Optimization of Samples for Remote Sensing Estimation of Forest Aboveground Biomass at the Regional Scale
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Description of the Study Area
2.2. Sample Plots Data and Calculation of AGB
2.3. Collection of Remote Sensing Data and Preprocessing
2.4. Extraction of Feature Variables from Remote Sensing Data
- (1)
- Spectra feature parameters
- (2)
- Texture feature parameters
3. Methods
3.1. Experimental Design of Sample Groups
3.2. Estimation Method and Accuracy Evaluation Indexes
- (1)
- Random Forest Regression (RFR)
- (2)
- K-Nearest Neighbor (K-NN)
- (3)
- Partial Least Squares Regression (PLSR)
- (4)
- Evaluation of Model Accuracy
3.3. Optimal Samples Estimation Integrating Semi-Variance Functions and Value Coefficients
- (5)
- Value coefficients (VC)
- (6)
- Semi-variance Functions
- (7)
- Optimal Samples Estimation
4. Results
4.1. Collection of Model Feature Variables
4.2. Sampling Effect
4.3. Statistical Analysis of Model Accuracy
4.4. Determination of Optimal Sample Size
4.5. Forest AGB Estimation Based on Optimized Samples
5. Discussion
5.1. Sample Size Problem for Remote Sensing Estimation of Forest Aboveground Biomass at Country Scale
5.2. Selection Problem for Remote Sensing Estimation Models of AGB and Feature Variables
5.3. Validity of Estimation Results Based on Optimal Sample Size
5.4. Optimal Solution Problem about Equations (12) and (13)
- (1)
- B0 > 0, B1 > 0, B2 < 0, when the three parameters (the nugget variance C0, the partial sill C, and the range a) are optimally fitted based on spherical model of variation functions, Equations (12) and (13) have optimal solutions.
- (2)
- B0 < 0, B1 > 0, B2 < 0, as B0 < 0, that is, the parameter C0 < 0, it does not meet the requirements of the spherical model. So it is necessary to let B0 = 0, then the Equation (12) becomes Y(X) = B1X1 + B0X2, and Equation (13) has the optimal solution.
- (3)
- B0 > 0, B1 > 0, B2 ≥ 0, if B2 = 0, Equation (13) becomes Y(X) = B0 + B1X. For a linear model, not a spherical model, the parameters can be solved according to the estimation method of the parameters of the linear regression model. The other is B2 > 0 when the original data are adjusted by adding or deleting some unimportant data points from the actual variance function points and repeatedly adjusting it many times until B2 < 0.
6. Conclusions
- (1)
- The statistical values (mean, standard deviation, and coefficient of variation) for each group of samples based on 200 experiments are not significantly different from the overall samples (91 samples) by t-test (p = 0.01), and the sampling results were reliable for establishing RS models.
- (2)
- The reliable analysis of value coefficients based on RFR, K-NN, and PLSR models with sample groups shows that the VC decreases with increasing samples of every group, and the decreasing trend of VC is consistent. The optimal samples of RFR, K-NN, and PLSR were 55, 54, and 56 based on the spherical model of variance function, respectively, and the optimal results are consistent.
- (3)
- Among the established models based on the optimal samples, the RFR model with the determination coefficient R2 = 0.8485, RMSE = 12.25 Mg/hm2, and the estimation accuracy P = 81.1253% was better than K-NN and PLSR. It could be used as a model for estimating the aboveground biomass of Pinus densata in study area. Based on the optimal 55 samples of the RFR model and overall (91 samples), the total aboveground biomass in the study area was 1.22 × 107 Mg and 1.24 × 107 Mg, and the average aboveground biomass was 66.42 Mg/hm2 and 67.51 Mg/hm2, respectively, with a relative precision of 98.39%, and the estimation results of two groups were consistent.
