Inter-Calibration and Statistical Validation of Topside Ionosphere Electron Density Observations Made by CSES-01 Mission
Abstract
:1. Introduction
2. Data Description
2.1. CSES-01 Satellite Data
2.2. Swarm B Satellite Data
2.3. Data Modelled by the International Reference Ionosphere
2.4. Incoherent Scatter Radars Data
3. Results
3.1. Calibration of Swarm B LP Electron Density Observations through FP Observations
3.2. Calibration of CSES-01 Electron Density Observations through Swarm B Calibrated Electron Density Observations
- Diurnal variation: data were sorted in two bins as a consequence of the CSES-01 orbit configuration, namely a nighttime sector representative of 02:00 LT and a daytime sector representative of 14:00 LT;
- Spatial geographic variation: for each diurnal bin, data were binned as a function of the geographic latitude and longitude. Specifically, data in the range 70°S–70°N were binned in bins 2°-wide in latitude and 4°-wide in longitude. Then, there are 6300 spatial bins for each diurnal sector.
3.3. Validation through Incoherent Scatter Radars Observations
- Counts in the bin;
- Median, i.e., the 50th percentile;
- First (25th percentile) and third (75th percentile) quartiles representative of the inter-quartile range (IQR);
- 5th and 95th percentiles, highlighting the tails of the distribution.
- (a)
- Original CSES-01 LP observations underestimate ISRs observations for both daytime and nighttime sectors for all the three locations. The application of the calibration procedure based on Swarm B LP observations calibrated with FP data strongly reduces this underestimation by bringing CSES-01 observations into agreement with ISRs ones within the IQR. Focusing on daytime values, after applying the calibration, CSES-01 slightly overestimates ISR values at Jicamarca, while a slight underestimation is visible both at Arecibo and Millstone Hill. This agrees with the PRR spatial patterns shown in Panel (b) of Figure 8. After applying the calibration, the nighttime results are very consistent, as was already evidenced by Panel (d) of Figure 8;
- (b)
- Swarm B FP observations are very accurate both in terms of magnitude and LT pattern, with values within the IQR, for all the three ISRs. This analysis testifies the goodness and reliability of Swarm FP observations, at least for the low solar activity level conditions investigated here. Compared to Swarm B LP observations (not shown in Figure 9), FP observations are by far more accurate in the description of nighttime conditions, as has been recently highlighted by Xiong et al. [6]. Most of the differences between Swarm B FP and ISRs are limited to the morning hours at Jicamarca (slight overestimation) and to nighttime conditions at Millstone Hill (slight underestimation);
- (c)
- The IRI topside model of Ne is statistically very reliable during daytime at mid latitudes (see Panel (c) for Millstone Hill). This is an expected behavior because IRI is an empirical model whose underlying dataset is heavily biased towards mid latitudes, where most of the ionospheric stations and facilities are located. A slightly degraded performance is visible during daytime around the equatorial ionization anomaly (see Panel (b) for Arecibo) and concerning the early morning trend at equatorial latitudes (see Panel (a) for Jicamarca). Anyway, in most cases, the IRI model reliably describes the Ne variations at CSES-01 altitude for the considered ISRs locations, making it a very robust benchmark for satellite in situ observations comparisons.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bilitza, D.; Altadill, D.; Truhlik, V.; Shubin, V.; Galkin, I.; Reinisch, B.; Huang, X. International reference ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather 2017, 15, 418–429. [Google Scholar] [CrossRef]
