Ecological Engineering Projects Shifted the Dominance of Human Activity and Climate Variability on Vegetation Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. GLOBMAP LAI Data
2.3. Meteorological Data
2.4. Auxiliary Data
2.5. Trend Analysis
2.6. Correlation Analysis
2.7. Residual Trend Analysis
3. Results
3.1. Spatial-Temporal Patterns of Vegetation Dynamics
3.2. Climate Variability in the Study Area
3.3. The Relationship between Vegetation Dynamics and Climate Variability
3.4. Land Cover Changes before and after the Implementation of Ecological Engineering
3.5. Contributions of Climate and Human Factors to Vegetation Greening
4. Discussion
4.1. Vegetation Greening
4.2. Climate Variability and Its Relationship with Vegetation Dynamics
4.3. Ecological Engineering Drives Vegetation Greening
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth. Environ. 2019, 1, 14–27. [Google Scholar] [CrossRef]
- Bonan, G.B.; Pollard, D.; Thompson, S.L. Effects of boreal forest vegetation on global climate. Nature 1992, 359, 716–718. [Google Scholar] [CrossRef]
- Haberl, H.; Erb, K.H.; Krausmann, F.; Gaube, V.; Bondeau, A.; Plutzar, C.; Gingrich, S.; Lucht, W.; Fischer-Kowalski, M. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 2007, 104, 12942–12945. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Wang, H.; Jiang, C.; Jin, S.; Ai, J.; Sun, O.J. Satellite view of vegetation dynamics and drivers over southwestern China. Ecol. Indic. 2021, 130, 108074. [Google Scholar] [CrossRef]
- Li, Y.; Piao, S.L.; Li, L.Z.X.; Chen, A.P.; Wang, X.H.; Ciais, P.; Huang, L.; Lian, X.; Peng, S.S.; Zeng, Z.Z.; et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 2018, 4, eaar4182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, W.; Deng, L.; Wang, F.; Han, J. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef]
- Piao, S.; Yin, G.; Tan, J.; Cheng, L.; Huang, M.; Li, Y.; Liu, R.; Mao, J.; Myneni, R.B.; Peng, S.; et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Chang. Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef]
- Sun, W.; Song, X.; Mu, X.; Gao, P.; Wang, F.; Zhao, G. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209–210, 87–99. [Google Scholar] [CrossRef]
- Wang, L.; Tian, F.; Wang, Y.; Wu, Z.; Schurgers, G.; Fensholt, R. Acceleration of global vegetation greenup from combined effects of climate change and human land management. Glob. Chang. Biol. 2018, 24, 5484–5499. [Google Scholar] [CrossRef]
- Tao, J.; Xu, T.; Dong, J.; Yu, X.; Jiang, Y.; Zhang, Y.; Huang, K.; Zhu, J.; Dong, J.; Xu, Y.; et al. Elevation-dependent effects of climate change on vegetation greenness in the high mountains of southwest China during 1982–2013. Int. J. Climatol. 2018, 38, 2029–2038. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, X.; Tao, J.; Wu, J.; Wang, J.; Shi, P.; Zhang, Y.; Yu, C. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2014, 189–190, 11–18. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Liu, D.; Guo, H.; Huang, H.; Zhao, Y. Moisture-induced greening of the South Asia over the past three decades. Glob. Chang. Biol. 2017, 23, 4995–5005. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Mao, Z.; Yang, L.; Liu, Z.; Han, J.; Wanag, H.; He, W. Impacts of climate change and afforestation on vegetation dynamic in the Mu Us Desert, China. Ecol. Indic. 2021, 129, 108020. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, Y.; Zhu, J.; Liu, Y.; Zu, J.; Zhang, J. The Influences of Climate Change and Human Activities on Vegetation Dynamics in the Qinghai-Tibet Plateau. Remote Sens. 2016, 8, 876. [Google Scholar] [CrossRef] [Green Version]
