A New Method for Estimating Soil Fertility Using Extreme Gradient Boosting and a Backpropagation Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.2.1. Soil Samples
2.2.2. Satellite Image Data and Preprocessing
2.3. Methods
2.3.1. Determination of Optimal Crop Spectral Variables for Estimating SFI
- (1)
- A classification model is built on the basis of all the features.
- (2)
- Based on the information from the generated model process, the FI is obtained and ranked in descending order. FI is calculated as follows [38]:
- (3)
- A subset of features is generated by selecting a number of features with the highest FI values.
- (4)
- Classification experiments were performed on the subset of features to examine their classification ability.
- (5)
- Repeat steps (3) and (4) until all features have been selected.
- (6)
- Check the classification for all subsets and choose the optimal subset of features (namely, the subset having relatively high area under the curve values and fewer features).
2.3.2. Model Construction
2.3.3. Accuracy Metrics
3. Results
3.1. Optimal Crop Spectral Variables for Estimating SFI
3.2. Model Construction and Accuracy Evaluation
3.3. Soil Fertility Index Map
4. Discussion
4.1. Comparison with Other Similar Studies
4.2. Prospects for Future Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stockdale, E.A.; Shepherd, M.A.; Fortune, S.; Cuttle, S.P. Soil fertility in organic farming systems—Fundamentally different? Soil Use Manag. 2006, 18, 301–308. [Google Scholar] [CrossRef]
- Li, X.G.; Liu, X.P.; Liu, X.J. Long-term fertilization effects on crop yield and desalinized soil properties. Agron. J. 2020, 112, 4321–4331. [Google Scholar] [CrossRef]
- Ye, H.C.; Zhang, S.W.; Huang, Y.F.; Huang, Y.F.; Zhou, Z.M.; Shen, C.Y. Application of Rough Set Theory to Determine Weights of Soil Fertility Factor. Sci. Agric. Sin. 2014, 47, 710–717. [Google Scholar]
- Wang, F.; Li, Q.H.; Lin, C.; He, C.M. Characteristics of soil fertility quality and minimum dataset for yellow-mud paddy fields in Fujian Province. Chin. J. Eco-Agric. 2018, 26, 1855–1865. [Google Scholar]
- Huang, J.; Han, T.F.; Shen, Z.; Liu, K.L.; Ma, C.B.; Wang, H.Y.; Qu, X.L.; Yu, Z.K.; Xie, J.H.; Zhang, H.M. Spatiotemporal Variation of Fertility Quality of Chinese Paddy Soil Based on Fuzzy Method in Recent 30 Years. Acta Pedol. Sin. 2022. [Google Scholar] [CrossRef]
- Rossel, R.; Rizzo, R.; Demattê, J.A.M.; Behrens, T. Spatial modeling of a soil fertility index using Visible–Near-Infrared spectra and terrain attributes. Soil Sci. Soc. Am. J. 2010, 74, 1293–1300. [Google Scholar] [CrossRef]
- Munnaf, M.A.; Mouazen, A.M. Development of a soil fertility index using on-line Vis-NIR spectroscopy. Comput. Electron. Agric. 2021, 188, 106341. [Google Scholar] [CrossRef]
- Yang, M.H.; Mouazen, A.; Zhao, X.M.; Guo, X. Assessment of a soil fertility index using visible and near-infrared spectroscopy in the rice paddy region of southern China. Eur. J. Soil Sci. 2020, 71, 615–626. [Google Scholar] [CrossRef]
- Wang, L.Z.; Han, Y.; Pan, J. Study on Farmland Soil Fertility Model Based on Multi-Angle Polarized Hyper-Spectrum. Spectrosc. Spectr. Anal. 2018, 38, 240–245. [Google Scholar]
- Zeeshan, M.; Siddique, M.T.; Ali, N.A.; Farooq, M.S. Correlation of Spatial Variability of Soil Macronutrients with Crop Performance by Using Satellite and Remote Sensing Indices for Site Specific Agriculture: Chakwal Region. Rice Res. 2017, 5, 1000182. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, K.R.; Li, S.K.; Xiao, C.H.; Li, J.; Dai, J.G.; Fang, L.F.; Chen, B.; Wang, F.Y. Study on Evaluation Methods for Soil Fertility in Oasis Cotton Field Based on the Nor-malized Difference Vegetation Index (NDVI). Cotton Sci. 2013, 25, 148–153. [Google Scholar]