Author Contributions
Funding
Conflicts of Interest
References
- Xu, G.T.; Dian, W.L.; Zong, M.W.; Ming, M.J.; Zhang, Y.D.; Jing, Y.L.; Wen, M.X. Estimation of forest aboveground biomass based on remote sensing data: A review. Chin. J. Ecol. 2012, 31, 1311–1318. (In Chinese) [Google Scholar]
- Xing, Y.H.; Chun, Y.R.; Lin, C.; Zong, M.W.; Hai, F.Z. The Progress of Forest Ecosystems Monitoring with Remote Sensing Techniques. Sci. Geogr. Sin. 2018, 38, 997–1011. (In Chinese) [Google Scholar]
- Sun, G.; Ranson, K.J.; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D. Forest biomass mapping from lidar and radar synergies. Remote Sens. Environ. 2011, 115, 2906–2916. [Google Scholar] [CrossRef]
- Fu, M.X.; Qing, T.S.; Li, Z.; Rong, W.; Qiu, J.W.; Hong, W.; Yan, L.; Ti, T.J. Remote Sensing Estimation of Pinus densata AbovegroundBiomass Based on k—NN Nonparametric Model. Acta Agric. Univ. Jiangxiensis 2018, 40, 743–750. (In Chinese) [Google Scholar]
- Beaudoin, A.; Bernier, P.; Guindon, L.; Villemaire, P.; Guo, X.; Stinson, G.; Bergeron, T.; Magnussen, S.; Hall, R. Mapping attributes of Canada’s forests at moderate resolution through k NN and MODIS imagery. Can. J. For. Res. 2014, 44, 521–532. [Google Scholar] [CrossRef]
- Fu, M.X. Estimation and Mapping of Forest Aboveground Biomass Based on K-Nn Model and Remote Sensing; Southwest Forestry University: Kunming, China, 2019. (In Chinese) [Google Scholar]
- Reese, H.; Granqvist-Pahlén, T.; Egberth, M.; Nilsson, M.; Olsson, H. Automated estimation of forest parameters for Sweden using Landsat data and the kNN algorithm. In Proceedings of the 31st International Symposium on Remote Sensing of Environment, St. Petersburg, Russia, 20–24 May 2005. [Google Scholar]
- Yun, D.X. Optimization of Non-Parametric Remote Sensing Estimation Model for Aboveground Biomass of Alpine Pine Forest; Southwest Forestry University: Kunming, China, 2015. (In Chinese) [Google Scholar]
- Ying, G. Optimum Non-Parametric Method for Forst Above Ground Biomass Estimation Based on Sensing Data; Chinese Academy of Forestry: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Wang, G.; Oyana, T.; Zhang, M.; Adu-Prah, S.; Zeng, S.; Lin, H.; Se, J. Mapping and spatial uncertainty analysis of forest vegetation carbon by combining national forest inventory data and satellite images. For. Ecol. Manag. 2009, 258, 1275–1283. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, M.; Gertner, G.Z.; Oyana, T.; McRoberts, R.E.; Ge, H. Uncertainties of mapping aboveground forest carbon due to plot locations using national forest inventory plot and remotely sensed data. Scand. J. For. Res. 2011, 26, 360–373. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Batistella, M.; Zhang, M.; Vaglio Laurin, G.; Saah, D. Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates. Int. J. For. Res. 2012, 2012, 436537. [Google Scholar] [CrossRef]
