SkySat Data Quality Assessment within the EDAP Framework
Abstract
:1. Introduction
2. Materials and Methods
2.1. The SkySat Constellation
2.2. Test Site Characterization and Data
2.3. The EDAP Maturity Matrix
2.4. Image Quality Assessment Approaches
2.4.1. SNR Computation
- —mean signal; and
- —standard deviation of the signal.
- —signal;
- —noise; and
- , —reflectance values of the Lambertian targets.
2.4.2. MTF Computation
- ΔL—the differential radiance between the dark and bright part of the target.
- Lw—the width of the target in the direction of the MTF profile.
- α—the orientation angle α with respect to the direction of the MTF profile.
- LH—the height of the target in the orthogonal direction of the MTF profile.
- is the statistical variable of the ESF high-intensity (radiance) values;
- is the statistical variable of the ESF low-intensity (radiance) values; and
- ( are the corresponding statistics.
2.5. Radiometric Calibration Quality Assessment Approach
- Surface reflectance estimation from Sentinel-2 data for the ROIs (one per SkySat camera) (Figure 7).
- Estimation of Sentinel-2 BRDF model and correction. Here, the BRDF varies linearly against scattering angle, a linear relationship between the reflectance data and scattering angle is expressed, and this is used to normalize the data.
- BOA values for each Sentinel-2 channel are estimated on the basis of the SkySat image acquisition geometries.
- BOA spectrum computation by interpolating with an interval of 2 nm.
- Atmospheric parameters are obtained at the time of image acquisition from Copernicus Atmospheric Monitoring Service (CAMS).
- Generation the TOA Spectrum using the observation geometry, atmospheric parameters and the BOA spectrum.
- Image merge per observation date, camera, and band.
- Estimation of the MS TOA values from the merged images ().
- Production of simulated TOA values at SkySat band central wavelength () by convolving the TOA Spectrum using SkySat spectral response.
- Computation of the calibration ratio () and the percent difference between simulated and measured TOA values using Equation (6).
- is the measurement processed from the SkySat product;
- is the measurement obtained from the Sentinel-2 PICS data.
- are solar/view zenith angle;
- is the phase or scattering angle related to conventional angles; and
- is the “view-sun” relative azimuth angle.
2.6. Geometric Calibration Quality Assessment Approach
3. Results and Discussions
3.1. Image QA Results
3.2. Radiometric Calibration QA Results
Source | Band | Accuracy | Precision | Uncertainty |
---|---|---|---|---|
Blue | 10.72% | 5.69% | 12.14% | |
EDAP | Green | 8.18% | 6.53% | 10.46% |
Red | 11.23% | 4.55% | 12.11% | |
NIR | 9.70% | 4.71% | 10.78% | |
Blue | 8.58% | 26.77% | 28.11% | |
Planet | Green | 11.83% | 26.42% | 28.95% |
Red | 2.55% | 22.94% | 23.08% | |
NIR | 8.33% | 23.68% | 25.10% |
- is normalized reflectance difference;
- is the mean ;
- is the standard deviation of ; and
- is the root of squared sum of accuracy and precision values.
3.3. Geometric Calibration QA Results
3.4. SkySat Maturity Matrix
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mannan, R.; Halsall, K.; Albinet, C.; Ottavianelli, G.; Goryl, P.; Boccia, V.; Melchiorre, A.; Piro, A.; Giudici, D.; Fox, N.; et al. ESA’s Earthnet data assessment pilot: Paving the way for new space players. In Proceedings of the International Society for Optics and Photonics, Sensors, Systems, and Next-Generation Satellites XXIII, Strasbourg, France, 10 October 2019; p. 11151. [Google Scholar] [CrossRef]
- ESA EDAP, Earthnet Data Assessment Pilot Project. 2022. Available online: https://earth.esa.int/eogateway/activities/edap (accessed on 3 February 2022).
