||||||||
R2 | n | p | R2 | n | p | R2 | n | p | R2 | n | p | ||
All dataset | Spring | 0.05 | 355 | 0.000 | 0.07 | 377 | 0.000 | 0.27 | 329 | 0.000 | 0.00 | 351 | 0.685 |
Summer | 0.06 | 264 | 0.000 | 0.12 | 264 | 0.000 | 0.20 | 250 | 0.000 | 0.06 | 250 | 0.000 | |
R1 | Spring | 0.18 | 59 | 0.001 | 0.08 | 59 | 0.035 | 0.14 | 60 | 0.003 | 0.00 | 60 | 0.858 |
Summer | 0.30 | 46 | 0.000 | 0.11 | 46 | 0.021 | 0.05 | 53 | 0.006 | 0.02 | 53 | 0.367 | |
R2 | Spring | 0.03 | 32 | 0.307 | 0.01 | 42 | 0.646 | 0.01 | 42 | 0.651 | 0.10 | 52 | 0.024 |
Summer | 0.07 | 36 | 0.108 | 0.07 | 36 | 0.124 | 0.15 | 41 | 0.013 | 0.24 | 41 | 0.001 | |
R3 | Spring | 0.04 | 132 | 0.021 | 0.18 | 136 | 0.000 | 0.02 | 111 | 0.123 | 0.10 | 115 | 0.001 |
Summer | 0.04 | 69 | 0.094 | 0.01 | 69 | 0.375 | 0.10 | 55 | 0.020 | 0.00 | 55 | 0.700 | |
R4 | Spring | 0.00 | 57 | 0.768 | 0.36 | 57 | 0.000 | 0.01 | 49 | 0.418 | 0.00 | 49 | 0.828 |
Summer | 0.03 | 49 | 0.233 | 0.11 | 49 | 0.019 | 0.03 | 40 | 0.269 | 0.26 | 40 | 0.001 | |
R5 | Spring | 0.01 | 13 | 0.717 | 0.11 | 13 | 0.280 | 0.04 | 21 | 0.385 | 0.24 | 21 | 0.025 |
Summer | 0.30 | 13 | 0.054 | 0.00 | 13 | 0.999 | 0.09 | 20 | 0.208 | 0.38 | 20 | 0.004 | |
R6 | Spring | 0.00 | 62 | 0.792 | 0.00 | 70 | 0.633 | 0.11 | 46 | 0.022 | 0.02 | 54 | 0.373 |
Summer | 0.04 | 51 | 0.164 | 0.07 | 51 | 0.053 | 0.01 | 41 | 0.520 | 0.16 | 41 | 0.009 |
April–Nov | May–Sept | April–May | June–Sept | April–June | July–Sept | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | R2 | n | R2 | n | R2 | n | R2 | n | R2 | n | R2 | |
No regions | 719 | 0.49 | 620 | 0.50 | 245 | 0.64 | 463 | 0.31 | 401 | 0.53 | 307 | 0.44 |
R1 | 143 | 0.17 | 119 | 0.14 | 42 | 0.46 | 97 | 0.17 | 73 | 0.31 | 66 | 0.21 |
R2 | 87 | 0.66 | 82 | 0.68 | 33 | 0.55 | 54 | 0.65 | 45 | 0.66 | 42 | 0.71 |
R3 | 205 | 0.14 | 175 | 0.09 | 78 | 0.18 | 126 | 0.14 | 134 | 0.15 | 70 | 0.19 |
R4 | 121 | 0.10 | 99 | 0.14 | 43 | 0.32 | 74 | 0.15 | 64 | 0.13 | 53 | 0.22 |
R5 | 47 | 0.16 | 43 | 0.15 | 9 | 0.68 | 38 | 0.22 | 22 | 0.19 | 25 | 0.51 |
R6 | 116 | 0.08 | 102 | 0.11 | 40 | 0.20 | 74 | 0.12 | 63 | 0.12 | 51 | 0.17 |
