A Self-Regulating Multi-Clutter Suppression Framework for Small Aperture HFSWR Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Approach Selection
2.2. Classical Target Detection Methods in Deep Learning
2.3. Sparse Representation of Signals in Dictionary Learning
2.4. Compared Clutter Suppression Method
2.5. Proposed Framework SMSF
2.5.1. The First Step: Dynamic Threshold Mapping Recognition Method
2.5.2. The Second Step: Adaptive Prophase-Current Dictionary Learning Algorithm
Algorithm 1 SMSF Framework |
Procedure I: Input: A large amount of original echo data. Output: Each type of unwanted component data set: , , , .
Input: Learning data set: , , , . Output: The learned dictionary of each type of unwanted echo component obtained in Prophase Dictionary Learning at p point: , , , Initialization: Set all the dictionary matrix with normalized columns. Set the iterations of the dictionary learning J. Select batches of classified data set without overlapping and interference as learning data. Donate as , , , , respectively. While Train dictionary , , , in parallel.
Input: The echo data received from HFSWR at period is donated as . A patch of echo data received from HFSWR at point is donated as . Output: The processed RD image at point.
|
3. Results
3.1. Data Set
3.2. Experimental Setup
3.3. Novel Evaluation Indicators
3.4. The Suppression Results of Ionosphere Clutter
3.5. The Suppression Results of Sea Clutter
3.6. The Suppression Results of RFI
4. Discussion
4.1. Analysis of the Proposed SMSF Framework Based on Novel Evaluation Indicators
4.2. Motion Tracking Experiment of Proposed SMSF
4.3. Suppression Performance Comparison in Doppler Domain
4.4. Technical Innovations of SMSF
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chan, H.C. Characterization of Ionospheric Clutter in HF Surface-Wave Radar; Technical Report TR 2003-114; Defence Research and Development Canada (DRDC): Ottawa, ON, Canada, 2003.
- Thayaparan, T.; Dupont, D.; Ibrahim, Y.; Riddolls, R. High-Frequency Ionospheric Monitoring System for Over-the-Horizon Radar in Canada. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6372–6384. [Google Scholar] [CrossRef]
- Walsh, J.; Huang, W.; Gill, E.W. An analytical model for HF radar ionospheric clutter. In Proceedings of the 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), Orlando, FL, USA, 7–13 July 2013; pp. 1974–1975. [Google Scholar]
- Thayaparan, T.; MacDougall, J. Evaluation of ionospheric sporadic-E clutter in an arctic environment for the assessment of high-frequency surface-wave radar surveillance. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1180–1188. [Google Scholar] [CrossRef]
- Yang, X.; Wang, M.; Huang, W.; Yu, C. Experimental Observation and Analysis of Ionosphere Echoes in the Mid-Latitude Region of China Using High-Frequency Surface Wave Radar and Ionosonde. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4599–4606. [Google Scholar] [CrossRef]
- Ravan, M.; Riddolls, R.J.; Adve, R.S. Ionospheric and auroral clutter models for HF surface wave and over the horizon radar systems. Radio Sci. 2012, 47, 1–12. [Google Scholar] [CrossRef]
- Chen, S.; Gill, E.W.; Huang, W. A First-Order HF Radar Cross-Section Model for Mixed-Path Ionosphere–Ocean Propagation with an FMCW Source. IEEE J. Ocean. Eng. 2016, 41, 982–992. [Google Scholar] [CrossRef]