- Shen, X.H.; Zhang, X.M.; Yuan, S.G.; Wang, L.W.; Cao, J.B.; Huang, J.P.; Zhu, X.H.; Picozza, P.; Dai, J.P. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Sci. China Technol. Sci. 2018, 61, 634–642. [Google Scholar] [CrossRef]
- Smirnov, A.; Shprits, Y.; Zhelavskaya, I.; Lühr, H.; Xiong, C.; Goss, A.; Prol, F.S.; Schmidt, M.; Hoque, M.; Pedatella, N.; et al. Intercalibration of the plasma density measurements in Earth’s topside ionosphere. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029334. [Google Scholar] [CrossRef]
- Lomidze, L.; Knudsen, D.J.; Burchill, J.; Kouznetsov, A.; Buchert, S.C. Calibration and validation of Swarm plasma densities and electron temperatures using ground-based radars and satellite radio occultation measurements. Radio Sci. 2018, 53, 15–36. [Google Scholar] [CrossRef]
- Larson, B.; Koustov, A.V.; Kouznetsov, A.F.; Lomidze, L.; Gillies, R.G.; Reimer, A.S. A comparison of the topside electron density measured by the Swarm satellites and incoherent scatter radars over Resolute Bay, Canada. Radio Sci. 2021, 56, e2021RS007326. [Google Scholar] [CrossRef]
- Xiong, C.; Jiang, H.; Yan, R.; Lühr, H.; Stolle, C.; Yin, F.; Smirnov, A.; Piersanti, M.; Liu, Y.; Wan, X.; et al. Solar flux influence on the in-situ plasma density at topside ionosphere measured by Swarm satellites. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030275. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, W.; Yang, D.; Liu, D. Preliminary validation of in situ electron density measurements onboard CSES using observations from Swarm Satellites. Adv. Space Res. 2019, 64, 982–994. [Google Scholar] [CrossRef]
- Chen, P.; Li, Q.; Yao, Y.; Yao, W. Study on the plasmaspheric Weddell Sea Anomaly based on COSMIC onboard GPS measurements. J. Atmos. Sol. Terr. Phys. 2019, 192, 104923. [Google Scholar] [CrossRef]
- Yasyukevich, Y.V.; Yasyukevich, A.S.; Ratovsky, K.G.; Klimenko, M.V.; Klimenko, V.V.; Chirik, N.V. Winter anomaly in NmF2 and TEC: When and where it can occur. J. Space Weather Space Clim. 2018, 8, A45. [Google Scholar] [CrossRef]
- Yan, R.; Zhima, Z.; Xiong, C.; Shen, X.; Huang, J.; Guan, Y.; Zhu, X.; Liu, C. Comparison of electron density and temperature from the CSES satellite with other space-borne and ground-based observations. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027747. [Google Scholar] [CrossRef]
- Liu, J.; Guan, Y.; Zhang, X.; Shen, X. The data comparison of electron density between CSES and DEMETER satellite, Swarm constellation and IRI model. Earth Space Sci. 2021, 8, e2020EA001475. [Google Scholar] [CrossRef]
- Liu, C.; Guan, Y.; Zheng, X.; Zhang, A.; Piero, D.; Sun, Y. The technology of space plasma in-situ measurement on the China Seismo-Electromagnetic Satellite. Sci. China Technol. Sci. 2019, 62, 829–838. [Google Scholar] [CrossRef]
- Yan, R.; Guan, Y.; Shen, X.; Huang, J.; Zhang, X.; Liu, C.; Liu, D. The Langmuir Probe onboard CSES: Data inversion analysis method and first results. Earth Plan. Phys. 2018, 2, 479–488. [Google Scholar] [CrossRef]
- Langmuir, I.; Mott-Smith, H.M. Studies of electric discharges in gases at low pressures. Gen. Electr. Rev. 1924, 27, 449–455. [Google Scholar]
- Langmuir, I. Electric discharges in gases at low pressures. J. Frankl. Inst. 1932, 214, 275–298. [Google Scholar] [CrossRef]
- Mott-Smith, H.M. The theory of collectors in gaseous discharges. In Electrical Discharge; Suits, C.G., Ed.; Elsevier: Amsterdam, The Netherlands, 1961; pp. 99–132. [Google Scholar] [CrossRef]
