A Joint Method for Wave and Wind Field Parameter Inversion Combining SAR with Wave Spectrometer Data
Abstract
:1. Introduction
2. Data Sources and Methods
2.1. Data Sources
2.1.1. Sentinel-1 SAR Data
2.1.2. CFOSAT SWIM Data
2.1.3. ECMWF ERA5 Reanalysis Data
2.1.4. Buoy Data
2.2. Joint Inversion Method for Wave Parameters
2.2.1. Pretreatment of the SWIM Wave Spectrum
2.2.2. MPI Method
2.2.3. MTF Correction and Wave Spectrum Splicing
2.3. Joint Inversion Method for Wind Field Parameters
2.3.1. Wind Direction Inversion by Wave Spectrometer
2.3.2. Wind Speed Inversion
3. Results and Discussion
3.1. Comparison of Inversion Results with ERA5 Data
3.2. Comparison of Joint Inversion Results with Buoy Data
3.3. Comparison of Joint Inversion Results with L2 Level Product
4. Conclusions
- (1)
- For wave parameter inversion, this paper proposes a new method for wave parameter inversion combining SAR with wave spectrometer data. This method makes up for the defect of azimuth cut-off in SAR. The RMSE of the wave parameters and ERA-5 and buoy data show that this joint method for wave parameter inversion is feasible.
- (2)
- For wind field parameter inversion, this paper uses the wind direction of the wave spectrometer as the input of the CMOD5.N function, which can be independent of the external data, except for SAR and the wave spectrometer. The RMSE of wind field parameters and ERA-5 and buoy data show that this joint method for wind field parameter inversion is feasible.
- (3)
- Compared with L2 level SAR and SWIM product parameters, the joint method has better applicability in the middle and low sea conditions, so this method has a high research value.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zou, B.; Lin, M.S.; Shi, L.J.; Zou, Y.R.; Jia, Y.J.; Zeng, T. Application of remote sensing technology in Marine disaster monitoring. City Disaster Reduct. 2018, 6, 61–65. [Google Scholar]
- Huang, W.M.; Liu, X.L.; Gill Eric, W. An empirical mode decomposition method for sea surface wind measurements from X-band nautical radar data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6218–6227. [Google Scholar] [CrossRef]
- Wan, Y.; Wan, L.; Dai, Y.S. Sea wave spectrum inversion method based on RADARSAT-2 SAR satellite data and its sea Trial verification. Lab. Res. Explor. 2020, 39, 16–19. [Google Scholar]
- Huang, W.M.; Liu, X.L.; Gill Eric, W. Ocean wind and wave measurements using X-Band marine radar: A comprehensive review. Remote Sens. 2017, 9, 1261. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.X.; Yuan, L.F. Development status of spaceborne synthetic aperture radar. Electron. Meas. 2016, 8, 135–136. [Google Scholar]
- Stopa, J.E.; Ardhuin, F.; Chapron, B.; Collard, F. Estimating wave orbital velocity through the azimuth cutoff from space-Borne satellites. J. Geophys. Res. Ocean. 2015, 120, 7616–7634. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.Q.; Hu, J.J.; Song, S.Y.; Yu, Y.; Chu, C. Simulation analysis of effective wave height inversion method of ocean spectrometer. Telem. Remote Control 2013, 34, 7–13. [Google Scholar]
- Wan, Y.; Qu, R.Z.; Shi, X.L.; Dai, Y.S. A Joint Inversion Method of Wave and Wind Field Parameters Based on SAR SLC Data. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4506305. [Google Scholar] [CrossRef]
- Hasselmann, K.; Hasselmann, S. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. J. Geophys. Res. Ocean. 1991, 96, 10713–10729. [Google Scholar] [CrossRef]
- Mastenbroek, C.; De Valk, C.C. A semiparametric algorithm to retrieve ocean wave spectra from synthetic aperture radar. J. Geophys. Res. 2000, 105, 3497–3516. [Google Scholar] [CrossRef]
- He, Y.J. A Parameterized Method for Extracting Wave Direction Spectrum from Synthetic Aperture Radar. Chin. Sci. Bull. 1999, 44, 428–433. [Google Scholar] [CrossRef]
- Engen, G.; Johnsen, H. SAR-Ocean wave inversion using image cross spectra. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1047–1056. [Google Scholar] [CrossRef]
- Schulz-Stellenfleth, J.; Lehner, S.; Hoja, D. A parametric scheme for the retrieval of two-Dimensional ocean wave spectra from synthetic aperture radar look cross spectra. J. Geophys. Res. Ocean. 2005, 110, C05004. [Google Scholar] [CrossRef] [Green Version]
- Jackson, F.C.; Walton, W.T.; Baker, P.L. Aircraft and satellite measurement of ocean wave directional spectra using scanning-beam microwave radars. J. Geophys. Res. Ocean. 1985, 90, 987–1004. [Google Scholar] [CrossRef]
- Jackson, F.C. The radar ocean-Wave spectrometer. Johns Hopkins APL Tech. Dig. 1987, 8, 116–127. [Google Scholar]