- Chen, S.; Gill, E.W.; Huang, W. A High-Frequency Surface Wave Radar Ionospheric Clutter Model for Mixed-Path Propagation with the Second-Order Sea Scattering. IEEE Trans. Antennas Propag. 2016, 64, 5373–5381. [Google Scholar] [CrossRef]
- Aboutanios, E.; Mulgrew, B. Hybrid detection approach for STAP in heterogeneous clutter. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 1021–1033. [Google Scholar] [CrossRef]
- Zhou, Q.; Yue, X.; Zhang, L.; Wu, X.; Wang, L. Correction of ionospheric distortion on HF hybrid sky-surface wave radar calibrated by direct wave. Radio Sci. 2019, 54, 380–396. [Google Scholar] [CrossRef]
- Hua, X.; Ono, Y.; Peng, L.; Cheng, Y.; Wang, H. Target detection within nonhomogeneous clutter via total bregman divergence-based matrix information geometry detectors. IEEE Trans. Signal Process. 2021, 69, 4326–4340. [Google Scholar] [CrossRef]
- Barrick, D.E.; Headrick, J.M.; Bogle, R.W.; Crombie, D.D. Sea backscatter at HF: Interpretation and utilization of the echo. Proc. IEEE 1974, 62, 673–680. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Li, Y.J.; Shi, J.N.; Wang, P.F.; Chen, D.H. Spread Sea Clutter Suppression in HF Hybrid Sky-Surface Wave Radars Based on General Parameterized Time-Frequency Analysis. Int. J. Antennas Propag. 2020, 3, 7627521. [Google Scholar] [CrossRef]
- Sevgi, L.; Ponsford, A.; Chan, H.C. An integrated maritime surveillance system based on high-frequency surface wave radars, part 1: Theoretical background and numerical simulations. IEEE Antennas Propag. Mag. 2001, 43, 28–42. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, J.; Xu, X. A hybrid STAP approach to target detection for heterogeneous scenarios in radar seekers. Multidim. Syst. Sign. Process. 2014, 25, 493–509. [Google Scholar] [CrossRef]
- Li, G.Q.; Song, Z.Y.; Fu, Q. A convolutional neural network based approach to sea clutter suppression for small boat detection. Front. Inform. Technol. Electron. Eng. 2020, 21, 1504–1520. [Google Scholar] [CrossRef]
- Doulamis, A.D.; Shang, S.; He, K.N.; Wang, Z.B.; Yang, T.; Liu, M.; Li, X. Sea Clutter Suppression Method of HFSWR Based on RBF Neural Network Model Optimized by Improved GWO Algorithm. Comput. Intell. Neurosci. 2020, 2020, 8842390. [Google Scholar] [CrossRef]
- Zhang, L.; You, W.; Wu, Q.; Qi, S.; Ji, Y. Deep Learning-Based Automatic Clutter/Interference Detection for HFSWR. Remote Sens. 2018, 10, 1517. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Xie, F.; Zhao, C.; He, C. Radio frequency interference mitigation for high-frequency surface wave radar. IEEE Geosci. Remote Sens. Lett. 2018, 15, 986–990. [Google Scholar] [CrossRef]
- Yao, D.; Deng, W.B.; Zhang, X.; Yang, Q.; Zhang, J.Z.; Li, J.M. Main-lobe clutter suppression algorithm based on rotating beam method and optimal sample selection for small-aperture HFSWR. IET Radar Sonar Navig. 2019, 13, 1162–1170. [Google Scholar] [CrossRef]
- Liu, Z.; Su, H.; Hu, Q. Radio Frequency Interference Cancelation for Skywave Over-the-Horizon Radar. IEEE Geosci. Remote Sens. Lett. 2016, 13, 304–308. [Google Scholar] [CrossRef]
- Wang, W.; Wyatt, L.R. Radio frequency interference cancellation for sea-state remote sensing by high-frequency radar. IET Radar Sonar Navig. 2011, 5, 405–415. [Google Scholar] [CrossRef]