- Phillips, D.L.; Brown, S.L.; Schroeder, P.E.; Birdsey, R.A. Toward error analysis of large-scale forest carbon budgets. Glob. Ecol. Biogeogr. 2000, 9, 305–313. [Google Scholar] [CrossRef]
- Han, Z. Aboveground Biomass and Uncertainty Estimation of Main Tree Species for Different Site Classes in Jiangxi Province; Chinese Academy of Forestry: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Shettles, M.; Hilker, T.; Temesgen, H. Examination of uncertainty in per unit area estimates of aboveground biomass using terrestrial LiDAR and ground data. Can. J. For. Res. 2016, 46, 706–715. [Google Scholar] [CrossRef]
- Li, H.Q.; Mao, Z.Z.; Shi, H.Z.; Xiao, H.Y. Model uncertainty in forest biomass estimation. Acta Ecol. Sin. 2017, 37, 7912–7919. [Google Scholar] [CrossRef]
- Yu, F.; Yuan, C.L.; Wei, S.Z. Uncertainty analysis for regional-level above-ground biomass estimates based on individual tree biomass model. Acta Ecol. Sin. 2015, 35, 7738–7747. [Google Scholar] [CrossRef]
- Zong, T.H.; Hong, J.; Wei, W.; Zeng, Y.L.; Er, X.C.; Min, Y.; Xin, T. Forest Above-Ground Biomass Estimation Using KNN-FIFS Method Based on Multi-Source Remote Sensing Data. Sci. Silvae Sin. 2018, 54, 71–79. (In Chinese) [Google Scholar]
- Li, X.; Zhu, Y.; Zhao, L.; Tian, J.; Li, J. Ecosystem services value change in Qinglong County from dynamically adjusted value coefficients. Chin. J. Eco-Agric. 2015, 23, 373. [Google Scholar]
- Fu, M.X.; Li, Z.; Qing, T.S. Optimizing the k-nearest neighbors technique for estimating Pinus densata aboveground biomass based on remote sensing. J. Zhejiang AF Univ. 2019, 36, 515–523. (In Chinese) [Google Scholar]
- Zhao, P.; Lu, D.; Wang, G.; Wu, C.; Huang, Y.; Yu, S. Examining spectral reflectance saturation in Landsat imagery and corresponding solutions to improve forest aboveground biomass estimation. Remote Sens. 2016, 8, 469. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Cutler, M.; Boyd, D.; Foody, G.; Vetrivel, A. Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions. ISPRS J. Photogramm. Remote Sens. 2012, 70, 66–77. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O. Investigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas. ISPRS J. Photogramm. Remote Sens. 2015, 108, 12–32. [Google Scholar] [CrossRef]
- Lu, D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int. J. Remote Sens. 2005, 26, 2509–2525. [Google Scholar] [CrossRef]
- Lu, D.; Batistella, M.; Moran, E. Satellite estimation of aboveground biomass and impacts of forest stand structure. Photogramm. Eng. Remote Sens. 2005, 71, 967–974. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Loh, W.Y. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [Google Scholar] [CrossRef]
- Lopez-Fornieles, E.; Brunel, G.; Rancon, F.; Gaci, B.; Metz, M.; Devaux, N.; Taylor, J.; Tisseyre, B.; Roger, J.-M. Potential of Multiway PLS (N-PLS) Regression Method to Analyse Time-Series of Multispectral Images: A Case Study in Agriculture. Remote Sens. 2022, 14, 216. [Google Scholar] [CrossRef]
