Novel Higher-Order Clique Conditional Random Field to Unsupervised Change Detection for Remote Sensing Images
Abstract
:1. Introduction
- (1)
- The basic idea of using the interaction between neighboring objects in both feature and location spaces to enhance CD performance.
- (2)
- The method to construct a higher-order clique of objects, the novel higher-order clique potential function, and the novel CD method HOC2RF.
2. Related Work
3. Proposed HOC2RF CD Method
3.1. Procedure and Organization of HOC2RF
3.2. Generating Complementary DI Images
3.3. Combine DI Images with FCM and Evidence Theory
3.4. Generate an Object-Level Map for HOC2RF
3.5. HOC2RF Model
3.5.1. Unary and Pairwise Potentials
3.5.2. Proposed Higher-Order Clique Potential
4. Results
4.1. Dataset Description and Experimental Settings
4.2. Result and Analysis
5. Discussion
5.1. Enhancing Process of HOC2RF
5.2. Parameter Comparison of Random Field Models
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Lv, Z.; Liu, T.; Benediktsson, J.A.; Falco, N. Land cover change detection Techniques: Very-high-resolution optical Images: A review. IEEE Geosci. Remote Sens. Mag. 2022, 10, 44–63. [Google Scholar] [CrossRef]
- Bruzzone, L.; Prieto, D.F. Automatic analysis of the difference image for unsupervised change detection. IEEE Tran. Geosci. Remote Sens. 2000, 38, 1171–1182. [Google Scholar] [CrossRef] [Green Version]
- Hao, M.; Zhou, M.; Jin, J.; Shi, W. An advanced superpixel-based markov random field model for unsupervised change detection. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1401–1405. [Google Scholar] [CrossRef]
- Shao, P.; Shi, W.; Liu, Z.; Dong, T. Unsupervised change detection using fuzzy topology-based majority voting. Remote Sens. 2021, 13, 3171. [Google Scholar] [CrossRef]
- Patra, S.; Ghosh, S.; Ghosh, A. Histogram thresholding for unsupervised change detection of remote sensing images. Int. J. Remote Sens. 2011, 32, 6071–6089. [Google Scholar] [CrossRef]
- Shao, P.; Shi, W.Z.; He, P.F.; Hao, M.; Zhang, X.K. Novel approach to unsupervised change detection based on a robust semi-supervised FCM clustering algorithm. Remote Sens. 2016, 8, 264. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Mishra, N.S.; Ghosh, S. Fuzzy clustering algorithms for unsupervised change detection in remote sensing images. Inf. Sci. 2011, 181, 699–715. [Google Scholar] [CrossRef]
- Du, P.J.; Liu, S.C.; Gamba, P.; Tan, K.; Xia, J.S. Fusion of difference images for change detection over urban areas. IEEE J. Sel. Top. Appl. Obs. Earth Remote Sens. 2012, 5, 1076–1086. [Google Scholar] [CrossRef]
- Celik, T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci. Remote Sens. Lett. 2009, 6, 772–776. [Google Scholar] [CrossRef]
- Lv, Z.; Liu, T.; Shi, C.; Benediktsson, J.A. Local histogram-based analysis for detecting land cover change using VHR remote sensing images. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1284–1287. [Google Scholar] [CrossRef]
- Bazi, Y.; Melgani, F.; Al-Sharari, H.D. Unsupervised change detection in multispectral remotely sensed imagery with level set methods. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3178–3187. [Google Scholar] [CrossRef]