- Saunier, S.; Melchiorre, A.; Halsall, K.; Mannan, R.; Albinet, C.; Ottavianelli, G.; Goryl, P.; Boccia, V. EDAP Framework for the geometric validation of high resolution optical data. In Proceedings of the VH-RODA Workshop, Frascati, Italy, 18–22 November 2019. [Google Scholar] [CrossRef]
- Hunt, S.E.; Albinet, C.; Nickeson, J.; Hall, A.; Fox, N.; Boccia, V.; Goryl, P. A Quality Assurance Framework for Satellite Earth Observation Missions. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 11–16 July 2021; pp. 608–611. [Google Scholar] [CrossRef]
- Murthy, K.; Shearn, M.; Smiley, B.D.; Chau, A.H.; Levine, J.; Robinson, M.D. Sensors, Systems, and Next-Generation Satellites XVIII. In SKS-1: Very High-Resolution Imagery from a Small Satellite; Meynard, R., Neeck, S.P., Shimoda, H., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2014; Volume 9241, p. 92411E. [Google Scholar] [CrossRef]
- Planet Imagery Product Specifications, Planet. 2020. Available online: https://assets.planet.com/docs/Planet_Combined_Imagery_Product_Specs_letter_screen.pdf (accessed on 3 February 2022).
- EDAP.REP.001 Generic EDAP Best Practice Guidelines, 1.1, 23 May 2019. Technical Report. Available online: https://earth.esa.int/eogateway/activities/edap/edap-best-practice-guidelines (accessed on 1 February 2022).
- EDAP.REP.002 Optical Mission Quality Assessment Guidelines, 1.0, 16 October 2019. Technical Report. Available online: https://earth.esa.int/eogateway/documents/20142/37627/EDAP.REP.002_1.0-Optical-Mission-Quality-Assessment-Guidelines.pdf (accessed on 1 February 2022).
- Planet L1 Data Quality Report Q3 2020, Status of calibration and Data Quality for the SkySat Constellation; Technical Report Planet Labs: San Francisco, CA, USA, 2020.
- Brunn, A.; Gonzalez, A.; Lenhard, K.; Bahloul, S.; Grennberg, J.; Smith, N.; Kinney-Spano, E.; Zuleta, I. SkySat Initial Radiometric Correction and Radiometric Calibration. In Proceedings of the JACIE Workshop, College Park, MD, USA, 17–19 September 2018; Available online: https://calval.cr.usgs.gov/apps/sites/default/files/jacie/abrunnJACIESkySatAbsCalfin.pdf (accessed on 3 February 2022).
- Gonzalez, A. Absolute Calibration and Validation of SkySat Constellation. In Proceedings of the VH-RODA Workshop, Frascati, Italy, 18–22 November 2019. [Google Scholar]
- Smiley, B. Long Term Geometric Stability of the SkySat Constellation. In Proceedings of the JACIE Workshop, College Park, MD, USA, 17–19 September 2018; Available online: https://calval.cr.usgs.gov/apps/sites/default/files/jacie/bsmileyJACIE2018approveddraft.pdf (accessed on 3 February 2022).
- Aati, S.; Avouac, J.P. Optimization of Optical Image Geometric Modeling, Application to Topography Extraction and Topographic Change Measurements Using PlanetScope and SkySat Imagery. Remote Sens. 2020, 12, 3418. [Google Scholar] [CrossRef]
- Bhushan, S.; Shean, D.; Alexandrov, O.; Henderson, S. Automated digital elevation model (DEM) generation from very-high-resolution Planet SkySat triplet stereo and video imagery. ISPRS J. Photogramm. Remote Sens. 2021, 173, 151–165. [Google Scholar] [CrossRef]
- D’Angelo, P.; Kuschk, G.; Reinartz, P. Evaluation of skybox video and still image products. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-1, 95–99. [Google Scholar] [CrossRef] [Green Version]
- D’Angelo, P.; Máttyus, G.; Reinartz, P. Skybox image and video product evaluation. Int. J. Image Data Fusion 2016, 7, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Anger, J.; Ehret, T.; Facciolo, G. Parallax estimation for push-frame satellite imagery: Application to super-resolution and 3D surface modeling from SkySat products. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 11–16 July 2021; pp. 2679–2682. [Google Scholar]
- Valenzuela, A.Q.; Reyes, J.C.G. Comparative Study of the different versions of the General Image Quality Equation. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Enschede, The Netherlands, 10–14 June 2019; pp. 493–500. [Google Scholar] [CrossRef] [Green Version]
- The National Image Interpretability Rating Scales. Available online: https://irp.fas.org/imint/niirs.htm (accessed on 5 March 2022).