- Duan, D.D.; Sun, X.; Liang, S.F.; Sun, J.; Fan, L.L.; Chen, H.; Xia, L.; Zhao, F.; Yang, W.Q.; Yang, P. Spatiotemporal Patterns of Cultivated Land Quality Integrated with Multi-Source Remote Sensing: A Case Study of Guangzhou, China. Remote Sens. 2022, 14, 1250. [Google Scholar] [CrossRef]
- Lu, R.K. Methods of Soil Agrochemical Analysis; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Guan, Y.J.; Zou, Z.L.; Zhang, X.P.; Min, C.W. Research on the inversion model of cultivated land quality based on normalized difference vegetation index. Chin. J. Soil Sci. 2018, 49, 779–787. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, L.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Daughtry, C.; Walthall, C.L.; Kim, M.S.; Colstoun, E.B.D.; Mcmurtreyll, J.E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. MTCI: The meris terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 151–161. [Google Scholar] [CrossRef]
- Bendig, J.L.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Birth, G.S.; Mcvey, G.R. Measuring the color of growing turf with a reflectance spectrophotometer. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, Q.H.; Batchily, K.; Leeuwen, W.V. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Badgley, G.; Field, C.B.; Berry, J.A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 2017, 3, e1602244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Qi, J.G.; Chehbouni, A.R.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Pasqualotto, N.; Delegido, J.; Wittenberghe, S.V.; Rinaldi, M.; Moreno, J. Multi-crop green LAI estimation with a new simple Sentinel-2 LAI index (SeLI). Sensors 2019, 19, 904. [Google Scholar] [CrossRef] [Green Version]
- Anatoly, A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar]
- Haboudane, D.; Tremblay, N.; Miller, J.R.; Vigneault, P. Remote estimation of crop chlorophyll content using spectral indices derived from Hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 423–437. [Google Scholar] [CrossRef]
- Meng, J.H.; Xu, J.; You, X.Z. Optimizing soybean harvest date using HJ-1 satellite imagery. Precis. Agric. 2015, 16, 164–179. [Google Scholar] [CrossRef]
- Hunt, E.R.; Doraiswamy, P.C.; Mcmurtrey, J.E.; Daughtry, C.S.T.; Perry, E.M.; Akhmedov, B. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Cui, H.Y.; Xu, S.; Zhang, L.F.; Welsch, R.E.; Horn, B.K.P. The key techniques and future vision of feature selection in machine learning. J. Beijing Univ. Posts Telecommun. 2018, 41, 1–12. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Ma, J.; Ding, Y.X.; Cheng, J.C.P.; Jiang, F.F.; Tan, Y.; Gan, V.J.L.; Wan, Z.W. Identification of high impact factors of air quality on a national scale using big data and machine learning techniques. J. Clean. Prod. 2020, 244, 118955. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, W.; Peng, Y.P.; Hu, Y.M.; Ma, T.; Xie, Y.K.; Wang, L.Y.; Liu, J.C.; Liu, Z.H. A new AG-AGB estimation model based on MODIS and SRTM data in Qinghai Province, China. Ecol. Indic. 2021, 133, 108378. [Google Scholar] [CrossRef]
- Chagas, C.D.S.; Junior, W.D.C.; Bhering, S.B.; Filho, B.C. Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions. Catena 2016, 139, 232–240. [Google Scholar] [CrossRef]
- Selige, T.; Böhner, J.; Schmidhalter, U. High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures. Geoderma 2006, 136, 235–244. [Google Scholar] [CrossRef]