- Li, Y.H.; Yue, X.C.; Wu, X.B.; Zhang, L.; Zhou, Q.; Yi, X.Z.; Liu, N. A Higher-Order Singular Value Decomposition-Based Radio Frequency Interference Mitigation Method on High-Frequency Surface Wave Radar. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2770–2781. [Google Scholar] [CrossRef]
- Eslami Nazari, M.; Huang, W.; Zhao, C. Radio Frequency Interference Suppression for HF Surface Wave Radar Using CEMD and Temporal Windowing Methods. IEEE Geosci. Remote Sens. Lett. 2020, 17, 212–216. [Google Scholar] [CrossRef]
- Zhou, H.; Wen, B. Radio frequency interference suppression in small-aperture high-frequency radars. IEEE Geosci. Remote Sens. Lett. 2012, 9, 788–792. [Google Scholar] [CrossRef]
- Hua, X.; Peng, L. MIG Median Detectors with Manifold Filter. Signal Processing 2021, 188, 108176. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Q.F.; Wu, Q.J. Target Detection for HFSWR Based on an S3D Algorithm. IEEE Access 2020, 8, 224825–224836. [Google Scholar] [CrossRef]
- Aziz, L.; Haji Salam, M.S.B.; Sheikh, U.U.; Ayub, S. Exploring Deep Learning-Based Architecture, Strategies, Applications and Current Trends in Generic Object Detection: A Comprehensive Review. IEEE Access 2020, 8, 170461–170495. [Google Scholar] [CrossRef]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Azhagu Jaisudhan Pazhani, A.; Vasanthanayaki, C. Object detection in satellite images by faster R-CNN incorporated with enhanced ROI pooling (FrRNet-ERoI) framework. ESIN 2022, 15, 553–561. [Google Scholar]
- Wu, W.; Liu, H.; Li, L.; Long, Y.; Wang, X.; Wang, Z.; Li, J.; Chang, Y. Application of local fully Convolutional Neural Network combined with YOLO v5 algorithm in small target detection of remote sensing image. PLoS ONE 2021, 16, e0259283. [Google Scholar] [CrossRef]
- Liu, D.Y.; Liang, C.W.; Chen, S.K.; Tie, Y.; Qi, L. Auto-encoder based structured dictionary learning for visual classification. Neurocomputing 2021, 438, 34–43. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, S.; He, Z.; Sun, G.; Cao, J. An ocean clutter suppression method for OTHR by combining optimal filter and dictionary learning. In Proceedings of the 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, OK, USA, 23–27 April 2018; pp. 1499–1503. [Google Scholar]
- Rosenberg, L.; Duk, V.; Ng, B. Practical detection using sparse signal separation. In Proceedings of the International Radar Conference, Florence, Italy, 21–25 September 2020. [Google Scholar]
- Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 2006, 54, 4311–4322. [Google Scholar] [CrossRef]
- Zhang, X.; Deng, W.; Yang, Q.; Dong, Y. Modified Space-Time Adaptive Processing with first-order bragg lines kept in HFSWR. In Proceedings of the 2014 International Radar Conference, Lille, France, 13–17 October 2014; pp. 1–4. [Google Scholar]
- Buckley, K.; Griffiths, L. An adaptive generalized sidelobe canceller with derivative constraints. IEEE Trans. Antennas Propag. 1986, 34, 311–319. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, D.; Yang, Q.; Dong, Y.N.; Deng, W.B. Knowledge-Based Generalized Side-Lobe Canceller for Ionospheric Clutter Suppression in HFSWR. Remote Sens. 2018, 10, 104. [Google Scholar] [CrossRef] [Green Version]
Classified Data | Reference Data | ||||||
---|---|---|---|---|---|---|---|
Sea Clutter | Banded Ionosphere Clutter | RFI | Ground Clutter | Spread Region Ionosphere Clutter | Total | UA (%) | |
