Approach towards a Holistic Management of Research Data in Planetary Science—Use Case Study Based on Remote Sensing Data
Abstract
:1. Introduction and Background
2. Method
2.1. System Design: Inventory, Requirements, and Use Case
2.2. Adaption and Implementation
2.3. Evaluation
3. Towards the Prototype
3.1. Inventorizing Institutional Divers in Topics and Data
3.2. User and System Requirements
- UR#1: The system shall manage available planetary research data that need to be further analysed and visualised;
- UR#2: The system shall provide a semantic and physical link between different kinds of planetary research data, which also include publication material;
- UR#3: Besides visualisation, planetary research data shall be made available for further scientific investigations;
- UR#4: For the purpose of the reusability of planetary research data, further information such as nomenclature, versioning, licensing, and citation shall be provided;
- UR#5: To reflect different levels of data access, permissions within the research data management system (for example, intermediate data, which are not published, yet) and access restriction are necessary;
- UR#6: The source code of the entire system/framework shall be made publicly available and follow open-access guidelines;
- UR#7: The research data management system must be intuitive and easy to use for people without in-depth GIS knowledge, as planetary researchers might not necessarily have a background in GIS applications. Furthermore, the system shall follow basic user interface (UI) guidelines and build on UI experiences in order to motivate its use;
- UR#8: The system must provide a manual to guide users.
- SR#1: The research data management system must contain a storage and a visualisation component for spatial data. Derived from UR#1;
- SR#2: The system shall allow different kinds of queries: spatial coordinate-based ones and attributive-keyword-based ones (e.g., semantic data retrieval). Derived from UR#2;
- SR#3: Spatial data shall be made available via standardised interfaces (e.g., WMS or WFS). Derived from UR#3;
- SR#4: Spatial data must contain (or be associated with) detailed metadata. Derived from UR#4;
- SR#5: A login page shall be created for controlled user access. Derived from UR#5;
- SR#6: The system must be built completely on open-source components. Open source is particularly useful when technology made for geodata has to be adjusted for data from other planetary bodies. Derived from UR#6;
- SR#7: The research data management system must be web-based in order to benefit from existing state-of-the-art web GIS technology. Moreover, web-based technology guarantees platform independence. Thus, the system will work with major desktop web browsers such as Mozilla Firefox, Google Chrome, or Microsoft Edge. Derived from UR#7;
- SR#8: A short PDF manual is provided. Derived from UR#8.
3.3. Use Case and Sample Dataset
- High-Altitude Mapping Orbiter (HAMO) global digital mosaic (see Figure 2, left part/centre):This high-resolution, controlled mosaic of Ceres based on ortho-rectified images taken by Dawn’s Framing Camera (FC) during the first cycle in HAMO depicts the surface at a resolution of about 140 m/px. The data product is also the basis for a high-resolution Ceres atlas that consists of 15 tiles mapped at a scale of 1:750,000. In detail, this dataset was described by Roatsch et al. [66];
- High-Altitude Mapping Orbiter (HAMO) global digital terrain model (DTM) (see Figure 2, left part/top):The HAMO DTM covers approximately 98% of Ceres’s surface. A multi-image matching process with 10,000 individual images at full resolution yields 2.8 billion object points. The global mosaic has a lateral pixel spacing of about 135 m/px (60 pixel/degree) and a vertical accuracy of about 10 m [67];
- Low-Altitude Mapping Orbiter (LAMO) tiles (see Figure 2, left part/bottom):For these datasets, ortho-rectified images with a resolution of about 35 m/px from the first four LAMO cycles were taken and used to derive a global, high-resolution, uncontrolled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 62 tiles mapped at a scale of 1:250,000. More details are provided in Roatsch et al. [68];
- Geologic and geomorphologic map (see Figure 2, right part):These mapping results were acquired during the nominal mission of Ceres (March 2015–June 2016) in order to support the analyses conducted by the Dawn Science Team [69]. The maps were based on a tiling scheme following the recommendations by Batson [70] and divided the surface into 15 quadrangles (HAMO, 140 m/px [66]). A quadrangle was mapped by one researcher/mapper, and in order to create matching datasets at the end, the mapping and cartographic process followed state-of-the-art approaches in cartography and GIS, which included the developments of the cartographic concept, guidance for mappers, and the implementation and merging of all GIS-based mapping data. The GIS-based geologic dataset is divided into 15 individual quadrangles, as well as a global dataset. Both products contain identical attributive and visual description items (see more [63,64,65,71]).