- Hao, M.; Zhang, H.; Shi, W.; Deng, K. Unsupervised change detection using fuzzy c-means and MRF from remotely sensed images. Remote Sens. Lett. 2013, 4, 1185–1194. [Google Scholar] [CrossRef]
- Hedjam, R.; Kalacska, M.; Mignotte, M.; Nafchi, H.Z.; Cheriet, M. Iterative classifiers combination model for change detection in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6997–7008. [Google Scholar] [CrossRef]
- Lv, P.; Zhong, Y.; Zhao, J.; Jiao, H.; Zhang, L. Change detection based on a multifeature probabilistic ensemble conditional random field model for high spatial resolution remote sensing imagery. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1965–1969. [Google Scholar] [CrossRef]
- Zhong, P.; Wang, R. Learning conditional random fields for classification of hyperspectral images. IEEE Trans. Image Processing 2010, 19, 1890–1907. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Zhou, L.; Li, Y. A new change-detection method in high-resolution remote sensing images based on a conditional random field model. Int. J. Remote Sens. 2016, 37, 1173–1189. [Google Scholar] [CrossRef]
- Lafferty, J.; McCallum, A.; Pereira, F.C. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of the 18th International Conference on Machine Learning 2001 (ICML 2001), Williamstown, MA, USA, 28 June–1 July 2001; pp. 282–289. [Google Scholar]
- Kumar, S. Discriminative random fields: A discriminative framework for contextual interaction in classification. In Proceedings of the Ninth IEEE International Conference on Computer Vision, Nice, France, 13–16 October 2003; pp. 1150–1157. [Google Scholar]
- Zhou, L.; Cao, G.; Li, Y.; Shang, Y. Change detection based on conditional random field with region connection constraints in high-resolution remote sensing images. IEEE J. Sel. Top. Appl. Obs. Earth Remote Sens. 2016, 9, 3478–3488. [Google Scholar] [CrossRef]
- Lv, P.Y.; Zhong, Y.F.; Zhao, J.; Zhang, L.P. Unsupervised change detection based on hybrid conditional random field model for high spatial resolution remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4002–4015. [Google Scholar] [CrossRef]
- Zhuang, H.; Deng, K.; Fan, H.; Yu, M. Strategies combining spectral angle mapper and change vector analysis to unsupervised change detection in multispectral images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 681–685. [Google Scholar] [CrossRef]
- Cao, G.; Li, X.; Zhou, L. Unsupervised change detection in high spatial resolution remote sensing images based on a conditional random field model. Eur. J. Remote Sens. 2016, 49, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Shao, P.; Yi, Y.; Liu, Z.; Dong, T.; Ren, D. Novel multiscale decision fusion approach to unsupervised change detection for high-resolution images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Zhang, P.; Song, W.; An, L.; Wu, Y. SAR image change detection based on hybrid conditional random field. IEEE Geosci. Remote Sens. Lett. 2014, 12, 910–914. [Google Scholar]
- Shi, S.; Zhong, Y.; Zhao, J.; Lv, P.; Liu, Y.; Zhang, L. Land-Use/Land-Cover change detection based on class-prior object-oriented conditional random field framework for high spatial resolution remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Carvalho, O.A., Jr.; Guimarães, R.F.; Gillespie, A.R.; Silva, N.C.; Gomes, R.A. A new approach to change vector analysis using distance and similarity measures. Remote Sens. 2011, 3, 2473–2493. [Google Scholar] [CrossRef] [Green Version]