- Leachtenauer, J.C.; Malila, W.; Irvine, J.; Colburn, L.; Salvaggio, N. General image-quality equation: GIQE. Appl. Opt. 1997, 36, 8322–8328. [Google Scholar] [CrossRef] [PubMed]
- Baltsavias, E.; Kocaman, S.; Wolff, K. Analysis of Cartosat-1 images regarding image quality, 3D point measurement and DSM generation. Photogramm. Rec. 2008, 23, 305–322. [Google Scholar] [CrossRef]
- Gruen, A.; Kocaman, S. Optical Sensors High Resolution: Geometry Validation Methodology; Technical Report Submitted to ESA/ESRIN, RFQ/3-11780/06/I-OL; ETH Zurich, Institute of Geodesy and Photogrammetry: Zurich, Switzerland, 2008; 224p. [Google Scholar]
- Cosnefroy, H.; Leroy, M.; Briottet, X. Selection and characterization of Saharan and Arabian desert sites for the calibration of optical satellite sensors. Remote Sens. Environ. 1996, 58, 101–114. [Google Scholar] [CrossRef]
- Saunier, S.; Goryl, P.; Chander, G.; Santer, R.; Bouvet, M.; Collet, B.; Mambimba, A.; Aksakal, S.K. Radiometric, geometric, and image quality assessment of ALOS AVNIR-2 and PRISM sensors. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3855–3866. [Google Scholar] [CrossRef]
- Bouvet, M. Intercomparison of multispectral imagers over natural targets. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 2653–2664. [Google Scholar] [CrossRef]
- Murakami, H.; Tadono, T.; Imai, H.; Nieke, J.; Shimada, M. Improvement of AVNIR-2 Radiometric Calibration by Comparison of Cross-Calibration and Onboard Lamp Calibration. IEEE Trans. Geosci. Remote Sens. 2009, 47, 4051–4059. [Google Scholar] [CrossRef]
- Chander, G.; Meyer, D.J.; Helder, D.L. Cross calibration of the Landsat-7 ETM+ and EO-1 ALI sensor. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2821–2831. [Google Scholar] [CrossRef]
- Robinson, D. High-resolution imagery and video from SkySat-1. In Proceedings of the Joint Agency Commercial Imagery Evaluation (JACIE), Louisville, KY, USA, 26–28 March 2014. [Google Scholar]
- SkySat Instruments. Available online: https://earth.esa.int/eogateway/missions/skysat (accessed on 6 March 2022).
- Thome, K.J. Post-Launch Calibration of Satellite Sensors. In In-Flight Intersensor Radiometric Calibration Using Vicarious Approaches, 1st ed.; Morain, S.A., Budge, A.M., Eds.; Balkema Publishers: London, UK, 2004; pp. 93–102. ISBN 90 5809 693 9. [Google Scholar]
- Zanoni, V.; Ryan, R.; Holekamp, K.; Pagnutti, M. IKONOS Signal-to-Noise Ratio Estimation. In Proceedings of the JACIE Workshop, Reston, VA, USA, 25–27 March 2002; Available online: https://ntrs.nasa.gov/api/citations/20040004380/downloads/20040004380.pdf (accessed on 21 November 2021).
- Viallefont-Robinet, F.; Helder, D.; Fraisse, R.; Newbury, A.; van den Bergh, F.; Lee, D.; Saunier, S. Comparison of MTF measurements using edge method: Towards reference data set. Opt. Express 2018, 26, 33625–33648. [Google Scholar] [CrossRef] [PubMed]
- Blanc, P.H. Calibration Test Sites Selection and Characterisation–WP210. Technical Report TN-WP210-001-ARMINES submitted to ESA/ESRIN; VEGA Technologies SAS, 4 March 2008. Available online: http://calvalportal.ceos.org/c/document_library/get_file?uuid=03407bb4-89e4-4271-be26-898298780ee7&groupId=10136 (accessed on 1 February 2022).