4. Implementation of the Prototype
4.1. Backend
4.2. Frontend
- TypeScript: TypeScript is a programming language initially developed by Microsoft. It is designed for the implementation of large-scale applications and expands JavaScript by functionalities such as static typing. TypeScript programs transcompile to plain JavaScript [77];
- Angular: Angular is a generic TypeScript-based framework for the development of complex web applications. Its first version was introduced in 2016 by Google. Currently, Angular has become one of the most widespread frameworks for developing mobile and desktop-based web applications [78];
- Clarity: Clarity is an open-source design system developed by VMWare that combines UX guidelines, an HTML/CSS framework, Angular components, and web components [79];
- OpenLayers: OpenLayers is a JavaScript library for integrating maps into web-based applications [80].
5. Evaluation and Discussion
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- PSA—Planetary Science Archive. 2021. Available online: https://www.cosmos.esa.int/web/psa/psa-introduction (accessed on 4 October 2021).
- Besse, S.; Vallat, C.; Barthelemy, M.; Coia, D.; Costa, M.; De Marchi, G.; Fraga, D.; Grotheer, E.; Heather, D.; Lim, T.; et al. ESA’s Planetary Science Archive: Preserve and present reliable scientific datasets. Planet. Space Sci. 2018, 150, 131–140. [Google Scholar] [CrossRef]
- PDS—Planetary Data System. 2021. Available online: https://pds.nasa.gov/ (accessed on 4 October 2021).
- JAXA—Japan Aerospace Exploration Agency Digital Archives. 2021. Available online: http://jda.jaxa.jp/en/ (accessed on 4 October 2021).
- NAOC—National Astronomical Observatories of China. 2021. Available online: http://english.nao.cas.cn/ (accessed on 4 October 2021).
- EMM—Emirates Mars Mission (EMM) Science Data Center. 2022. Available online: https://sdc.emiratesmarsmission.ae/ (accessed on 17 January 2022).
- Glass, G.V. Primary, Secondary, and Meta-Analysis of Research. Educ. Res. 1976, 5, 3–8. [Google Scholar] [CrossRef]
- Hox, J.; Boeije, H. Data collection, primary versus secondary. Encycl. Soc. Meas. 2005, 1, 593–599. [Google Scholar] [CrossRef]
- Laura, J.R.; Beyer, R.A. Knowledge Inventory of Foundational Data Products in Planetary Science. Planet. Sci. J. 2021, 2, 18. [Google Scholar] [CrossRef]
- Davies, G.; Mason, N.; Green, S.; Gómez, F.; Prieto-Ballesteros, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J. Europlanet Research Infrastructure: Planetary Simulation Facilities. EPSC Abstracts 2009, Number 63 in 4. Available online: https://www.researchgate.net/publication/224999507_Europlanet_Research_Infrastructure_Planetary_Simulation_Facilities (accessed on 2 December 2021).
- Europlanet. TA2 Distributed Planetary Laboratory Facility. 2021. Available online: https://www.europlanet-society.org/europlanet-2024-ri/ta2-dplf/ (accessed on 4 October 2021).
- Erard, S.; Cecconi, B.; Le Sidaner, P.; Chauvin, C.; Rossi, A.P.; Minin, M.; Capria, T.; Ivanovski, S.; Schmitt, B.; Génot, V.; et al. Virtual European Solar and Planetary Access (VESPA): A Planetary Science Virtual Observatory Cornerstone. Data Sci. J. 2020, 19. [Google Scholar] [CrossRef]
- OECD. Making Open Science a Reality. Oecd Sci. Technol. Ind. Policy Pap. 2015. [Google Scholar] [CrossRef]
- Bourne, P.; Clark, T.; Dale, R.; de Waard, A.; Herman, I.; Hovy, E.; Shotton, D. Improving The Future of Research Communications and e-Scholarship (Dagstuhl Perspectives Workshop 11331). Dagstuhl Manifestos 2012, 41–60. [Google Scholar] [CrossRef]
- Corti, L.; Van den Eynden, V.; Bishop, L.; Woollard, M. Managing and Sharing Research Data: A Guide to Good Practice, 2nd ed.; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Faundeen, J.L.; Burley, T.E.; Carlino, J.; Govoni, D.L.; Henkel, H.S.; Holl, S.; Hutchison, V.B.; Martín, E.; Montgomery, E.T.; Ladino, C.C.; et al. The United States Geological Survey Science Data Life Cycle Model; U.S. Geological Survey: Reston, VA, USA, 2018. [CrossRef]
- RDA—Research Data Sharing without Barriers. 2021. Available online: https://www.rd-alliance.org (accessed on 4 October 2021).