- Kou, P.; Xu, Q.; Jin, Z.; Yunus, A.P.; Luo, X.; Liu, M. Complex anthropogenic interaction on vegetation greening in the Chinese Loess Plateau. Sci. Total Environ. 2021, 778, 146065. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Naeem, S.; Zhang, Y.; Zhang, X.; Tian, J.; Abbas, S.; Luo, L.; Meresa, H.K. Both climate and socioeconomic drivers contribute to vegetation greening of the Loess Plateau. Sci. Bull. 2021, 66, 1160–1163. [Google Scholar] [CrossRef]
- Li, J.; Peng, S.; Li, Z. Detecting and attributing vegetation changes on China’s Loess Plateau. Agric. For. Meteorol. 2017, 247, 260–270. [Google Scholar] [CrossRef]
- Shi, S.; Yu, J.; Wang, F.; Wang, P.; Zhang, Y.; Jin, K. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Sci. Total Environ. 2021, 755, 142419. [Google Scholar] [CrossRef]
- Qu, L.; Huang, Y.; Yang, L.; Li, Y. Vegetation Restoration in Response to Climatic and Anthropogenic Changes in the Loess Plateau, China. Chin. Geogr. Sci. 2020, 30, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Fan, C.; Huang, K.; Liu, Y.; Zu, J.; Zhu, J. Opportunities and challenges in remote sensing applications to ecosystem ecology. Chin. J. Ecol. 2017, 36, 809–823. [Google Scholar]
- Chu, H.; Venevsky, S.; Wu, C.; Wang, M. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2019, 650, 2051–2062. [Google Scholar] [CrossRef]
- Qiao, Y.; Jiang, Y.; Zhang, C. Contribution of karst ecological restoration engineering to vegetation greening in southwest China during recent decade. Ecol. Indic. 2021, 121, 107081. [Google Scholar] [CrossRef]
- Lin, J.Y.; Liu, X.P.; Li, K.; Li, X. A maximum entropy method to extract urban land by combining MODIS reflectance, MODIS NDVI, and DMSP-OLS data. Int. J. Remote Sens. 2014, 35, 6708–6727. [Google Scholar] [CrossRef]
- Hu, Y.; Li, H.; Wu, D.; Chen, W.; Zhao, X.; Hou, M.; Li, A.; Zhu, Y. LAI-indicated vegetation dynamic in ecologically fragile region: A case study in the Three-North Shelter Forest program region of China. Ecol. Indic. 2021, 120, 106932. [Google Scholar] [CrossRef]
- Zheng, K.; Tan, L.; Sun, Y.; Wu, Y.; Duan, Z.; Xu, Y.; Gao, C. Impacts of climate change and anthropogenic activities on vegetation change: Evidence from typical areas in China. Ecol. Indic. 2021, 126, 107648. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Li, H.X.; Liu, G.H.; Fu, B.J. Spatial variations of rain-use efficiency along a climate gradient on the Tibetan Plateau: A satellite-based analysis. Int. J. Remote Sens. 2013, 34, 7487–7503. [Google Scholar] [CrossRef]
- Senanayake, S.; Pradhan, B.; Huete, A.; Brennan, J. Spatial modeling of soil erosion hazards and crop diversity change with rainfall variation in the Central Highlands of Sri Lanka. Sci. Total Environ. 2022, 806, 150405. [Google Scholar] [CrossRef]
- Li, C.; Zhao, J.; Shi, Y.; Hu, X. The impact of human activities on net primary productivity based on the coefficient of variation: A case study of the Shiyang River Basin. Acta Ecol. Sin. 2016, 36, 4034–4044. [Google Scholar]