- Lebreton, J.-P.; Stverak, S.; Travnicek, P.; Maksimovic, M.; Klinge, D.; Merikallio, S.; Lagoutte, D.; Poirier, B.; Blelly, P.-L.; Kozacek, Z.; et al. The ISL Langmuir probe experiment processing onboard DEMETER: Scientific objectives, description and first results. Planet. Space Sci. 2006, 54, 472–486. [Google Scholar] [CrossRef]
- Friis-Christensen, E.; Lühr, H.; Knudsen, D.; Haagmans, R. Swarm—An earth observation mission investigating geospace. Adv. Space Res. 2008, 41, 210–216. [Google Scholar] [CrossRef]
- Knudsen, D.J.; Burchill, J.K.; Buchert, S.C.; Eriksson, A.I.; Gill, R.; Wahlund, J.; Åhlen, L.; Smith, M.; Moffat, B. Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. J. Geophys. Res. Space Phys. 2017, 122, 2655–2673. [Google Scholar] [CrossRef]
- Catapano, F.; Buchert, S.; Qamili, E.; Nilsson, T.; Bouffard, J.; Siemes, C.; Coco, I.; D’Amicis, R.; Tøffner-Clausen, L.; Trenchi, L.; et al. Swarm Langmuir probes’ data quality validation and future improvements. Geosci. Instrum. Methods Data Syst. 2022, 11, 149–162. [Google Scholar] [CrossRef]
- Rush, C.M.; Fox, M.; Bilitza, D.; Davies, K.; McNamara, L.; Stewart, F.G.; PoKempner, M. Ionospheric mapping-an update of foF2 coefficients. Telecommun. J. 1989, 56, 179–182. [Google Scholar]
- Shubin, V.N. Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground based digisonde observations. Adv. Space Res. 2015, 56, 916–928. [Google Scholar] [CrossRef]
- Nava, B.; Coïsson, P.; Radicella, S. A new version of the NeQuick ionosphere electron density model. J. Atmos. Solar-Terr. Phys. 2008, 70, 1856–1862. [Google Scholar] [CrossRef]
- Evans, J. Theory and practice of ionosphere study by Thomson scatter radar. Proc. IEEE 1969, 57, 496–530. [Google Scholar] [CrossRef]
- Pignalberi, A.; Aksonova, K.D.; Zhang, S.-R.; Truhlik, V.; Gurram, P.; Pavlou, C. Climatological study of the ion temperature in the ionosphere as recorded by Millstone Hill incoherent scatter radar and comparison with the IRI model. Adv. Space Res. 2021, 68, 2186–2203. [Google Scholar] [CrossRef]
- Pignalberi, A.; Giannattasio, F.; Truhlik, V.; Coco, I.; Pezzopane, M.; Consolini, G.; De Michelis, P.; Tozzi, R. On the Electron Temperature in the Topside Ionosphere as Seen by Swarm Satellites, Incoherent Scatter Radars, and the International Reference Ionosphere Model. Remote Sens. 2021, 13, 4077. [Google Scholar] [CrossRef]
- Tapping, K.F. The 10.7 cm solar radio flux (F10.7). Space Weather 2013, 11, 394–406. [Google Scholar] [CrossRef]
- Pezzopane, M.; Pignalberi, A.; De Michelis, P.; Consolini, G.; Coco, I.; Giannattasio, F.; Tozzi, R.; Zoffoli, S. On the Best Settings to Calculate Ionospheric Irregularity Indices From the In Situ Plasma Parameters of CSES-01. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4058–4071. [Google Scholar] [CrossRef]
- Bilitza, D.; Xiong, C. A solar activity correction term for the IRI topside electron density model. Adv. Space Res. 2021, 68, 2124–2137. [Google Scholar] [CrossRef]
- Pignalberi, A.; Pezzopane, M.; Tozzi, R.; De Michelis, P.; Coco, I. Comparison between IRI and preliminary Swarm Langmuir probe measurements during the St. Patrick storm period. Earth Planets Space 2016, 68, 93. [Google Scholar] [CrossRef]
- Xiong, C.; Lühr, H.; Ma, S.-Y.; Schlegel, K. Validation of GRACE electron densities by incoherent scatter radar data and estimation of plasma scale height in the topside ionosphere. Adv. Space Res. 2015, 55, 2048–2057. [Google Scholar] [CrossRef]
- Pakhotin, I.P.; Burchill, J.K.; Förster, M.; Lomidze, L. The swarm Langmuir probe ion drift, density and effective mass (SLIDEM) product. Earth Planets Space 2022, 74, 109. [Google Scholar] [CrossRef]