- Kohm, K. Modulation transfer function measurement method and results for the Orbview-3 high resolution imaging satellite. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Arch), Istanbul, Turkey, 12–23 July 2004; Volume 35, pp. 7–12. [Google Scholar]
- Yalcin, I.; Kocaman, S.; Saunier, S.; Albinet, C. Radiometric Quality Assessment for Maxar HD Imagery. In Proceedings of the International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Niece, France, 5–9 July 2021; pp. 797–804. [Google Scholar] [CrossRef]
- Saunier, S.; Kocaman, S. EDAP Technical Note on Quality Assessment for SkySat. Issue 1.0. 6 September 2021. Available online: https://earth.esa.int/eogateway/documents/20142/37627/EDAP.REP.015+TN+on+Quality+Assessment+for+SkySat_v1.0.pdf/59a2a91d-eecd-20f1-4a13-e670dad8eed3 (accessed on 28 January 2022).
- Artmo. 2021. Available online: https://artmotoolbox.com/radiative-transfer-models/89-atmospheric-rtms/27-6sv.html (accessed on 3 February 2021).
- Aksakal, S.K.; Neuhaus, C.; Baltsavias, E.; Schindler, K. Geometric quality analysis of AVHRR orthoimages. Remote Sens. 2015, 7, 3293–3319. [Google Scholar] [CrossRef] [Green Version]
- Kocaman, S.; Debaecker, V.; Bas, S.; Saunier, S.; Garcia, K.; Just, D. A Comprehensive Geometric Quality Assessment Approach for MSG SEVIRI Imagery. Adv. Space Res. 2021, 69, 1462–1480. [Google Scholar] [CrossRef]
- Fraser, C.S.; Dial, G.; Grodecki, J. Sensor orientation via RPCs. ISPRS J. Photogramm. Remote Sens. 2006, 60, 182–194. [Google Scholar] [CrossRef]
- Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada, 24–28 August 1981; pp. 674–679. [Google Scholar]
- Bas, S.; Debaecker, V.; Kocaman, S.; Saunier, S.; Garcia, K.; Just, D. Investigations on the Geometric Quality of AVHRR Level 1B Imagery Aboard MetOp-A. PFG–J. Photogramm. Remote Sens. Geoinf. Sci. 2021, 89, 519–534. [Google Scholar] [CrossRef]
- Debaecker, V.; Kocaman, S.; Saunier, S.; Garcia, K.; Bas, S.; Just, D. On the Geometric Accuracy and Stability of MSG SEVIRI Images. Atmos. Environ. 2021, 262, 118645. [Google Scholar] [CrossRef]
- Gruen, A.; Akca, D. Least squares 3D surface and curve matching. ISPRS J. Photogramm. Remote Sens. 2005, 59, 151–174. [Google Scholar] [CrossRef] [Green Version]
- USGS Spatial Resolution Digital Imagery Guideline. Available online: https://www.usgs.gov/media/images/spatial-resolution-digital-imagery-guideline (accessed on 1 February 2022).