- Dempster, A.P. Upper and lower probabilities included by a multivalued mapping. Ann. Math. Statist. 1967, 38, 325–339. [Google Scholar] [CrossRef]
- Shafer, G.A. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976. [Google Scholar]
- Shao, P.; Shi, W.; Hao, M. Indicator-Kriging-Integrated evidence theory for unsupervised change detection in remotely sensed imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4649–4663. [Google Scholar] [CrossRef]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Lei, T.; Jia, X.; Liu, T.; Liu, S.; Meng, H.; Nandi, A.K. Adaptive morphological reconstruction for seeded image segmentation. IEEE Trans. Image Processing 2019, 28, 5510–5523. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Shen, J. Higher-Order image co-segmentation. IEEE Trans. Multimed. 2016, 18, 1011–1021. [Google Scholar] [CrossRef]
- Volpi, M.; Camps-Valls, G.; Tuia, D. Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis. ISPRS J. Photogramm. Remote Sens. 2015, 107, 50–63. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, Z.; Qian, D.; Li, X. GETNET: A general end-to-end 2-D CNN framework for hyperspectral image change detection. IEEE Trans. Geosci. Remote Sens. 2018, 57, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Gong, M.G.; Zhou, Z.Q.; Ma, J.J. Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans. Image Processing 2012, 21, 2141–2151. [Google Scholar] [CrossRef] [PubMed]
- Krähenbühl, P.; Koltun, V. Efficient inference in fully connected CRFs with gaussian edge potentials. Adv. Neural Inf. Processing Syst. 2011, 24, 109–117. [Google Scholar]
- Sun, Y.L.; Lei, L.; Li, X.; Tan, X.; Kuang, G.Y. Structure consistency-based graph for unsupervised change detection with homogeneous and heterogeneous remote sensing images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–21. [Google Scholar] [CrossRef]
- Gong, M.; Su, L.; Jia, M.; Chen, W. Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images. IEEE Trans. Fuzzy Syst. 2014, 22, 98–109. [Google Scholar] [CrossRef]
Category | References | Advantages | Limitations |
---|---|---|---|
Pairwise CRF | Cao et al. [23] |
|
|
Lv et al. [15] |
| ||
Shao et al. [24] |
| ||
FCCRF | Cao et al. [17] |
|
|
HOCRF | Zhou et al. [20] |
|
|
Lv et al. [21] |
Dataset | Method | w1 | w2 | |||
---|---|---|---|---|---|---|
Neimeng | FCCRF | 8 | 4 | 80 | 10 | 30 |
IFCCRF | 2 | 1 | 50 | 50 | 80 | |
Texas | FCCRF | 6 | 1 | 5 | 20 | 20 |
IFCCRF | 3 | 1 | 30 | 5 | 40 | |
Poyang River | FCCRF | 1 | 1 | 80 | 10 | 10 |
IFCCRF | 1 | 1 | 10 | 80 | 10 |
Methods | MD | FA | TP | TN | OE | OA | KC | Time(s) |
---|---|---|---|---|---|---|---|---|
CVA | 3400 | 877,835 | 77,790 | 1,450,975 | 91,235 | 0.9437 | 0.6037 | 10.39 |
SCM | 12,280 | 1174 | 68,910 | 1,537,636 | 13,454 | 0.9917 | 0.9067 | 3.30 |
RFLICM | 4356 | 53,102 | 76,834 | 1,485,708 | 57,458 | 0.9645 | 0.7099 | 37.94 |
MRF | 2255 | 43,478 | 78,935 | 1,495,332 | 45,788 | 0.9718 | 0.7610 | 11.90 |
CRF | 2384 | 24,634 | 78,806 | 1,514,176 | 27,018 | 0.9833 | 0.8450 | 14.85 |
FCCRF | 10,425 | 9261 | 70,765 | 1,529,549 | 19,686 | 0.9878 | 0.8715 | 4.33 |
IFCCRF | 7970 | 7362 | 73,220 | 1,531,448 | 15,332 | 0.9905 | 0.9002 | 7.22 |