- GO FAIR. GO FAIR Initiative: Make Your Data & Services FAIR. 2021. Available online: https://www.go-fair.org (accessed on 4 October 2021).
- CODATA. The Committee on Data for Science and Technology. 2021. Available online: https://codata.org (accessed on 4 October 2021).
- Figshare—Credit for All Your Research. 2021. Available online: https://figshare.com (accessed on 4 October 2021).
- CERN. Zenodo—Research. Shared. 2021. Available online: https://www.zenodo.org (accessed on 4 October 2021).
- AWI and MARUM. PANGAEA. Data Publisher for Earth & Environmental Science. Available online: https://www.pangaea.de (accessed on 4 October 2021).
- NFDI—Nationale Forschungsdateninfrastruktur e. V. 2021. Available online: https://www.europlanet-society.org/europlanet-2024-ri/ta2-dplf/ (accessed on 4 October 2021).
- European Commission. European Open Science Cloud (EOSC)—European Commission. 2021. Available online: https://ec.europa.eu/info/research-and-innovation/strategy/strategy-2020-2024/our-digital-future/open-science/european-open-science-cloud-eosc_en (accessed on 4 October 2021).
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; Da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [Green Version]
- Scharl, A.; Tochtermann, K. The Geospatial Web: How Geobrowsers, Social Software and the Web 2.0 Are Shaping the Network Society; Springer: Berlin/Heidelberg, Germany, 2007; Volume 18. [Google Scholar]
- Barthelemy, M.; Martinez, S.; Heather, D.; Vazquez, J.L.; Arviset, C.; Osuna, P.; PSA development Team. The PSA: Planetary Science Archive. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 22 March 2012; p. 4521. [Google Scholar]
- PSA. PSA Search Interface. 2022. Available online: https://archives.esac.esa.int/psa/#!Home (accessed on 28 February 2022).
- Bennett, K.; Scholes, D.; Arvidson, R.; Slavney, S.; Guinness, E.; Stein, T. Accessing Mars Data Using PDS Geosciences Node’s Orbital Data Explorer. In Proceedings of the 39th Annual Lunar and Planetary Science Conference, League City, TX, USA, 10–14 March 2008; Volume 39, p. 1379. [Google Scholar]
- ODE—Orbital Data Explorer. 2022. Available online: https://ode.rsl.wustl.edu (accessed on 28 February 2022).
- Hare, T.M.; Tanaka, K.L. Planetary Geographic INformation System (GIS) on the web. In Proceedings of the 30th Annual Lunar and Planetary Science Conference, Houston, TX, USA, 15–19 March 1999; p. 1456. [Google Scholar]
- Soltesz, D.L.; Peck, B.A.; Hare, T.M.; Barrett, J.M.; Sucharski, B.M.; Garcia, P.A.; Blue, J.S. Map-a-Planet: Extending and Improving the Creation of Cartographic Image Maps on the Web. In Proceedings of the 38th Annual Lunar and Planetary Science Conference, Lunar and Planetary Science Conference, League City, TX, USA, 12–16 March 2007; p. 1921. [Google Scholar]
- Akins, S.W.; Hare, T.; Sucharski, R.M.; Gaddis, L.; Shute, J.; Gaither, T.; Richie, J. Map-A-Planet 2 Mosaic Projection Web Service. In Proceedings of the 45th Annual Lunar and Planetary Science Conference, Woodlands, TX, USA, 17–21 March 2014; p. 2047. [Google Scholar]
- Christensen, P.R.; Engle, E.; Anwar, S.; Dickenshied, S.; Noss, D.; Gorelick, N.; Weiss-Malik, M. JMARS—A Planetary GIS. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 29 October 2009; Volume 2009, p. IN22A–06. [Google Scholar]
- ASU. JMars. 2021. Available online: https://jmars.asu.edu/ (accessed on 14 October 2021).