Parameter | Value |
---|---|
Number of satellites | 21 |
Orbit/Altitude | Polar sun-synchronous/400–600 km |
Sensor/Size | Frame CMOS with TDI/5.5 megapixel |
Number of sensor | 3 |
Sensor type | Pushframe |
Bands | Panchromatic: 0.450–0.900 µm Blue: 0.450–0.515 µm Green: 0.515–0.595 µm Red: 0.605–0.695 µm NIR: 0.740–0.900 µm |
Focal length | 3.6 m |
Image capacity | 400 km2/per day |
Swath width | 5.5–5.9–8 km at nadir |
Image strip length (max.) | 200 km |
Data collection GSD | 0.6–1 m |
Radiometric resolution | 11 bit [5] |
Products | Basic Analytic Scene (BAS), Ortho Scene (OS), Ortho Collect (OC), Video |
Test Site ID | Location | Acquisition Date | Satellite | GSD (m) | Product Level | Assessment Type |
---|---|---|---|---|---|---|
ANK | Ankara, Turkey (Lat: 39.160°N, Lon: 33.472°E) | 18 Jul 2020 23 Sep 2020 27 Sep 2020 | SKS4 SKS7 SKS12 | 0.71 0.66 0.71 | OC & BAS 1 OC & BAS 1 BAS 1 | GeoVal & Vis GeoVal & Vis GeoVal & Vis |
SAL | Salon de Provence, France (Lat: 44.010°N, Lon: 4.197°E) | 14 Mar 2021 29 Dec 2020 | SKS4 SKS17 | 0.66 0.57 | OS pan-sharpened BAS 1 | Vis MTF & SNR & RER |
LIB | Libya (Lat: 30.341°N Lon: 22.805°E) | 5 Sep 2020 11 Sep 2020 17 Sep 2020 25 Sep 2020 26 Sep 2020 | SKS10 SKS1 SKS7 SKS7 SKS10 | 0.70 0.73 0.67 0.67 0.72 | BAS 1 BAS 1 BAS 1 BAS 1 BAS 1 | RadVal RadVal RadVal RadVal RadVal |
Spectral Bands | Mean | Equation (4) | σ SNR | Reference Radiance | (TOA) | No. of Images | Planet’s Results |
---|---|---|---|---|---|---|---|
Blue | 134.04 | 57 | 7.78 | 118.33 | 0.23 | 52 | 34 |
Green | 174.32 | 65 | 8.73 | 141.44 | 0.30 | 53 | 43 |
Red | 203.98 | 68 | 7.84 | 158.35 | 0.38 | 53 | 45 |
NIR | 190.55 | 58 | 7.40 | 134.48 | 0.46 | 53 | 41 |
Satellite | ssc1 | ssc7 | ssc10 |
---|---|---|---|
Number of products | 12 | 27 | 14 |
a | 1.3655 | 1.6633 | 1.7235 |
b | −54.337 | −43.45 | −39.865 |
R2 | 0.5985 | 0.8386 | 0.8288 |
Spectral Band and Rotation Angle | MTF Along Track | MTF Across Track | |||
---|---|---|---|---|---|
Direction of MTF Profile | Hh | Hl | Vh | Vl | |
Blue 2.46° | SNR | 21 | 15 | 10 | 12 |
FWHM | 2.5 | 2.25 | 2 | 2.5 | |
RER | 0.30 | −0.31 | 0.29 | −0.27 | |
MTF@Nyquist | 0.05 | 0.04 | 0.06 | 0.05 | |
L_w (pixel) | 14.00 | 19.00 | 16.00 | 16.00 | |
L_H (pixel) | 12.75 | 12.75 | 20.25 | 22.75 | |
Delta_L * | 59.74 | 51.49 | 53.01 | 56.61 | |
Green 2.60° | SNR | 25 | 15 | 11 | 12 |
FWHM | 2.5 | 2.5 | 2.25 | 2.5 | |
RER | 0.28 | −0.29 | 0.27 | −0.26 | |
MTF@Nyquist | 0.035 | 0.034 | 0.045 | 0.035 | |
L_w (pixel) | 14.00 | 19.00 | 16.00 | 16.00 | |
L_H (pixel) | 12.75 | 12.75 | 20.25 | 22.75 | |
Delta_L * | 66.61 | 59.61 | 60.36 | 63.77 | |
Red 2.49° | SNR | 21 | 13 | 12 | 10 |
FWHM | 2.5 | 2.5 | 2 | 2.25 | |