- Hauser, D.; Caudal, G.; Rijckenberg, G.J. RESSAC: A new airborne FM/CW radar ocean wave spectrometer. IEEE Trans. Geosci. Remote Sens. 1992, 30, 981–995. [Google Scholar] [CrossRef]
- Hauser, D.; Soussi, E.; Thouvenot, E.; Rey, L. SWIMSAT: A Real-Aperture Radar to Measure Directional Spectra of Ocean Waves from Space—Main Characteristics and Performance Simulation. J. Atmos. Ocean. Technol. 2001, 18, 421–437. [Google Scholar] [CrossRef]
- Tison, C.; Manent, C.; Amiot, T.; Enjolras, V.; Hauser, D.; Rey, L.; Castillan, P. Estimation of wave spectra with swim on cfosat-illustration on a real case. IEEE Int. Geosci. Remote Sens. Symp. 2011, 1473–1476. [Google Scholar]
- Ren, L.; Mao, Z.; Huang, H.; Gong, F. Satellite-Based RAR performance simulation for measuring directional ocean wave spectrum based on SAR inversion spectrum. Acta Oceanol. Sin. 2010, 29, 13–20. [Google Scholar] [CrossRef]
- Ren, L.; Yang, J.; Zheng, G.; Wang, J. A joint method to retrieve directional ocean wave spectra from SAR and wave spectrometer data. Chin. J. Oceanol. Limnol. 2016, 34, 847–858. [Google Scholar] [CrossRef]
- Stoffelen, A.; Anderson, D. Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. J. Geophys. Res. Ocean. 1997, 102, 5767–5780. [Google Scholar] [CrossRef]
- Quilfen, Y.; Chapron, B.; Elfouhaily, T.; Katsaros, K.; Tournadre, J. Observation of tropical cyclones by high-Resolution scatterometry. J. Geophys. Res. Ocean. 1998, 103, 7767–7786. [Google Scholar] [CrossRef]
- Hersbach, H.; Stoffelen, A.; de Haan, S. An improved C-Band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res. Ocean. 2007, 112, C03006. [Google Scholar] [CrossRef]
- Hersbach, H. Comparison of C-Band scatterometer CMOD5. N equivalent neutral winds with ECMWF. J. Atmos. Ocean. Technol. 2010, 27, 721–736. [Google Scholar] [CrossRef]
- Chu, X.Q. Basic Research on Wave Remote Sensing Method and Application of Wave Spectrometer. Ph.D. Thesis, Graduate University of Chinese Academy of Sciences (Institute of Oceanography), Qingdao, China, 2011. [Google Scholar]
- Wang, X.C. Study on Wave Spectrum Inversion Method of Airborne Spectrometer. Master’s Thesis, China University of Petroleum (East China), Qingdao, China, 2016. [Google Scholar]
- Li, P. Inversion of Sea Surface Wind Field by Spaceborne Spectrometer. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2019. [Google Scholar]
- Lin, W.M.; Dong, X.L. Study on the accuracy of ocean wave spectrum retrieval by satellite-borne radar spectrometer. J. Oceanogr. 2010, 32, 9–16. [Google Scholar]
- Zhao, X.B.; Shao, W.Z.; Zhao, L.B.; Gao, Y.; Hu, Y.Y.; Yuan, X.Z. Impact of rain on wave retrieval from Sentinel-1 synthetic aperture radar images in tropical cyclones. Adv. Space Res. 2021, 67, 3072–3086. [Google Scholar] [CrossRef]
- Zhang, K.Y. Sea Surface Wind Field Retrieval and Offshore Wind Energy Resource Assessment Based on C-Band SAR Data. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2019. [Google Scholar]
- Shao, W.; Li, X.M.; Lehner, S.; Guan, C. Development of polarization ratio model for sea surface wind field retrieval from TerraSAR-X HH polarization data. Int. J. Remote Sens. 2014, 35, 4046–4063. [Google Scholar] [CrossRef]
- Huang, P. Ocean Wave Detection Mechanism and Simulation Research of Ocean Spectrometer. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2014. [Google Scholar]
- Wan, Y.; Qu, R.; Dai, Y.; Zhang, X. Research on the Applicability of the E Spectrum and PM Spectrum as the First Guess Spectrum of SAR Wave Spectrum Inversion. IEEE Access 2020, 8, 169082–169095. [Google Scholar] [CrossRef]
The Range of Wind Speed (m/s) | SAR | SWIM | SAR and SWIM |
---|---|---|---|
Ws < 6 | Hs: 0.64 m | 0.38 m | 0.46 m |
Ws: 1.46 m/s | 1.60 m/s | 1.18 m/s | |
6 < Ws < 10 | Hs: 0.30 m | 0.22 m | 0.37 m |
Ws: 1.10 m/s | 1.23 m/s | 1.20 m/s | |
Ws > 10 | Hs: 1.27 m | 0.28 m | 0.70 m |
Ws: 1.77 m/s | 0.66 m/s | 1.53 m/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Y.; Zhang, X.; Fan, C.; Qu, R.; Ma, E. A Joint Method for Wave and Wind Field Parameter Inversion Combining SAR with Wave Spectrometer Data. Remote Sens. 2022, 14, 3601. https://doi.org/10.3390/rs14153601
Wan Y, Zhang X, Fan C, Qu R, Ma E. A Joint Method for Wave and Wind Field Parameter Inversion Combining SAR with Wave Spectrometer Data. Remote Sensing. 2022; 14(15):3601. https://doi.org/10.3390/rs14153601
Chicago/Turabian StyleWan, Yong, Xiaona Zhang, Chenqing Fan, Ruozhao Qu, and Ennan Ma. 2022. "A Joint Method for Wave and Wind Field Parameter Inversion Combining SAR with Wave Spectrometer Data" Remote Sensing 14, no. 15: 3601. https://doi.org/10.3390/rs14153601