- Tavares, T.R.; Mouazen, A.M.; Nunes, L.C.; Santos, F.R.D.; Melquiades, F.L.; Silva, T.R.D.; Krug, F.J.; Molin, J.P. Laser-Induced Breakdown Spectroscopy (LIBS) for tropical soil fertility analysis. Soil Tillage Res. 2022, 216, 105250. [Google Scholar] [CrossRef]
- Peng, Y.P.; Zhao, L.; Hu, Y.M.; Wang, G.X.; Wang, L.; Liu, Z.H. Prediction of Soil Nutrient Contents Using Visible and Near-Infrared Reflectance Spectroscopy. ISPRS Int. J. Geo-Inf. 2019, 8, 437. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, R.H. Kolmogorov’s mapping neural network existence theorem. In Proceedings of the IEEE 1st International Conference on Neural Networks, San Diego, CA, USA, 21–24 June 1987. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Tziolas, N.; Tsakiridis, N.; Ogen, Y.; Kalopesa, E.; Ben-Dor, E.; Theocharis, J.; Zalidis, G. An integrated methodology using open soil spectral libraries and Earth Observation data for soil organic carbon estimations in support of soil-related SDGs. Remote Sens. Environ. 2020, 244, 111793. [Google Scholar] [CrossRef]
- Chen, S.C.; Xu, H.Y.; Xu, D.Y.; Ji, W.J.; Li, S.; Yang, M.H.; Hu, B.F.; Zhou, Y.; Wang, N.; Arrouays, D.; et al. Evaluating validation strategies on the performance of soil property prediction from regional to continental spectral data. Geoderma 2021, 400, 115159. [Google Scholar] [CrossRef]
- Allouis, T.; Durrieu, S.; Véga, V.; Couteron, P. Stem Volume and Above-Ground Biomass Estimation of Individual Pine Trees from LiDAR Data: Contribution of Full-Waveform Signals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 924–934. [Google Scholar] [CrossRef]
- Dlamini, D.S.; Mishra, A.K.; Mamba, B.B. ANN modeling in Pb(II) removal from water by clay-polymer composites fabricated via the melt-blending. J. Appl. Polym. Sci. 2013, 130, 3894–3901. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Kuang, B.; Baerdemaeker, J.D.; Ramon, H. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma 2010, 158, 23–31. [Google Scholar] [CrossRef]
- Sheela, K.G.; Deepa, S.N. Review on methods to fix number of hidden neurons in neural networks. Math. Probl. Eng. 2013, 2013, 425740. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.N.; Song, J.P. Cultivated Land Quality Assessment Based on SPOT Multispectral Remote Sensing Image: A Case Study in Jimo City of Shandong Province. Prog. Geogr. 2008, 27, 71–78. [Google Scholar]
- Liu, S.S.; Peng, Y.P.; Xia, Z.Q.; Hu, Y.M.; Wang, G.X.; Zhu, A.X.; Liu, Z.H. The GA-BPNN-Based Evaluation of Cultivated Land Quality in the PSR Framework Using Gaofen-1 Satellite Data. Sensors 2019, 19, 5127. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.Z.; Dong, B.; Liu, J.J.; Li, Q. Method of comprehensive evaluation on soil fertility on the basis of weight analysis. J. Irrig. Drain. 2016, 35, 81–86. [Google Scholar]
- Liang, J.; Zheng, Z.W.; Xia, S.T.; Zhang, X.T.; Tang, Y.Y. Crop recognition and evaluation using red edge features of GF-6 satellite. J. Remote Sens. 2020, 24, 1168–1179. [Google Scholar]
- Weksler, S.; Rozenstein, O.; Haish, N.; Moshelion, M.; Wallach, R.; Ben-Dor, E. Pepper Plants Leaf Spectral Reflectance Changes as a Result of Root Rot Damage. Remote Sens. 2021, 13, 980. [Google Scholar] [CrossRef]
Soil Properties | Min | Max | Mean | SD | Skewness | Kurtosis | CV (%) |
---|---|---|---|---|---|---|---|
pH | 4.90 | 8.20 | 5.84 | 0.44 | 1.23 | 4.95 | 7.52 |
SOM | 6.42 | 68.90 | 23.72 | 8.88 | 1.10 | 3.43 | 37.43 |
TN | 0.37 | 2.14 | 0.86 | 0.42 | 1.22 | 0.83 | 47.95 |
AP | 6.80 | 140.8 | 43.89 | 24.64 | 1.14 | 1.35 | 56.15 |
AK | 2.00 | 235.00 | 74.30 | 49.19 | 1.06 | 0.54 | 66.21 |