RER | 0.26 | −0.26 | 0.26 | −0.25 | |
MTF@Nyquist | 0.04 | 0.025 | 0.035 | 0.031 | |
L_w (pixel) | 14.00 | 19.00 | 16.00 | 17.00 | |
L_H (pixel) | 12.75 | 12.75 | 20.25 | 22.75 | |
Delta_L * | 61.44 | 57.32 | 56.71 | 59.54 | |
NIR 2.68° | SNR | 17 | 12 | 12 | 10 |
FWHM | 2.5 | 2.75 | 2.5 | 2.25 | |
RER | 0.24 | −0.23 | 0.24 | −0.23 | |
MTF@Nyquist | 0.03 | 0.03 | 0.02 | 0.04 | |
L_w (pixel) | 12.75 | 12.75 | 20.25 | 22.75 | |
L_H (pixel) | 14.00 | 19.00 | 16.00 | 17.00 | |
Delta_L * | 52.62 | 52.83 | 51.05 | 52.37 |
Observation Date | ROI ID | SkySat Satellite | CCD Number | Percent Difference | |||
---|---|---|---|---|---|---|---|
Blue | Green | Red | NIR | ||||
5 September 2020 | 1 | 10 | d3 | 16.61% | 14.51% | 14.67% | 11.42% |
5 September 2020 | 2 | 10 | d2 | 15.91% | 14.81% | 16.56% | 14.88% |
11 September 2020 | 1 | 1 | d3 | 0.53% | −2.63% | 3.05% | 3.58% |
11 September 2020 | 2 | 1 | d2 | 0.34% | −4.18% | 3.60% | 2.34% |
11 September 2020 | 3 | 1 | d1 | 2.39% | −2.00% | 5.03% | 3.76% |
17 September 2020 | 1 | 7 | d1 | 13.01% | 8.85% | 10.81% | 5.96% |
17 September 2020 | 2 | 7 | d2 | 13.67% | 11.41% | 14.41% | 13.31% |
17 September 2020 | 3 | 7 | d3 | 11.19% | 7.23% | 10.29% | 12.02% |
25 September 2020 | 1 | 7 | d1 | 16.66% | 11.01% | 11.34% | 5.40% |
25 September 2020 | 2 | 7 | d2 | 8.74% | 7.54% | 9.32% | 7.63% |
25 September 2020 | 3 | 7 | d3 | 10.51% | 8.42% | 12.70% | 14.83% |
26 September 2020 | 1 | 10 | d3 | 14.24% | 13.42% | 14.22% | 11.98% |
26 September 2020 | 2 | 10 | d2 | 12.45% | 12.11% | 14.64% | 13.34% |
26 September 2020 | 3 | 10 | d1 | 13.86% | 13.98% | 16.51% | 15.39% |
BBR (mean/σ) m | Absolute (mean/σ) m | Temporal (mean/σ) m | |
---|---|---|---|
EDAP Results | Blue–green: 0.04/0.01 Blue–red: 0.07/0.02 Blue–NIR: 0.11/0.03 | 1.45/0.18 (BAS) 1.14/0.24 (OC) | OC: 1.51/N.A. |
SkySat Q3 quality report [9] | Blue–green: 0.11/0.06 Blue–red: 0.13/0.08 Blue–NIR: 0.22/0.14 | 3.4/2.6 | 3.1/5.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saunier, S.; Karakas, G.; Yalcin, I.; Done, F.; Mannan, R.; Albinet, C.; Goryl, P.; Kocaman, S. SkySat Data Quality Assessment within the EDAP Framework. Remote Sens. 2022, 14, 1646. https://doi.org/10.3390/rs14071646
Saunier S, Karakas G, Yalcin I, Done F, Mannan R, Albinet C, Goryl P, Kocaman S. SkySat Data Quality Assessment within the EDAP Framework. Remote Sensing. 2022; 14(7):1646. https://doi.org/10.3390/rs14071646
Chicago/Turabian StyleSaunier, Sebastien, Gizem Karakas, Ilyas Yalcin, Fay Done, Rubinder Mannan, Clement Albinet, Philippe Goryl, and Sultan Kocaman. 2022. "SkySat Data Quality Assessment within the EDAP Framework" Remote Sensing 14, no. 7: 1646. https://doi.org/10.3390/rs14071646