R1 + R3 | 348 | 0.16 | 294 | 0.12 | 120 | 0.30 | 223 | 0.13 | 207 | 0.22 | 136 | 0.15 |
R2 + R6 | 203 | 0.59 | 184 | 0.62 | 73 | 0.60 | 128 | 0.46 | 108 | 0.61 | 93 | 0.61 |
R4 + R5 | 168 | 0.09 | 142 | 0.08 | 52 | 0.20 | 112 | 0.09 | 86 | 0.18 | 78 | 0.16 |
Region | Season | Formula | R2 | p-Value | Mean | RMSE | MAPE | Bias |
---|---|---|---|---|---|---|---|---|
No regions | Spring | B16 * B17/B5 | 0.53 | <0.001 | 24.3 | 7.6 | 19.9 | 0.0 |
Summer | B18/B4 − B18/B5 | 0.44 | <0.001 | 23.2 | 4.5 | 16.0 | 0.0 | |
R1 | Spring | (B8 − B10) * B17 | 0.31 | <0.001 | 23.2 | 3.9 | 14.3 | 0.0 |
Summer | (B8 + B18)/B10 | 0.21 | <0.001 | 23.9 | 3.6 | 11.3 | 0.0 | |
R2 | Spring | (B4 + B17)/B5 | 0.66 | <0.001 | 45.1 | 11.2 | 21.7 | 0.0 |
Summer | B16/B6 − B16/B7 | 0.71 | <0.001 | 29.6 | 5.2 | 15.3 | 0.0 | |
R3 | Spring | B7 * kdmin | 0.15 | <0.001 | 20.6 | 3.4 | 12.2 | 0.0 |
Summer | iop_btot/conc_tsm | 0.19 | <0.001 | 21.5 | 3.0 | 11.7 | 0.0 | |
R4 | Spring | iop_apig/iop_agelb | 0.13 | <0.004 | 17.6 | 2.8 | 14.1 | 0.0 |
Summer | B16/B6 − B16/B7 | 0.22 | <0.001 | 19.9 | 3.4 | 12.4 | 0.0 | |
R5 | Spring | B17/B11 − B17/B12 | 0.18 | 0.05 | 21.8 | 6.7 | 17.9 | 0.0 |
Summer | kd_z90max/B5 | 0.51 | <0.001 | 19.6 | 3.3 | 15.5 | 0.0 | |
R6 | Spring | (B2 − B10) * B9 | 0.12 | 0.006 | 26.8 | 6.7 | 18.1 | 0.0 |
Summer | conc_chl/iop_btot | 0.17 | 0.003 | 25.0 | 3.7 | 13.7 | 0.0 | |
R1–R6 combined | Spring | - | 0.75 | <0.001 | 24.3 | 5.6 | 15.2 | 0.0 |
Summer | - | 0.62 | <0.001 | 23.3 | 3.7 | 12.9 | 0.0 |
Region | Season | a ± 95%CI | b ± 95%CI | c ± 95%CI |
---|---|---|---|---|
No regions | Spring | −7404652 ± 1171571 | 37505 ± 4133 | 18.7 ± 0.9 |
Summer | 40004 ± 1810 | 114.4 ± 110.6 | 21.3 ± 0.86 | |
R1 | Spring | 1.9E+14 ± 9.1E+13 | −4.4E+07 ± 16436166 | 20.1 ± 1.3 |
Summer | 134.6 ± 142.8 | −259.8 ± 314.4 | 146.8 ± 173.3 | |
R2 | Spring | 843.3 ± 490.1 | −1452.6 ± 926.8 | 648.6 ± 431.9 |
Summer | 6723.3 ± 2037.9 | 504.6 ± 106.2 | 33.4 ± 2.6 | |
R3 | Spring | −8217.4 ± 89529.9 | 682.0 ± 811.6 | 19.1 ± 1.2 |
Summer | 15.1 ± 29.7 | −8.0 ± 38.9 | 22.2 ± 9.9 | |
R4 | Spring | 0.4 ± 0.3 | −2.7 ± 2.2 | 20.7 ± 3.0 |