- Qi, X.; Jia, J.; Liu, H.; Lin, Z. Relative importance of climate change and human activities for vegetation changes on China’s silk road economic belt over multiple timescales. Catena 2019, 180, 224–237. [Google Scholar] [CrossRef]
- Kastner, T.; Matej, S.; Forrest, M.; Gingrich, S.; Haberl, H.; Hickler, T.; Krausmann, F.; Lasslop, G.; Niedertscheider, M.; Plutzar, C.; et al. Land use intensification increasingly drives the spatiotemporal patterns of the global human appropriation of net primary production in the last century. Glob. Chang. Biol. 2022, 28, 307–322. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yamaguchi, Y.; Arjasakusuma, S. Distinguishing the vegetation dynamics induced by anthropogenic factors using vegetation optical depth and AVHRR NDVI: A cross-border study on the Mongolian Plateau. Sci. Total Environ. 2018, 616–617, 730–743. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Wang, L.; Lin, A.; Zhu, H.; Yuan, M. What drives the vegetation restoration in Yangtze River basin, China: Climate change or anthropogenic factors? Ecol. Indic. 2018, 90, 438–450. [Google Scholar] [CrossRef]
- Wu, J.; Li, M.; Zhang, X.; Fiedler, S.; Gao, Q.; Zhou, Y.; Cao, W.; Hassan, W.; Margarint, M.C.; Tarolli, P.; et al. Disentangling climatic and anthropogenic contributions to nonlinear dynamics of alpine grassland productivity on the Qinghai-Tibetan Plateau. J. Environ. Manag. 2021, 281, 111875. [Google Scholar] [CrossRef]
- Yuan, W.P.; Zheng, Y.; Piao, S.L.; Ciais, P.; Lombardozzi, D.; Wang, Y.P.; Ryu, Y.; Chen, G.X.; Dong, W.J.; Hu, Z.M.; et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, C.; Wang, Z.; Chen, Y.; Gang, C.; An, R.; Li, J. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 2016, 563–564, 210–220. [Google Scholar] [CrossRef]
- Dong, Q.-M.; Zhao, X.-Q.; Wu, G.-L.; Shi, J.-J.; Ren, G.-H. A review of formation mechanism and restoration measures of “black-soil-type” degraded grassland in the Qinghai-Tibetan Plateau. Environ. Earth Sci. 2013, 70, 2359–2370. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Friedlingstein, P.; Peylin, P.; Reichstein, M.; Luyssaert, S.; Margolis, H.; Fang, J.; Barr, A.; Chen, A.; et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 2008, 451, 49–52. [Google Scholar] [CrossRef]
- Bai, Y.; Guo, C.; Degen, A.A.; Ahmad, A.A.; Wang, W.; Zhang, T.; Li, W.; Ma, L.; Huang, M.; Zeng, H.; et al. Climate warming benefits alpine vegetation growth in Three-River Headwater Region, China. Sci. Total Environ. 2020, 742, 140574. [Google Scholar] [CrossRef]
- Fu, Z.; Ciais, P.; Prentice, I.C.; Gentine, P.; Makowski, D.; Bastos, A.; Luo, X.; Green, J.K.; Stoy, P.C.; Yang, H.; et al. Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nat. Commun. 2022, 13, 989. [Google Scholar] [CrossRef]
- Xiu, L.; Yao, X.; Chen, M.; Yan, C. Effect of Ecological Construction Engineering on Vegetation Restoration: A Case Study of the Loess Plateau. Remote Sens. 2021, 13, 1407. [Google Scholar] [CrossRef]
- Shao, Q.; Cao, W.; Fan, J.; Huang, L.; Xu, X. Effects of an ecological conservation and restoration project in the Three-River Source Region, China. J. Geogr. Sci. 2016, 27, 183–204. [Google Scholar] [CrossRef]
- Shen, X.; An, R.; Feng, L.; Ye, N.; Zhu, L.; Li, M. Vegetation changes in the Three-River Headwaters Region of the Tibetan Plateau of China. Ecol. Indic. 2018, 93, 804–812. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.; Chen, J.M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res.-Biogeosci. 2012, 117, 1–14. [Google Scholar] [CrossRef]