- Marco Figuera, R.; Pham Huu, B.; Rossi, A.; Minin, M.; Flahaut, J.; Halder, A. Online characterization of planetary surfaces: PlanetServer, an open-source analysis and visualization tool. Planet. Space Sci. 2018, 150, 141–156. [Google Scholar] [CrossRef] [Green Version]
- Walter, S.; Muller, J.P.; Sidiropoulos, P.; Tao, Y.; Gwinner, K.; Putri, A.; Kim, J.R.; Steikert, R.; Gasselt, S.; Michael, G.; et al. The Web-Based Interactive Mars Analysis and Research System for HRSC and the iMars Project. Earth Space Sci. 2018, 5, 308–323. [Google Scholar] [CrossRef]
- Karachevtseva, I.; Garov, A.; Zubarev, A.; Matveev, E.; Kokhanov, A.; Zharkova, A. Geoportal of planetary data: Concept, methods and implementations. In Planetary Remote Sensing and Mapping; Wu, B., Di, K., Oberst, J., Karachevtseva, I., Eds.; Taylor & Francis: Abingdon, UK, 2018; pp. 315–329. [Google Scholar] [CrossRef]
- NASA. SolarSystemTrek. 2021. Available online: https://trek.nasa.gov/# (accessed on 14 October 2021).
- PostgreSQL. The World’s Most Advanced Open Source Relational Database. 2021. Available online: https://www.postgresql.org (accessed on 4 October 2021).
- OSGeo. GeoServer. 2021. Available online: http://www.geoserver.org (accessed on 4 October 2021).
- ECMA. ECMAScript® 2019 Language Specification. 2019. Available online: https://262.ecma-international.org/10.0/ (accessed on 4 October 2021).
- OGC. Web Map Service. 2021. Available online: https://www.ogc.org/standards/wms (accessed on 4 October 2021).
- OGC. Web Feature Service. 2021. Available online: https://www.ogc.org/standards/wfs (accessed on 4 October 2021).
- DFD—German Remote Sensing Data Center. Available online: https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-5278/8856_read-15911/ (accessed on 4 October 2021).
- Royce, W. Managing the Development of Large Software Systems: Concepts and Techniques; ICSE ’87: Monterey, CA, USA, 1987. [Google Scholar]
- ISO—International Standardization Organization. Systems and Software Engineering—Systems and Software Quality Requirements and Evaluation (SQuaRE)—Planning and Management; Technical Report Technical Report ISO/IEC 25001:2014, ISO/IEC JTC 1/SC 7; International Standardization Organization: Geneva, Switzerland, 2014. [Google Scholar]
- ISO—International Standardization Organization. Systems and Software Engineering—Software Product Quality Requirements and Evaluation (SQuaRE)—Common Industry Format (CIF) for Usability: User Requirements Specification; Technical Report Technical Report 25065:2019, ISO/TC 159/SC 4; International Standardization Organization: Geneva, Switzerland, 2019. [Google Scholar]
- OGC—Open Geospatial Consortium. GeoTIFF Standard. 2019. Version 1.1. Available online: https://www.ogc.org/standards/geotiff (accessed on 4 October 2021).
- NASA. VICAR User’s Guide. Version 3 (14-October-1994). Available online: https://www-mipl.jpl.nasa.gov/PAG/public/vug/vugfinal.html (accessed on 4 October 2021).
- NASA. FITS FITS Official Reference Document. Version 4.0 (13 August 2018). Available online: https://fits.gsfc.nasa.gov/fits_standard.html (accessed on 4 October 2021).
- ISIS—Integrated Software for Imagers and Spectrometers. Logical Cube Format Guide, USGS Website. 2003. Available online: https://isis.astrogeology.usgs.gov/documents/LogicalCubeFormatGuide/LogicalCubeFormatGuide.html (accessed on 2 December 2021).