Summer | −28849.5 ± 18696.6 | −3911.1 ± 2652.5 | −111.7 ± 93.6 | |
R5 | Spring | −101724 ± 125315 | −65036 ± 80636 | −10368 ± 12969 |
Summer | 0.0002 ± 0.0001 | −0.07 ± 0.04 | 25.4 ± 4.7 | |
R6 | Spring | −9.2E+08 ± 667741628 | −146626 ± 105740 | 26.5 ± 1.8 |
Summer | 4.5 ± 3.9 | −10.2 ± 7.3 | 29.2 ± 3.0 |
April–Nov | May–Sept | April–May | June–Sept | April–June | July–Sept | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | R2 | n | R2 | n | R2 | n | R2 | n | R2 | n | R2 | |
No regions | 741 | 0.11 | 629 | 0.06 | 267 | 0.16 | 463 | 0.09 | 423 | 0.14 | 307 | 0.15 |
R1 | 143 | 0.09 | 119 | 0.04 | 42 | 0.26 | 97 | 0.06 | 73 | 0.17 | 66 | 0.20 |
R2 | 97 | 0.30 | 87 | 0.37 | 43 | 0.26 | 54 | 0.47 | 55 | 0.24 | 42 | 0.70 |
R3 | 209 | 0.18 | 175 | 0.05 | 82 | 0.25 | 126 | 0.09 | 138 | 0.23 | 70 | 0.33 |
R4 | 121 | 0.26 | 99 | 0.17 | 43 | 0.46 | 74 | 0.18 | 64 | 0.42 | 53 | 0.32 |
R5 | 47 | 0.34 | 43 | 0.45 | 9 | 0.78 | 38 | 0.43 | 22 | 0.34 | 25 | 0.52 |
R6 | 124 | 0.08 | 106 | 0.15 | 48 | 0.27 | 74 | 0.21 | 71 | 0.20 | 51 | 0.41 |
R1 + R3 | 352 | 0.11 | 294 | 0.04 | 124 | 0.21 | 223 | 0.05 | 211 | 0.20 | 136 | 0.12 |
R2 + R6 | 221 | 0.10 | 193 | 0.20 | 91 | 0.15 | 128 | 0.27 | 126 | 0.09 | 93 | 0.43 |
R4 + R5 | 168 | 0.28 | 142 | 0.19 | 52 | 0.46 | 112 | 0.20 | 86 | 0.45 | 78 | 0.25 |
Region | Season | Formula | R2 | p-Value | Mean | RMSE | MAPE | Bias |
---|---|---|---|---|---|---|---|---|
No regions | Spring | (B2 + B5)/B4 | 0.14 | <0.001 | 0.70 | 0.31 | 33.5 | 0.0 |
Summer | conc_tsm/B4 | 0.15 | <0.001 | 0.63 | 0.20 | 25.4 | 0.0 | |
R1 | Spring | (B8 − B10) * B1 | 0.17 | <0.001 | 0.88 | 0.44 | 36.9 | 0.0 |
Summer | kd489/iop_agelb | 0.20 | <0.001 | 0.75 | 0.23 | 27.5 | 0.0 | |
R2 | Spring | (B9/B3) * (B9/B3) | 0.24 | <0.001 | 0.57 | 0.10 | 15.1 | 0.0 |
Summer | B17 * B18/B3 | 0.70 | <0.001 | 0.66 | 0.12 | 15.5 | 0.0 | |
R3 | Spring | (B10/B9) * (B10/B9) | 0.23 | <0.001 | 0.78 | 0.28 | 25.9 | 0.0 |
Summer | B5/(B4 + B10) | 0.33 | <0.001 | 0.64 | 0.15 | 18.9 | 0.0 | |
R4 | Spring | iop_atot/iop_agelb | 0.42 | <0.001 | 0.60 | 0.15 | 22.8 | 0.0 |
Summer | B16/B4 − B16/B9 | 0.32 | <0.001 | 0.53 | 0.11 | 15.6 | 0.0 | |