HOCRF | 4027 | 8375 | 77,163 | 1,530,435 | 12,402 | 0.9923 | 0.9216 | 21.62 |
INPLG | 9557 | 2701 | 71,633 | 1,536,109 | 12,258 | 0.9924 | 0.9172 | 4058.78 |
HOC2RF | 2181 | 3164 | 79,009 | 1,535,646 | 5345 | 0.9967 | 0.9655 | 26.93 |
Methods | MD | FA | TP | TN | OE | OA | KC | Time(s) |
---|---|---|---|---|---|---|---|---|
CVA | 24,823 | 31,056 | 107,046 | 1,076,547 | 55,879 | 0.9549 | 0.7677 | 4.86 |
SCM | 59,124 | 2648 | 72,745 | 1,104,955 | 61,772 | 0.9502 | 0.6770 | 2.53 |
RFLICM | 27,531 | 20,366 | 104,338 | 1,087,237 | 47,897 | 0.9614 | 0.7918 | 26.56 |
MRF | 18,097 | 14,788 | 113,772 | 1,092,815 | 32,885 | 0.9735 | 0.8589 | 9.11 |
CRF | 14,124 | 6457 | 117,745 | 1,101,146 | 20,581 | 0.9834 | 0.9104 | 8.01 |
FCCRF | 16,890 | 5515 | 114,979 | 1,102,088 | 22,405 | 0.9819 | 0.9012 | 2.28 |
IFCCRF | 12,338 | 6449 | 119,531 | 1,101,154 | 18,787 | 0.9848 | 0.9187 | 7.02 |
HOCRF | 18,197 | 5053 | 113,672 | 1,102,550 | 23,250 | 0.9812 | 0.8968 | 15.00 |
INPLG | 92,221 | 19,771 | 39,648 | 1,087,832 | 111,992 | 0.9096 | 0.3731 | 3553.57 |
HOC2RF | 8664 | 2472 | 123,205 | 1,105,131 | 11,136 | 0.9910 | 0.9518 | 20.96 |
Methods | MD | FA | TP | TN | OE | OA | KC | Time(s) |
---|---|---|---|---|---|---|---|---|
CVA | 347 | 8286 | 9351 | 93,599 | 8633 | 0.9226 | 0.6443 | 0.63 |
SCM | 3169 | 930 | 6529 | 100,955 | 4099 | 0.9633 | 0.7416 | 0.62 |
RFLICM | 434 | 6581 | 9264 | 95,304 | 7015 | 0.9371 | 0.6922 | 2.07 |
MRF | 1222 | 6182 | 8476 | 95,703 | 7404 | 0.9336 | 0.6605 | 0.71 |
CRF | 2144 | 3787 | 7554 | 98,098 | 5931 | 0.9468 | 0.6889 | 0.92 |
FCCRF | 3479 | 945 | 6219 | 100,940 | 4424 | 0.9604 | 0.7167 | 0.23 |
IFCCRF | 3489 | 862 | 6209 | 101,023 | 4351 | 0.9610 | 0.7200 | 1.81 |
HOCRF | 1105 | 6244 | 8593 | 95,641 | 7349 | 0.9341 | 0.6653 | 3.54 |
INPLG | 3840 | 23,738 | 5858 | 78,147 | 27,578 | 0.7528 | 0.1924 | 1317.21 |
HOC2RF | 1727 | 2168 | 7971 | 99,717 | 3895 | 0.9651 | 0.7845 | 4.94 |
Methods | Neimeng | Texas | ||||||
---|---|---|---|---|---|---|---|---|
MD | FA | OE | KC | MD | FA | OE | KC | |
Evidence | 5967 | 11,375 | 17,342 | 0.8910 | 29,200 | 6974 | 36,174 | 0.8342 |
SHOC2RF | 1213 | 9436 | 10,649 | 0.9341 | 17,722 | 1738 | 19,460 | 0.9128 |
CVA-HOC2RF | 2497 | 9104 | 11,601 | 0.9276 | 14,908 | 1600 | 16,508 | 0.9267 |
HOC2RF | 2181 | 3164 | 5345 | 0.9655 | 8664 | 2472 | 11,136 | 0.9518 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, W.; Shao, P.; Dong, T.; Liu, Z. Novel Higher-Order Clique Conditional Random Field to Unsupervised Change Detection for Remote Sensing Images. Remote Sens. 2022, 14, 3651. https://doi.org/10.3390/rs14153651
Fu W, Shao P, Dong T, Liu Z. Novel Higher-Order Clique Conditional Random Field to Unsupervised Change Detection for Remote Sensing Images. Remote Sensing. 2022; 14(15):3651. https://doi.org/10.3390/rs14153651
Chicago/Turabian StyleFu, Weiqi, Pan Shao, Ting Dong, and Zhewei Liu. 2022. "Novel Higher-Order Clique Conditional Random Field to Unsupervised Change Detection for Remote Sensing Images" Remote Sensing 14, no. 15: 3651. https://doi.org/10.3390/rs14153651
APA StyleFu, W., Shao, P., Dong, T., & Liu, Z. (2022). Novel Higher-Order Clique Conditional Random Field to Unsupervised Change Detection for Remote Sensing Images. Remote Sensing, 14(15), 3651. https://doi.org/10.3390/rs14153651