- Skinner, J.; Huff, A.; Fortezzo, C.; Gaither, T.; Hare, T.; Hunter, M.; Buban, H. Planetary geologic mapping—Program status and future needs. In Technical Report U.S. Geological Survey Open-File Report 2019–1012; United States Geological Survey: Washington, DC, USA, 2019. [Google Scholar] [CrossRef] [Green Version]
- Nass, A.; Asch, K.; van Gasselt, S.; Rossi, A.P.; Besse, S.; Cecconi, B.; Frigeri, A.; Hare, T.; Hargitai, H.; Manaud, N. Facilitating reuse of planetary spatial research data—Conceptualizing an open map repository as part of a Planetary Research Data Infrastructure. Planet. Space Sci. 2021, 204, 105269. [Google Scholar] [CrossRef]
- Wiliams, D. Geologic Mapping. In Planetary Mapping; Greeley, R., Batson, R.M., Eds.; Cambridge Planetary Science Series; Cambridge University Press: Cambridge, UK, 1990; pp. 208–259. [Google Scholar]
- Hauber, E.; Nass, A.; Skinner, J.A.; Huff, A. Planetary Geologic Mapping. In Planetary Cartography and GIS; Hargitai, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Hare, T.; Skinner, J.A.; Kirk, R. Cartography Tools. In Planetary Geology; Rossi, A.P., van Gasselt, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- van Gasselt, S.; Rossi, A.P.; Loizeau, D.; D’Amore, M. Exploration Tools. In Planetary Geology; Rossi, A.P., van Gasselt, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Greeley, R.; Batson, R.M. Planetary Mapping; Cambridge University Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Rossi, A.P.; van Gasselt, S. Planetary Mapping; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Hargitai, H. Planetary Cartography and GIS; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Nass, A.; D’Amore, M.; Helbert, J. Merged data models for multi-parameterized querying: Spectral data base meets GIS-based map archive. In Proceedings of the European Planetary Science Congress, Riga, Latvia, 17–22 September 2017. [Google Scholar]
- Nass, A.; Nelson, D.; Williams, D.; van Gasselt, S.; Jaumann, R.; Buczkowski, D.; Scully, J.; Mest, S. GIS-based Template for Geological Mapping—Ceres Use Case. In Proceedings of the ISPRS Workshop of Working Group IV/8: Planetary Mapping and Spatial Databases, Berlin, Germany, 24–25 September 2015. [Google Scholar]
- Nass, A.; the Dawn Mapping Team. One GIS-based data structure for geological mapping using 15 map sheets—Dawn at Ceres. In Proceedings of the Lunar and Planetary Science XLVIII, Number 1892 in Lunar and Planetary Institute Abstract, Houston, TX, USA, 20–24 March 2017. [Google Scholar]
- Nass, A. Review of a Compilation Process: A Map Package based on 15 individual Geological Maps of Ceres. In Proceedings of the EPSC-DPS Joint Meeting 2019, Geneva, Switzerland, 15–20 September 2019. [Google Scholar]
- Roatsch, T.; Kersten, E.; Matz, K.D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C.; Russell, C. High-resolution Ceres High Altitude Mapping Orbit atlas derived from Dawn Framing Camera images. Planet. Space Sci. 2016, 129, 103–107. [Google Scholar] [CrossRef]
- Preusker, F.; Scholten, F.; Matz, K.D.; Elgner, S.; Jaumann, R.; Roatsch, T.; Joy, S.; Polansky, C.; Raymond, C.; Russell, C. Dawn at Ceres—Shape model and rotational state. In Proceedings of the 47th LPSC Proceedings, Number 1954 in Lunar and Planetary Institute Abstract, Houston, TX, USA, 21–25 March 2016. [Google Scholar]
- Roatsch, T.; Kersten, E.; Matz, K.D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C.; Russell, C. High-resolution Ceres Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images. Planet. Space Sci. 2017, 140, 74–79. [Google Scholar] [CrossRef]
- Williams, D.A.; Buczkowski, D.L.; Mest, S.C.; Scully, J.E.; Platz, T.; Kneissl, T. Introduction: The geologic mapping of Ceres. Icarus 2018, 316, 1–13. [Google Scholar] [CrossRef]
- Batson, R.M. Map formats and projections used in planetary cartography. In Planetary Mapping; Cambridge Planetary Science, Series; Greeley, R., Batson, R.M., Eds.; Cambridge University Press: Cambridge, UK, 1990; pp. 261–276. [Google Scholar]
- Williams, D.D.A.; Buczkowski, D.; Crown, D.; Frigeri, A.; Hughson, K.; Kneissl, T.; Krohn, K.; Mest, S.; Pasckert, J.; Platz, T.; et al. Final Dawn LAMO-based Global geologic map of Ceres. In Proceedings of the 50th Lunar and Planetary Science Conference 2019, Woodlands, TX, USA, 18–22 March 2019. Number 1252 in LPI Contrib. No. 2083. [Google Scholar]
- Gallaugher, J.M.; Ramanathan, S.C. Choosing a Client/Server Architecture. Inf. Syst. Manag. 1996, 13, 7–13. [Google Scholar] [CrossRef]
- Apache Software Foundation. Apache Airflow. Available online: https://airflow.apache.org/ (accessed on 20 October 2021).