- Zhen, Q.W. Geostatistics and Its Application in Ecology; Beijing Science Press: Beijing, China, 1999. (In Chinese) [Google Scholar]
- Fix, E.; Hodges, J.L. Discriminatory analysis. Nonparametric discrimination: Consistency properties. Int. Stat. Rev./Rev. Int. De Stat. 1989, 57, 238–247. [Google Scholar] [CrossRef]
- Jixiong, W.; Wenjing, T. Analysis of above-ground biomass and carbon stock estimation of tree forests based on forest resources planning and design survey data: The case of Shangri-La City. J. Green Sci. Technol. 2021, 23, 14–16. (In Chinese) [Google Scholar]
- Vázquez-Alonso, M.; Lentz, D.L.; Dunning, N.P.; Carr, C.; Anaya Hernández, A.; Reese-Taylor, K. Lidar-Based Aboveground Biomass Estimations for the Maya Archaeological Site of Yaxnohcah, Campeche, Mexico. Remote Sens. 2022, 14, 3432. [Google Scholar] [CrossRef]
- Li, X.; Ye, Z.; Long, J.; Zheng, H.; Lin, H. Inversion of Coniferous Forest Stock Volume Based on Backscatter and InSAR Coherence Factors of Sentinel-1 Hyper-Temporal Images and Spectral Variables of Landsat 8 OLI. Remote Sens. 2022, 14, 2754. [Google Scholar] [CrossRef]
- Ehlers, D.; Wang, C.; Coulston, J.; Zhang, Y.; Pavelsky, T.; Frankenberg, E.; Woodcock, C.; Song, C. Mapping Forest Aboveground Biomass Using Multisource Remotely Sensed Data. Remote Sens. 2022, 14, 1115. [Google Scholar] [CrossRef]
- Nguyen, H.-H.; Nguyen, T.T.H. Above-ground biomass estimation models of mangrove forests based on remote sensing and field-surveyed data: Implications for C-PFES implementation in Quang Ninh Province, Vietnam. Reg. Stud. Mar. Sci. 2021, 48, 101985. [Google Scholar] [CrossRef]
Species | Sample Size (N) | Minimum (Mg/hm2) | Maximum (Mg/hm2) | Average (Mg/hm2) | SD (Mg/hm2) |
---|---|---|---|---|---|
Pinus densata | 91 | 3.36 | 133.61 | 64.56 | 31.84 |
Texture Feature Parameters | Equations | Texture Feature Parameters | Equations |
---|---|---|---|
Mean, ME | Dissimilarity, DI | ||
Variance, VA | Entropy, EN | ||
Homogeneity, HO | Second Moment, SM | ||
Contrast, CO | Correlation, CR |
Variable Types | 26 Characteristic Variables |
---|---|
Texture features variables | 3-19-CO, 4-11-EN, 4-15-HO, 4-15-DI, 4-15-EN, 4-19-HO, 4-19-DI, 4-19-EN, 4-25-HO, 4-25-DI, 4-25-EN, 5-11-SM, 5-15-DI, 5-19-SM, 6-5-SM, 6-5-CO, 6-7-SM, 6-9-SM, 6-11-SM, 6-15-SM, 6-19-SM, 7-5-CO |
Spectral feature variables | (B3 + B4 + B6)/B7, (B4 + B6)/B7, B7/B5, B6/B5 |
Number (N) | MEAN (Mg/hm2) | STDV (Mg/hm2) | CV | Number (N) | MEAN (Mg/hm2) | STDV (Mg/hm2) | CV |
---|---|---|---|---|---|---|---|
26 | 64.1250 | 31.1622 | 0.4885 | 60 | 64.7301 | 31.4118 | 0.4860 |
28 | 64.1084 | 30.9366 | 0.4852 | 62 | 64.6219 | 31.6234 | 0.4899 |
30 | 64.1363 | 31.3576 | 0.4916 | 64 | 64.2446 | 31.4907 | 0.4906 |
32 | 64.9825 | 30.9830 | 0.4792 | 66 | 64.5929 | 31.6167 | 0.4899 |
34 | 64.4875 | 31.5644 | 0.4920 | 68 | 64.4334 | 31.5488 | 0.4899 |
36 | 64.8181 | 31.1635 | 0.4829 | 70 | 64.3674 | 31.5703 | 0.4909 |