- Deng, F.; Chen, J.M.; Plummer, S.; Chen, M.Z.; Pisek, J. Algorithm for global leaf area index retrieval using satellite imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2219–2229. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Li, X.; Lu, H.; Yu, L.; Yang, K. Comparison of the Spatial Characteristics of Four Remotely Sensed Leaf Area Index Products over China: Direct Validation and Relative Uncertainties. Remote Sens. 2018, 10, 148. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.R.; Zhu, L.; Sun, H.F.; Chu, S.S. Validation and inter-comparison of the FY-3B/MERSI LAI product with GLOBMAP and MYD15A2H. Int. J. Remote Sens. 2020, 41, 9256–9282. [Google Scholar] [CrossRef]
- Jiang, C.; Ryu, Y.; Fang, H.; Myneni, R.; Claverie, M.; Zhu, Z. Inconsistencies of interannual variability and trends in long-term satellite leaf area index products. Glob. Chang. Biol. 2017, 23, 4133–4146. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, X.; Liang, X.; Yan, C.; Xing, X.; Jia, H.; Wei, X.; Feng, K. Vegetation Dynamic Changes and Their Response to Ecological Engineering in the Sanjiangyuan Region of China. Remote Sens. 2020, 12, 4035. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Z.; Qin, Y.; Rong, P. Relative contributions of natural and man-made factors to vegetation cover change of environmentally sensitive and vulnerable areas of China. J. Clean Prod. 2021, 321, 128917. [Google Scholar] [CrossRef]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid. Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Wessels, K.J.; Prince, S.D.; Malherbe, J.; Small, J.; Frost, P.E.; VanZyl, D. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid. Environ. 2007, 68, 271–297. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Zhu, X.; Pan, Y.; Liu, Y.; Zhang, D.; Lin, Z. Spatiotemporal changes in vegetation coverage and its driving factors in the Three-River Headwaters Region during 2000–2011. J. Geogr. Sci. 2014, 24, 288–302. [Google Scholar] [CrossRef]
- Deng, L.S.; Liu, G.Z.; Wu, X.; Wang, Y.P.; Tong, M.H.; Liu, B.; Wang, K.D.; Peng, Y.T.; Kong, X.P. Adipose Derived Mesenchymal Stem Cells Efficiently Rescue Carbon Tetrachloride-Induced Acute Liver Failure in Mouse. Sci. World J. 2014, 2014, 103643. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.P.; Wang, K.B.; Lin, Y.S.; Shi, W.Y.; Song, Y.; He, X.H. Balancing green and grain trade. Nat. Geosci. 2015, 8, 739–741. [Google Scholar] [CrossRef]
- Han, Z.M.; Huang, S.Z.; Huang, Q.; Bai, Q.J.; Leng, G.Y.; Wang, H.; Zhao, J.; Wei, X.T.; Zheng, X.D. Effects of vegetation restoration on groundwater drought in the Loess Plateau, China. J. Hydrol. 2020, 591, 125566. [Google Scholar] [CrossRef]
- Dong, S.; Shang, Z.; Gao, J.; Boone, R.B. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2020, 287, 106684. [Google Scholar] [CrossRef]
- Shi, Y.; Jin, N.; Ma, X.; Wu, B.; He, Q.; Yue, C.; Yu, Q. Attribution of climate and human activities to vegetation change in China using machine learning techniques. Agric. For. Meteorol. 2020, 294, 108146. [Google Scholar] [CrossRef]
- He, P.; Ma, J.; Han, Z.; Shi, M.; Xu, D.; Sun, Z. Relationship between multi-scale climate factors and performance of ecological engineering on the Loess Plateau, China. J. For. Res. 2021, 33, 789–800. [Google Scholar] [CrossRef]