- PostGIS. PostGIS. Available online: https://www.postgis.net/ (accessed on 20 October 2021).
- Muehlbauer, M. Environmental and Crisis Information Systems (UKIS). Available online: https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-5413/10560_read-21914/ (accessed on 20 October 2021).
- Boeck, M.; Langbein, M.; Voinov, S.; Keim, S.; Volkmann, R.; Jaspersen, V.; Mühlbauer, M.; Friedemann, M.; Mandery, N.; Riedlinger, T. UKIS Frontend Libraries. Available online: https://github.com/dlr-eoc/ukis-frontend-libraries (accessed on 20 October 2021). [CrossRef]
- Typescriptlang. Typescriptlang. Available online: https://www.typescriptlang.org/ (accessed on 20 October 2021).
- Contributors, A. Angular. Available online: https://angular.io/ (accessed on 20 October 2021).
- VMWare. Clarity Design System. Available online: https://clarity.design/ (accessed on 20 October 2021).
- Open Layers. Open Layers. 2021. Available online: https://openlayers.org/ (accessed on 20 October 2021).
- proj4js. proj4js. 2021. Available online: http://proj4js.org/ (accessed on 20 October 2021).
- ELIB—Electronic Library (DLR). 2021. Available online: https://elib.dlr.de/ (accessed on 20 October 2021).
- Fielding, R.T.; Reschke, J.F. Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. RFC 2014, 7231, 1–101. [Google Scholar]
- OGC. OpenGIS Styled Layer Descriptor Profile of the Web Map Service Implementation Specification. In Technical Report Reference Number of This OGC Document 05-078r4; Open Geospatial Consortium: Rockville, MD, USA, 2007. [Google Scholar]
- Blewett, D.T.; Helbert, J.; D’Amore, M.; Maturilli, A.E.A. Mercury’s hollows: Constraints on formation and composition from analysis of geological setting and spectral reflectance. J. Geophys. Res. Planets 2013, 118, 1013–1032. [Google Scholar] [CrossRef] [Green Version]
- D’Incecco, P.; Helbert, J.; D’Amore, M.; Maturilli, A.E.A. Shallow crustal composition of Mercury as revealed by spectral properties and geological units of two impact craters. Planet. Space Sci. 2015, 119, 250–263. [Google Scholar] [CrossRef] [Green Version]
- D’Incecco, P.; Helbert, J.; D’Amore, M.; Ferrari, S.; Head, J.W.; Maturilli, A.E.A. A geologically supervised spectral analysis of 121 globally distributed impact craters as a tool for identifying vertical and horizontal heterogeneities in the composition of the shallow crust of Mercury. Planet. Space Sci. 2016, 132, 32–56. [Google Scholar] [CrossRef]
- Vilas, F.; Domingue, D.L.; Helber, J.; D’Amore, M.; Maturill, A.E.A. Mineralogical indicators of Mercury’s hollows composition in MESSENGER color observations. Geophys. Res. Lett. 2016, 43, 1450–1456. [Google Scholar] [CrossRef] [Green Version]
- Stephan, K.; Wagner, R.; Jaumann, R.; Clark, R.N.; Cruikshank, D.P.; Brown, R.H.; Giese, B.; Roatsch, T.; Filacchione, G.; Matson, D.; et al. Cassini’s geological and compositional view of Tethys. Icarus 2016, 274, 1–22. [Google Scholar] [CrossRef]
- Krohn, K.; Jaumann, R.; Otto, K.; Schulzeck, F.; Neesemann, A.; Nass, A.; Stephan, K.; Tosi, F.; Wagner, R.; Zambon, F.; et al. The unique geomorphology and structural geology of the Haulani crater of dwarf planet Ceres as revealed by geological mapping of equatorial quadrangle Ac-6 Haulani. Icarus 2018, 316, 84–98. [Google Scholar] [CrossRef] [Green Version]
- Adeli, S.; Hauber, E.; Michael, G.G.; Fawdon, P.; Smith, I.B.; Jaumann, R. Geomorphological evidence of localized stagnant ice deposits in Terra Cimmeria, Mars. J. Geophys. Res. Planets 2019, 124, 1525–1541. [Google Scholar] [CrossRef] [Green Version]
- Haack, D.; Adeli, S.; Hauber, E. Geological history of southeastern Gorgonum Chaos, Mars: A story of water and wind. J. Geophys. Res. Planets 2021, 126. [Google Scholar] [CrossRef]
- Malapert, J.C.; Hare, T.; Conway, S. Public Comment Requested: Planetary Domain Working Group Charter. Available online: https://www.ogc.org/standards/requests/236?utm_source=phplist816&utm_medium=email&utm_content=HTML&utm_campaign=OGC+to+form+new+Planetary+Domain+Working+Group3B+Public+Comment+sought+on+Draft+Charter (accessed on 20 October 2021).