Sea Clutter | 96 | 0 | 0 | 0 | 0 | 96 | 100% |
Banded Ionosphere Clutter | 1 | 151 | 0 | 0 | 1 | 153 | 99% |
RFI | 0 | 0 | 6 | 0 | 0 | 6 | 100% |
Ground Clutter | 1 | 0 | 0 | 45 | 0 | 46 | 98% |
Spread Region Ionosphere Clutter | 0 | 6 | 0 | 0 | 69 | 75 | 92% |
Background | 1 | 30 | 2 | 3 | 9 | 45 | |
Total | 99 | 187 | 8 | 48 | 79 | ||
PA (%) | 97% | 81% | 75% | 94% | 87% |
Properties | Specification |
---|---|
Frequency bandwidth | 60 kHz |
Carrier frequency | 4.7 MHz |
Coherent Integration Time | 144 s |
Range cell | 200 |
Doppler cell | 201 |
Waveform | FMICW |
The Serial Number of Simulated Targets | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | OTDR (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SNR/The Magnitude of Simulated Targets (dB) | ||||||||||||
The Magnitude of Simulated Target after Being Suppressed (dB) | ||||||||||||
20/38.81 (dB) | 34.82 | 19.78 | 24.06 | 27.63 | 22.50 | 29.17 | 26.59 | 26.75 | 24.44 | 16.12 | 100% | |
20/37.23 (dB) | 23.16 | 12.28 | 14.47 | 34.34 | 21.19 | 27.24 | 11.28 | 27.63 | 26.12 | 24.95 | 100% | |
15/33.82 (dB) | −12.12 | 6.92 | −19.78 | 6.57 | 12.55 | −16.64 | −4.54 | −13.60 | −0.53 | 24.20 | 90% | |
15/32.23 (dB) | 8.67 | 17.86 | 18.26 | 20.36 | 24.35 | 24.01 | 15.29 | 24.11 | 18.56 | 13.86 | 80% | |
10/28.82 (dB) | 1.28 | 18.12 | −7.07 | 8.44 | −14.06 | −10.97 | 17.15 | 10.20 | 8.14 | 1.28 | 70% | |
10/27.23 (dB) | 12.83 | 1.09 | 14.33 | 16.44 | 18.45 | 10.19 | −17.95 | 15.21 | 9.42 | 21.80 | 80% | |
5/23.82 (dB) | −2.13 | −6.38 | 13.56 | 8.32 | −8.73 | 8.45 | −14.25 | −4.11 | 6.77 | −7.68 | 70% | |
5/22.23 (dB) | 9.23 | 18.93 | 7.47 | −7.08 | 11.10 | 15.97 | 19.20 | −17.62 | 14.84 | 10.60 | 80% | |
0/18.82 (dB) | 2.84 | 5.30 | −9.11 | 2.34 | −2.59 | 8.92 | −8.55 | −4.65 | −15.87 | 16.41 | 60% | |
0/17.23 (dB) | 9.85 | 5.86 | −2.88 | 0.09 | −13.08 | −0.61 | 8.59 | 1.51 | 8.13 | −8.14 | 50% | |
−5/13.83 (dB) | −3.19 | 4.63 | 15.05 | −7.81 | −8.58 | 5.86 | −16.87 | −22.44 | 0.89 | −1.62 | 60% | |
−5/12.23 (dB) | −20.23 | 0.36 | −5.38 | −5.69 | −18.14 | −22.02 | −7.46 | −24.31 | −10.84 | 4.48 | 40% | |
−10/8.82 (dB) | 3.01 | −16.38 | −9.11 | −11.39 | 2.48 | −0.37 | −3.01 | −5.15 | −3.91 | −6.71 | 40% | |
−10/7.23 (dB) | 3.11 | −0.45 | −1.32 | −4.20 | −2.77 | 4.76 | 7.52 | −5.11 | −1.14 | −3.61 | 70% | |
−15/3.82 (dB) | −8.89 | −15.42 | −9.72 | −1.69 | −8.59 | −15.03 | −16.45 | −4.88 | −14.39 | −13.64 | 30% | |
−15/2.23 (dB) | −18.73 | −10.58 | −3.90 | −3.92 | −12.85 | −8.83 | −9.65 | −7.68 | −12.20 | −12.76 | 30% | |
−20/−1.18 (dB) | −10.33 | −12.66 | −9.11 | −10.32 | −2.16 | −5.64 | −36.72 | −11.50 | −2.56 | −3.52 | 20% | |
−20/−2.77 (dB) | −7.98 | 4.65 | −12.35 | −9.94 | −21.56 | −3.37 | −3.28 | −11.32 | −10.90 | −8.92 | 30% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, X.; Yang, Q.; Wang, L. A Self-Regulating Multi-Clutter Suppression Framework for Small Aperture HFSWR Systems. Remote Sens. 2022, 14, 1901. https://doi.org/10.3390/rs14081901
Ji X, Yang Q, Wang L. A Self-Regulating Multi-Clutter Suppression Framework for Small Aperture HFSWR Systems. Remote Sensing. 2022; 14(8):1901. https://doi.org/10.3390/rs14081901
Chicago/Turabian StyleJi, Xiaowei, Qiang Yang, and Linwei Wang. 2022. "A Self-Regulating Multi-Clutter Suppression Framework for Small Aperture HFSWR Systems" Remote Sensing 14, no. 8: 1901. https://doi.org/10.3390/rs14081901