- Corney, P.M.; Le Duc, M.G.; Smart, S.M.; Kirby, K.J.; Bunce, R.G.H.; Marrs, R.H. The effect of landscape-scale environmental drivers on the vegetation composition of British woodlands. Biol. Conserv. 2004, 120, 491–505. [Google Scholar] [CrossRef]
- Bao, Z.X.; Zhang, J.Y.; Wang, G.Q.; Guan, T.S.; Jin, J.L.; Liu, Y.L.; Li, M.; Ma, T. The sensitivity of vegetation cover to climate change in multiple climatic zones using machine learning algorithms. Ecol. Indic. 2021, 124, 107443. [Google Scholar] [CrossRef]
- Guo, B.; Wang, J.; Mantravadi, V.S.; Zhang, L.; Liu, G. Effect of climate and ecological restoration on vegetation changes in the “Three-River Headwaters” region based on remote sensing technology. Environ. Sci. Pollut. Res. 2021, 29, 16436–16448. [Google Scholar] [CrossRef]
- Cong, N.; Shen, M.G.; Zu, J.X.; Zhang, Y.J. Spatial sampling inconsistency leads to differences in phenological sensitivity to warming between natural and experiment sites. Sci. Bull. 2019, 64, 961–963. [Google Scholar] [CrossRef] [Green Version]
- Berdimbetov, T.; Ma, Z.-G.; Shelton, S.; Ilyas, S.; Nietullaeva, S. Identifying Land Degradation and its Driving Factors in the Aral Sea Basin From 1982 to 2015. Front. Earth Sci. 2021, 9, 690000. [Google Scholar] [CrossRef]
- Kong, D.; Zhang, Q.; Singh, V.P.; Shi, P. Seasonal vegetation response to climate change in the Northern Hemisphere (1982–2013). Glob. Planet. Chang. 2017, 148, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Piao, S.; He, J.; Ma, W. Increasing terrestrial vegetation activity in China, 1982–1999. Sci. China Ser. C-Life Sci. 2004, 47, 229–240. [Google Scholar]
- Chuai, X.W.; Huang, X.J.; Wang, W.J.; Bao, G. NDVI, temperature and precipitation changes and their relationships with different vegetation types during 1998–2007 in Inner Mongolia, China. Int. J. Climatol. 2013, 33, 1696–1706. [Google Scholar] [CrossRef]
- Pan, X.; Song, Y.B.; Liu, G.F.; Hu, Y.K.; Ye, X.H.; Cornwell, W.K.; Prinzing, A.; Dong, M.; Cornelissen, J.H.C. Functional traits drive the contribution of solar radiation to leaf litter decomposition among multiple arid-zone species. Sci. Rep. 2015, 5, 13217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, S.; Wang, L.; Lin, A.; Yu, D.; Yuan, M. Distinguishing the impacts of climate change and anthropogenic factors on vegetation dynamics in the Yangtze River Basin, China. Ecol. Indic. 2020, 108, 105724. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, X. Vegetation dynamics and responses to climate change and anthropogenic activities in the Three-River Headwaters Region, China. Ecol. Indic. 2021, 131, 108223. [Google Scholar] [CrossRef]
- Zhang, X.; Yue, Y.; Tong, X.; Wang, K.; Qi, X.; Deng, C.; Brandt, M. Eco-engineering controls vegetation trends in southwest China karst. Sci. Total Environ. 2021, 770, 145160. [Google Scholar] [CrossRef]
- Li, S.; Yang, S.; Liu, X.; Liu, Y.; Shi, M. NDVI-Based Analysis on the Influence of Climate Change and Human Activities on Vegetation Restoration in the Shaanxi-Gansu-Ningxia Region, Central China. Remote Sens. 2015, 7, 11163–11182. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Shao, Q.; Cao, W.; Wu, D.; Gong, G.; Fan, J. Cost-Benefit Analysis of the Ecological Protects in the Three-River Headwaters Region Based on Ecosystem Services Values. Acta Agrestia Sin. 2018, 26, 30–39. [Google Scholar]