Band | Description | CW (nm) | SR (m) | Band | Description | CW (nm) | SR (m) |
---|---|---|---|---|---|---|---|
B1 | Coastal aerosol | 443 | 60 | B8 | NIR-1 | 842 | 10 |
B2 | Blue | 490 | 10 | B8A | NIR-2 | 865 | 20 |
B3 | Green | 560 | 10 | B9 | Water vapor | 945 | 60 |
B4 | Red | 665 | 10 | B10 | SMIR-Cirrus | 1375 | 60 |
B5 | Red edge-1 | 705 | 20 | B11 | SMIR-1 | 1610 | 20 |
B6 | Red edge-2 | 740 | 20 | B12 | SMIR-2 | 2190 | 20 |
B7 | Red edge-3 | 783 | 20 |
Vegetation Index | Formulation in Sentinel-2 | References | Vegetation Index | Formulation in Sentinel-2 | References |
---|---|---|---|---|---|
NDVI | (B8 − B4)/(B8 + B4) | Haboudane et al. [15] | MCARI | ((B5 − B4) − 0.2 × (B5 − B3)) × (B5/B4) | Daughtry et al. [16] |
MTCI | (B6 − B5)/(B5 − B4) | Dash et al. [17] | MCARI1 | 1.2 × (2.5 × (B8 − B4) − 1.3 × (B8 − B3)) | Haboudane et al. [15] |
MGRVI | ((B3)2 − (B4)2)/((B3)2 + (B4)2) | Bendig et al. [18] | MCARI2 | 1.5 × (2.5 × (B8 − B4) − 1.3 × (B8 − B3)/((2.0 × B8 + 1)2) − (6.0 × B8 – 5 × ((B4)0.5)) − 0.5)0.5 | |
REP | 705 + 35 × ((((B7 + B4)/2) − B5)/(B6 − B5)) | Frampton et al. [19] | MTVI1 | 1.2 × (1.2 × (B8 − B3) − 2.5 × (B4 − B3)) | |
IRECI | (B7 − B4)/(B5/B6) | MTVI2 | 1.5 × (1.2 × (B8 − B3) − 2.5 × (B4 − B3)/((2.0 × B8 + 1)2) − (6.0 × B8 − 5 × ((B4)0.5)) − 0.5)0.5 | ||
RVI | B8/B4 | Birth et al. [20] | NDREI | (B8 − B5)/(B8 + B5) | Gitelson et al. [21] |
EVI | 2.5 × ((B8 − B4)/(B8 + 6 × B4 − 7.5 × B2 + 1)) | Huete [22] | NGRDI | (B3 − B4)/(B3 + B4) | Tucker [23] |
DVI | B8 − B4 | Jordan [24] | NIRv | ((B8 − B4)/(B8 + B4)) × B8 | Badgley et al. [25] |
SAVI | (B8 − B4) × 1.5/(B8 + B4 + 0.5) | Huete [26] | OSAVI | (B8 − B4)/(B8 + B4 + 0.16) | Rondeaux et al. [27] |
MASVI | 0.5 × (2 × B8 + 1 − ((2 × B8 + 1)2 − 8 × (B8 − B4))0.5) | Qi et al. [28] | SELI | (B8A − B5)/(B8A + B5) | Pasqualotto et al. [29] |
CIG | (B8/B3) − 1 | Anatoly et al. [30] | TCARI | 3 × ((B5 − B4) − 0.2 × (B5 − B3) × (B5/B4)) | Haboudane et al. [31] |
CIRE | (B8/B5) − 1 | TCI | 1.2 × (B5 − B3) − 1.5 × (B4 − B3) × (B5/B4)0.5 | ||
CVI | (B8 × B4)/((B3)2) | Meng et al. [32] | TGI | −0.5 × (190 × (B4 − B3) − 120 × (B4 − B2)) | Hunt et al. [33] |
TVI | 0.5 × (120 × (B8 − B3) − 200 × (B4 − B3)) | Broge et al. [34] |
Model | Data Set | R2 | RMSE | CCC | RPIQ |
---|---|---|---|---|---|
MLR | training | 0.03 | 0.26 | 0.17 | 0.76 |
validation | 0.02 | 0.28 | 0.02 | 0.72 | |
BPNN | training | 0.84 | 0.06 | 0.92 | 3.60 |
validation | 0.66 | 0.17 | 0.81 | 1.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Liu, Z.; Lin, C.; Hu, Y.; Zhao, L.; Zou, R.; Wen, Y.; Mao, X. A New Method for Estimating Soil Fertility Using Extreme Gradient Boosting and a Backpropagation Neural Network. Remote Sens. 2022, 14, 3311. https://doi.org/10.3390/rs14143311
Peng Y, Liu Z, Lin C, Hu Y, Zhao L, Zou R, Wen Y, Mao X. A New Method for Estimating Soil Fertility Using Extreme Gradient Boosting and a Backpropagation Neural Network. Remote Sensing. 2022; 14(14):3311. https://doi.org/10.3390/rs14143311
Chicago/Turabian StylePeng, Yiping, Zhenhua Liu, Chenjie Lin, Yueming Hu, Li Zhao, Runyan Zou, Ya Wen, and Xiaoyun Mao. 2022. "A New Method for Estimating Soil Fertility Using Extreme Gradient Boosting and a Backpropagation Neural Network" Remote Sensing 14, no. 14: 3311. https://doi.org/10.3390/rs14143311
APA StylePeng, Y., Liu, Z., Lin, C., Hu, Y., Zhao, L., Zou, R., Wen, Y., & Mao, X. (2022). A New Method for Estimating Soil Fertility Using Extreme Gradient Boosting and a Backpropagation Neural Network. Remote Sensing, 14(14), 3311. https://doi.org/10.3390/rs14143311