R5 | Spring | iop_bpart * conc_chl | 0.34 | 0.004 | 0.38 | 0.13 | 43.8 | 0.0 |
Summer | iop_apig * iop_adg | 0.52 | <0.001 | 0.49 | 0.11 | 20.6 | 0.0 | |
R6 | Spring | (B16/B5) * (B16/B5) | 0.20 | <0.001 | 0.63 | 0.19 | 23.2 | 0.0 |
Summer | iop_adg * kdmin | 0.41 | <0.001 | 0.60 | 0.14 | 20.6 | 0.0 | |
R1–R6 combined | Spring | - | 0.34 | <0.001 | 0.70 | 0.27 | 26.4 | 0.0 |
Summer | - | 0.46 | <0.001 | 0.63 | 0.16 | 20.1 | 0.0 |
Region | Season | a ± 95%CI | b ± 95%CI | c ± 95%CI |
---|---|---|---|---|
No regions | Spring | 8.7 ± 5.4 | −28.2 ± 18.5 | 23.4 ± 15.8 |
Summer | 3.8E−10 ± 3.4E−09 | 4.5E−05 ± 2.9E−05 | 0.5 ± 0.04 | |
R1 | Spring | 4.8E+11 ± 4.6E+11 | −787,522 ± 429,007 | 0.7 ± 0.2 |
Summer | 0.004 ± 0.002 | −0.08 ± 0.04 | 1.1 ± 0.2 | |
R2 | Spring | −0.0005 ± 0.0002 | 0.02 ± 0.009 | 0.5 ± 0.06 |
Summer | −41,430 ± 46,114 | 342.2 ± 141.5 | 0.5 ± 0.06 | |
R3 | Spring | 44.9 ± 32.1 | −90.3 ± 67.2 | 46.0 ± 35.1 |
Summer | 23.7 ± 8.2 | −35.9 ± 12.5 | 14.1 ± 4.7 | |
R4 | Spring | 0.001 ± 0.004 | 0.02 ± 0.06 | 0.4 ± 0.2 |
Summer | −373.6 ± 210.5 | −92.4 ± 55.3 | −5.1 ± 3.6 | |
R5 | Spring | −0.0009 ± 0.001 | 0.05 ± 0.05 | 0.2 ± 0.2 |
Summer | 210.2 ± 104.9 | −17.0 ± 10.3 | 0.7 ± 0.2 | |
R6 | Spring | 16.3 ± 7.9 | −3.5 ± 1.8 | 0.7 ± 0.08 |
Summer | −0.15 ± 0.06 | 0.6 ± 0.2 | 0.5 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soomets, T.; Toming, K.; Jefimova, J.; Jaanus, A.; Põllumäe, A.; Kutser, T. Deriving Nutrient Concentrations from Sentinel-3 OLCI Data in North-Eastern Baltic Sea. Remote Sens. 2022, 14, 1487. https://doi.org/10.3390/rs14061487
Soomets T, Toming K, Jefimova J, Jaanus A, Põllumäe A, Kutser T. Deriving Nutrient Concentrations from Sentinel-3 OLCI Data in North-Eastern Baltic Sea. Remote Sensing. 2022; 14(6):1487. https://doi.org/10.3390/rs14061487
Chicago/Turabian StyleSoomets, Tuuli, Kaire Toming, Jekaterina Jefimova, Andres Jaanus, Arno Põllumäe, and Tiit Kutser. 2022. "Deriving Nutrient Concentrations from Sentinel-3 OLCI Data in North-Eastern Baltic Sea" Remote Sensing 14, no. 6: 1487. https://doi.org/10.3390/rs14061487