- Fang, Y. Managing the three-rivers headwater region, china: From ecological engineering to social engineering. Ambio 2013, 42, 566–576. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.W.; Shao, Q.Q.; Liu, J.Y.; Wang, J.B.; Harris, W.; Chen, Z.Q.; Zhong, H.P.; Xu, X.L.; Liu, R.G. Assessment of effects of climate change and grazing activity on grassland yield in the Three Rivers Headwaters Region of Qinghai-Tibet Plateau, China. Environ. Monit. Assess. 2010, 170, 571–584. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Yue, Y.; Horion, S.; Wang, K.; Keersmaecker, W.D.; Tian, F.; Schurgers, G.; Xiao, X.; Luo, Y.; et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 2018, 1, 44–50. [Google Scholar] [CrossRef]
- Xie, S.; Mo, X.; Hu, S.; Liu, S. Contributions of climate change, elevated atmospheric CO2 and human activities to ET and GPP trends in the Three-North Region of China. Agric. For. Meteorol. 2020, 295, 108183. [Google Scholar] [CrossRef]
- Tang, L.; Chen, X.; Cai, X.; Li, J. Disentangling the roles of land-use-related drivers on vegetation greenness across China. Environ. Res. Lett. 2021, 16, 124033. [Google Scholar] [CrossRef]
Vegetation Greening | Determination Criteria | Contribution (%) | ||
---|---|---|---|---|
Climate Variabilities | Human Activities | |||
>0 | >0 | >0 | ||
<0 | >0 | 0 | 100 | |
>0 | <0 | 100 | 0 | |
<0 | <0 | <0 | ||
<0 | >0 | 100 | 0 | |
>0 | <0 | 0 | 100 |
Regions | Periods | Increased Area (%) | Significantly Increased Area (%) | Decreased Area (%) | Significantly Decreased Area (%) |
---|---|---|---|---|---|
LP | 1982–2019 | 97.5 | 91.4 | 2.5 | 0.5 |
1982–1999 | 80.3 | 23.3 | 19.7 | 0.9 | |
2000–2019 | 98.9 | 94.7 | 1.1 | 0.3 | |
TRSR | 1982–2019 | 86.0 | 65.3 | 14.1 | 3.5 |
1982–2004 | 66.2 | 26.4 | 33.8 | 3.9 | |
2005–2019 | 70.5 | 17.0 | 29.5 | 2.6 |
Between | Relationship | LP | TRSR | ||||
---|---|---|---|---|---|---|---|
1982–2019 | 1982–1999 | 2000–2019 | 1982–2019 | 1982–2004 | 2005–2019 | ||
LAI-TMP | Positive area (%) | 96.65 | 71.52 | 88.62 | 90.05 | 81.25 | 70.61 |
Significant positive area (%) | 72.09 | 8.99 | 6.50 | 57.09 | 17.56 | 3.55 | |
Negative area (%) | 3.35 | 28.48 | 11.38 | 9.95 | 18.75 | 29.39 | |
Significant negative area (%) | 0.22 | 0.32 | 0.01 | 0.80 | 0.25 | 0.41 | |
LAI-PRE | Positive area (%) | 95.24 | 71.95 | 95.00 | 88.11 | 41.82 | 82.57 |
Significant positive area (%) | 42.37 | 6.67 | 35.17 | 30.94 | 1.25 | 15.46 | |
Negative area (%) | 4.76 | 28.05 | 5.00 | 11.89 | 58.18 | 17.43 | |
Significant negative area (%) | 0.19 | 1.35 | 0.04 | 0.25 | 1.81 | 0.17 | |
LAI-RAD | Positive area (%) | 55.26 | 36.52 | 56.98 | 11.71 | 45.72 | 15.54 |
Significant positive area (%) | 9.67 | 1.80 | 2.70 | 0.08 | 0.98 | 0.17 | |
Negative area (%) | 44.74 | 63.48 | 43.02 | 88.29 | 54.28 | 84.46 | |
Significant negative area (%) | 11.02 | 3.82 | 0.36 | 20.64 | 2.03 | 12.58 | |
LAI-VPD | Positive area (%) | 80.24 | 47.43 | 16.66 | 26.71 | 21.90 | 45.50 |
Significant positive area (%) | 26.98 | 4.01 | 0.19 | 0.31 | 0.46 | 2.36 | |
Negative area (%) | 19.76 | 52.57 | 83.34 | 73.29 | 78.10 | 54.50 | |
Significant negative area (%) | 1.69 | 4.13 | 12.01 | 13.44 | 10.51 | 1.33 |
Period | Type | Cropland | Forest | Shrubland | Grassland | Waterbodies | Urban | Desert |
---|---|---|---|---|---|---|---|---|