- Merlino, R.L. Understanding Langmuir probe current-voltage characteristics. Am. J. Phys. 2007, 75, 1078. [Google Scholar] [CrossRef]
- Van Rompuy, T.; Gunn, J.P.; Dejarnac, R.; Stöckel, J.; Van Oost, G. Sensitivity of electron temperature measurements with the tunnel probe to a fast electron component. Plasma Phys. Control. Fusion 2007, 49, 619. [Google Scholar] [CrossRef]
- Schott, L. Electric Probes in Plasma Diagnostics; Lochte-Holtgreven, W., Ed.; Elsevier: New York, NY, USA, 1968; Chapter 11. [Google Scholar]
- Hoegy, W.R.; Brace, L.H. Use of Langmuir probes in non-Maxwellian space plasmas. Rev. Sci. Instrum. 1999, 70, 3015–3024. [Google Scholar] [CrossRef]
- Whipple, E.C.; Brace, L.H.; Parker, L.W. Impact Ionization Effects on Pioneer Venus Orbiter. In Proceedings of the 17th ESLAB Symposium on Spacecraft Interactions, Noordwijk, The Netherlands, 13–16 September 1983; ESA Report SP-198. p. 127. [Google Scholar]
- Brace, L.H.; Theis, R.F.; Mayr, H.G.; Curtis, S.A.; Luhmann, J.G. Holes in the nightside ionosphere of Venus. J. Geophys. Res. 1982, 87, 199. [Google Scholar] [CrossRef]
- Knudsen, C.W.; Miller, K.L. Pioneer Venus suprathermal electron flux measurements in the Venus umbra. J. Geophys. Res. 1985, 90, 2695. [Google Scholar] [CrossRef]
- Pignalberi, A.; Pezzopane, M.; Rizzi, R. Modeling the lower part of the topside ionospheric vertical electron density profile over the European region by means of Swarm satellites data and IRI UP method. Space Weather 2018, 16, 304–320. [Google Scholar] [CrossRef]
- Pezzopane, M.; Pignalberi, A. The ESA Swarm mission to help ionospheric modeling: A new NeQuick topside formulation for mid-latitude regions. Sci. Rep. 2019, 9, 12253. [Google Scholar] [CrossRef]
- Pignalberi, A.; Pezzopane, M.; Themens, D.R.; Haralambous, H.; Nava, B.; Coïsson, P. On the Analytical Description of the Topside Ionosphere by NeQuick: Modeling the Scale Height Through COSMIC/FORMOSAT-3 Selected Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1867–1878. [Google Scholar] [CrossRef]
- Pignalberi, A.; Pezzopane, M.; Nava, B.; Coïsson, P. On the link between the topside ionospheric effective scale height and the plasma ambipolar diffusion, theory and preliminary results. Sci. Rep. 2020, 10, 17541. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pignalberi, A.; Pezzopane, M.; Coco, I.; Piersanti, M.; Giannattasio, F.; De Michelis, P.; Tozzi, R.; Consolini, G. Inter-Calibration and Statistical Validation of Topside Ionosphere Electron Density Observations Made by CSES-01 Mission. Remote Sens. 2022, 14, 4679. https://doi.org/10.3390/rs14184679
Pignalberi A, Pezzopane M, Coco I, Piersanti M, Giannattasio F, De Michelis P, Tozzi R, Consolini G. Inter-Calibration and Statistical Validation of Topside Ionosphere Electron Density Observations Made by CSES-01 Mission. Remote Sensing. 2022; 14(18):4679. https://doi.org/10.3390/rs14184679
Chicago/Turabian StylePignalberi, Alessio, Michael Pezzopane, Igino Coco, Mirko Piersanti, Fabio Giannattasio, Paola De Michelis, Roberta Tozzi, and Giuseppe Consolini. 2022. "Inter-Calibration and Statistical Validation of Topside Ionosphere Electron Density Observations Made by CSES-01 Mission" Remote Sensing 14, no. 18: 4679. https://doi.org/10.3390/rs14184679
APA StylePignalberi, A., Pezzopane, M., Coco, I., Piersanti, M., Giannattasio, F., De Michelis, P., Tozzi, R., & Consolini, G. (2022). Inter-Calibration and Statistical Validation of Topside Ionosphere Electron Density Observations Made by CSES-01 Mission. Remote Sensing, 14(18), 4679. https://doi.org/10.3390/rs14184679