- Malapert, J.C.; Hare, T.; Conway, S. OGC APIs. Open Geospatial Consortium—Applications. Available online: https://ogcapi.ogc.org/ (accessed on 20 October 2021).
- ISO—tInternational Standardization Organization. ISO 19115-1:2014—Geographic Information—Metadata—Part 1: Fundamentals. ISO 19115-1:2014. Available online: https://www.iso.org/standard/53798.html (accessed on 20 October 2021).
- DCMI—Dublin Core Metadata Initiative. 2021. Available online: https://dublincore.org/specifications/dublin-core/ (accessed on 20 October 2021).
- FGDC—Federal Geographic Data Committee. Content standard for Digital geospatial metadata (revised June 1998). In Technical Report Reference Number of This Document FGDC-STD-001-1998; Federal Geospatial Data Committee: Reston, VA, USA, 1998. [Google Scholar]
- FGDC—Federal Geographic Data Committee. Content standard for digital geospatial metadata: Extensions for Remote Sensing Metadata. In Technical Report Reference Number of This Document FGDC-STD-012-2002; Federal Geospatial Data Committee: Reston, VA, USA, 2002. [Google Scholar]
- PDS. Planetary Data System Standards Reference. In Technical Report Version 1.16.0, Planetary Data System. 2021. Available online: https://pds.nasa.gov/datastandards/documents/sr/current/StdRef_1.17.0.pdf (accessed on 2 December 2021).
- USGS—United States Geological Survey Astropedia—Lunar and Planetary Cartographic Catalog. Astropedia. Available online: https://astrogeology.usgs.gov/search?pmi-target=mercury (accessed on 20 October 2021).
- Nass, A.; van Gasselt, S.; Jaumann, R. Map Description and Management by Spatial Metadata: Requirements for Digital map legend for Planetary Geological and Geomorphological Mapping. In Proceedings of the ASPRS/CaGIS 2010 Fall Specialty Conference Proceedings, Orlando, FL, USA, 15–19 November 2010. [Google Scholar]
- Grasset, O.; Dougherty, M.; Coustenis, A.; Bunce, E.; Erd, C.; Titov, D.; Blanc, M.; Drossart, P.; Fletcher, L.; Hussmann, H.; et al. JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci. 2013, 78, 1–21. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nass, A.; Mühlbauer, M.; Heinen, T.; Böck, M.; Munteanu, R.; D’Amore, M.; Riedlinger, T.; Roatsch, T.; Strunz, G.; Helbert, J. Approach towards a Holistic Management of Research Data in Planetary Science—Use Case Study Based on Remote Sensing Data. Remote Sens. 2022, 14, 1598. https://doi.org/10.3390/rs14071598
Nass A, Mühlbauer M, Heinen T, Böck M, Munteanu R, D’Amore M, Riedlinger T, Roatsch T, Strunz G, Helbert J. Approach towards a Holistic Management of Research Data in Planetary Science—Use Case Study Based on Remote Sensing Data. Remote Sensing. 2022; 14(7):1598. https://doi.org/10.3390/rs14071598
Chicago/Turabian StyleNass, Andrea, Martin Mühlbauer, Torsten Heinen, Mathias Böck, Robert Munteanu, Mario D’Amore, Torsten Riedlinger, Thomas Roatsch, Günter Strunz, and Jörn Helbert. 2022. "Approach towards a Holistic Management of Research Data in Planetary Science—Use Case Study Based on Remote Sensing Data" Remote Sensing 14, no. 7: 1598. https://doi.org/10.3390/rs14071598
APA StyleNass, A., Mühlbauer, M., Heinen, T., Böck, M., Munteanu, R., D’Amore, M., Riedlinger, T., Roatsch, T., Strunz, G., & Helbert, J. (2022). Approach towards a Holistic Management of Research Data in Planetary Science—Use Case Study Based on Remote Sensing Data. Remote Sensing, 14(7), 1598. https://doi.org/10.3390/rs14071598