1980–2000 LP | Cropland | 201,270.44 | 148.80 | 93.41 | 3364.03 | 792.36 | 8.89 | 608.26 |
Forest | 208.49 | 52,208.56 | 60.11 | 322.91 | 31.45 | 0.00 | 98.74 | |
Shrubland | 40.81 | 122.64 | 38,637.24 | 344.41 | 8.15 | 0.00 | 66.18 | |
Grassland | 1077.27 | 385.56 | 424.28 | 254,937.44 | 389.21 | 2.62 | 2103.13 | |
Waterbodies | 255.48 | 6.16 | 10.59 | 287.90 | 7948.66 | 0.00 | 129.21 | |
Urban | 1235.32 | 37.49 | 5.01 | 242.13 | 34.64 | 13,126.32 | 32.19 | |
Desert | 319.47 | 8.18 | 43.28 | 1568.61 | 243.71 | 0.00 | 40,431.11 | |
2000–2018 LP | Cropland | 117,484.22 | 6639.21 | 4311.61 | 54,293.92 | 2315.97 | 7088.91 | 2599.08 |
Forest | 7993.59 | 30,779.40 | 3830.02 | 11,692.15 | 238.07 | 285.55 | 566.68 | |
Shrubland | 5051.89 | 3719.19 | 19,705.75 | 10,686.85 | 119.63 | 92.60 | 325.40 | |
Grassland | 57,769.81 | 9927.44 | 10,364.27 | 164,034.37 | 1857.11 | 1972.09 | 12,574.92 | |
Waterbodies | 2391.27 | 263.56 | 154.34 | 2028.06 | 2921.85 | 231.08 | 652.60 | |
Urban | 13,686.50 | 918.06 | 383.51 | 5605.51 | 539.48 | 4870.88 | 919.56 | |
Desert | 1604.24 | 403.07 | 287.99 | 10,301.00 | 591.73 | 151.95 | 24,717.00 | |
1980–2005 TRSR | Cropland | 745.28 | 4.25 | 0.00 | 86.00 | 2.34 | 0.00 | 2.87 |
Forest | 0.00 | 3128. | 34.14 | 21.83 | 1.00 | 0.00 | 1.03 | |
Shrubland | 0.00 | 4.77 | 11,037. | 21.27 | 1.97 | 0.00 | 0.00 | |
Grassland | 3.24 | 18.80 | 37.51 | 237,798.15 | 312.44 | 2.33 | 192.60 | |
Waterbodies | 2.56 | 0.00 | 2.62 | 68.14 | 16,626.61 | 0.00 | 94.05 | |
Urban | 4.35 | 0.00 | 0.00 | 4.66 | 1.82 | 61.80 | 0.00 | |
Desert | 2.59 | 0.00 | 2.38 | 924.35 | 485.08 | 0.00 | 78,932.47 | |
2005–2018 TRSR | Cropland | 456.31 | 19.00 | 29.67 | 335.21 | 29.27 | 8.06 | 29.52 |
Forest | 23.07 | 1578.30 | 194.96 | 1257.71 | 23.96 | 0.40 | 94.47 | |
Shrubland | 18.58 | 194.49 | 4763.10 | 5716.53 | 49.71 | 3.25 | 221.99 | |
Grassland | 284.39 | 1318.76 | 5828.42 | 210,490.87 | 4350.73 | 36.93 | 30,601.93 | |
Waterbodies | 32.60 | 23.13 | 44.43 | 4524.10 | 10,457.73 | 2.78 | 2470.63 | |
Urban | 17.60 | 3.12 | 6.47 | 68.64 | 4.99 | 16.97 | 6.22 | |
Desert | 2.77 | 20.32 | 159.95 | 15,382.96 | 1793.67 | 1.62 | 46,636.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Zhang, Y.; Zheng, Z.; Cong, N.; Zhao, G.; Zhu, Y.; Chen, Y.; Sun, Y.; Zhang, J.; Zhang, Y. Ecological Engineering Projects Shifted the Dominance of Human Activity and Climate Variability on Vegetation Dynamics. Remote Sens. 2022, 14, 2386. https://doi.org/10.3390/rs14102386
Gao J, Zhang Y, Zheng Z, Cong N, Zhao G, Zhu Y, Chen Y, Sun Y, Zhang J, Zhang Y. Ecological Engineering Projects Shifted the Dominance of Human Activity and Climate Variability on Vegetation Dynamics. Remote Sensing. 2022; 14(10):2386. https://doi.org/10.3390/rs14102386
Chicago/Turabian StyleGao, Jie, Yangjian Zhang, Zhoutao Zheng, Nan Cong, Guang Zhao, Yixuan Zhu, Yao Chen, Yihan Sun, Jianshuang Zhang, and Yu Zhang. 2022. "Ecological Engineering Projects Shifted the Dominance of Human Activity and Climate Variability on Vegetation Dynamics" Remote Sensing 14, no. 10: 2386. https://doi.org/10.3390/rs14102386
APA StyleGao, J., Zhang, Y., Zheng, Z., Cong, N., Zhao, G., Zhu, Y., Chen, Y., Sun, Y., Zhang, J., & Zhang, Y. (2022). Ecological Engineering Projects Shifted the Dominance of Human Activity and Climate Variability on Vegetation Dynamics. Remote Sensing, 14(10), 2386. https://doi.org/10.3390/rs14102386