38 | 64.4959 | 31.3397 | 0.4876 | 72 | 64.4704 | 31.6147 | 0.4907 |
40 | 64.9200 | 31.5427 | 0.4873 | 74 | 64.5597 | 31.6779 | 0.4910 |
42 | 64.1528 | 31.3019 | 0.4893 | 76 | 64.7947 | 31.6243 | 0.4883 |
44 | 64.5796 | 31.3125 | 0.4859 | 78 | 64.4896 | 31.6672 | 0.4912 |
46 | 64.6162 | 31.4065 | 0.4871 | 80 | 64.5684 | 31.5644 | 0.4890 |
48 | 64.6764 | 31.4140 | 0.4868 | 82 | 64.4872 | 31.6410 | 0.4908 |
50 | 64.4293 | 31.7441 | 0.4938 | 84 | 64.6030 | 31.7069 | 0.4909 |
52 | 64.0252 | 31.2946 | 0.4896 | 86 | 64.5759 | 31.6848 | 0.4907 |
54 | 64.7302 | 31.2874 | 0.4841 | 88 | 64.5169 | 31.6846 | 0.4911 |
56 | 64.4366 | 31.4135 | 0.4883 | 90 | 64.5806 | 31.6278 | 0.4898 |
58 | 64.5098 | 31.6588 | 0.4914 | 91 | 64.5601 | 31.8402 | 0.4907 |
Number (N) | VC | Number (N) | VC | Number (N) | VC | Number (N) | VC |
---|---|---|---|---|---|---|---|
26 | 3.6725 | 44 | 2.1048 | 62 | 1.4970 | 80 | 1.1378 |
28 | 3.3303 | 46 | 2.0238 | 64 | 1.4387 | 82 | 1.1153 |
30 | 3.1921 | 48 | 1.9382 | 66 | 1.3992 | 84 | 1.0873 |
32 | 2.9421 | 50 | 1.8750 | 68 | 1.3587 | 86 | 1.0661 |
34 | 2.7792 | 52 | 1.7665 | 70 | 1.3244 | 88 | 1.0378 |
36 | 2.6112 | 54 | 1.7184 | 72 | 1.2804 | 90 | 1.0116 |
38 | 2.4604 | 56 | 1.6545 | 74 | 1.2512 | 91 | 1.0000 |
40 | 2.3421 | 58 | 1.6001 | 76 | 1.2104 | ||
42 | 2.2155 | 60 | 1.5333 | 78 | 1.1755 |
Model | B0 | B1 | B2 | Nugget Variance (C0) | Sill (C0 + C) | Sampling Variation (C0/C + C0) | Range (a) |
---|---|---|---|---|---|---|---|
RFR | 3.5788 | 0.062479 | −0.000007 | 3.5788 | 5.850802 | 61.17% | 55 |
K-NN | 3.4261 | 0.061024 | −0.000007 | 3.4261 | 5.619168 | 60.97% | 54 |
PLSR | 2.9717 | 0.0564 | −0.00006 | 2.9717 | 5.07636 | 58.54% | 56 |
Model | Optimized Samples (N) | Decision Coefficient (R2) | RMSE (Mg/hm2) | Estimation Accuracy (P%) |
---|---|---|---|---|
RFR | 55 | 0.8485 | 12.2535 | 81.1253 |
K-NN | 54 | 0.2658 | 28.7278 | 55.3621 |
PLSR | 56 | 0.3972 | 28.0759 | 56.3810 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, Q.; Xi, L.; Wang, K.; Xie, F.; Pang, Y.; Song, H. Optimization of Samples for Remote Sensing Estimation of Forest Aboveground Biomass at the Regional Scale. Remote Sens. 2022, 14, 4187. https://doi.org/10.3390/rs14174187
Shu Q, Xi L, Wang K, Xie F, Pang Y, Song H. Optimization of Samples for Remote Sensing Estimation of Forest Aboveground Biomass at the Regional Scale. Remote Sensing. 2022; 14(17):4187. https://doi.org/10.3390/rs14174187
Chicago/Turabian StyleShu, Qingtai, Lei Xi, Keren Wang, Fuming Xie, Yong Pang, and Hanyue Song. 2022. "Optimization of Samples for Remote Sensing Estimation of Forest Aboveground Biomass at the Regional Scale" Remote Sensing 14, no. 17: 4187. https://doi.org/10.3390/rs14174187
APA StyleShu, Q., Xi, L., Wang, K., Xie, F., Pang, Y., & Song, H. (2022). Optimization of Samples for Remote Sensing Estimation of Forest Aboveground Biomass at the Regional Scale. Remote Sensing, 14(17), 4187. https://doi.org/10.3390/rs14174187