Automatic Identification of Liquefaction Induced by 2021 Maduo Mw7.3 Earthquake Based on Machine Learning Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Satellite Images and Derived Covariates
- Terrain parameters: We used elevation, slope, all derived at 0.8 m resolution. Since liquefaction often occurs in flat and swampy areas, terrain parameters are mainly used to characterize topographic features.
- Spectral bands: Blue (B), Green (G), Red (R), Near infrared (NIR) of GF-7 were all included.
- Spectral indices: Five spectral indices include, Normalized difference water index (NDWI), Normalized difference vegetation index (NDVI), Modified soil vegetation adjusted index (MSAVI2), Salinity index (Salinity), Grain size index (GSI).
2.2.2. Liquefaction Samples
2.3. Methods
2.4. Cross-Validation and the Evaluation Indices
3. Results
3.1. The Performance of the Two Proposed Methods
3.2. The Final Prediction of Liquefaction by the Two Proposed Methods
4. Discussion
4.1. The Area Statistics of the Identified Liquefaction Pits by the Two Proposed Methods
4.2. The Importance of Covariates Ranked by RF and GBDT
4.3. The Spatial Distribution of the Liquefaction Pits
4.4. The Potential Application for Evaluating Seismic Hazard
4.5. The Limitations of the Proposed Methods for Identifying Liquefaction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kramer, S.L. Geotechnical Earthquake Engineering; Prentice Hall: Hoboken, NJ, USA, 1996. [Google Scholar]
- Gihm, Y.S.; Kim, S.W.; Ko, K.; Choi, J.-H.; Bae, H.; Hong, P.S.; Lee, Y.; Lee, H.; Jin, K.; Choi, S.; et al. Paleoseismological Implications of Liquefaction-Induced Structures Caused by the 2017 Pohang Earthquake. Geosci. J. 2018, 22, 871–880. [Google Scholar] [CrossRef]
- Chini, M.; Albano, M.; Saroli, M.; Pulvirenti, L.; Moro, M.; Bignami, C.; Falcucci, E.; Gori, S.; Modoni, G.; Pierdicca, N.; et al. Coseismic Liquefaction Phenomenon Analysis by COSMO-SkyMed: 2012 Emilia (Italy) Earthquake. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 65–78. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Hyodo, M.; Goda, K.; Tazoh, T.; Taylor, C.A. Liquefaction of Soil in the Tokyo Bay Area from the 2011 Tohoku (Japan) Earthquake. Soil Dyn. Earthq. Eng. 2011, 31, 1618–1628. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, M. Review of Soil Liquefaction Characteristics during Major Earthquakes of the Twenty-First Century. Nat. Hazards 2013, 65, 2375–2384. [Google Scholar] [CrossRef]
- Liu-Zeng, J.; Wang, P.; Zhang, Z.H.; Li, Z.G.; Zhang, J.Y.; Yuan, X.M.; Wang, W.; Xing, X.C. Liquefaction in western Sichuan Basin during the 2008 Mw 7.9 Wenchuan earthquake, China. Tectonophysics 2017, 694, 214–238. [Google Scholar] [CrossRef]
- Cao, Z.Z.; Hou, L.Q.; Xu, H.M.; Yuan, X.M. Distribution and characteristics of gravelly soil liquefaction in the Wenchuan Ms 8.0 earthquake. Earthq. Eng. Eng. Vib. 2010, 9, 167–175. [Google Scholar] [CrossRef]
- Saraf, A.K.; Sinvhal, A.; Sinvhal, H.; Ghosh, P.; Sarma, B. Satellite Data Reveals 26 January 2001 Kutch Earthquake-Induced Ground Changes and Appearance of Water Bodies. Int. J. Remote Sens. 2002, 23, 1749–1756. [Google Scholar] [CrossRef]
- Ramakrishnan, D.; Mohanty, K.K.; Nayak, S.R.; Chandran, R.V. Mapping the Liquefaction Induced Soil Moisture Changes Using Remote Sensing Technique: An Attempt to Map the Earthquake Induced Liquefaction around Bhuj, Gujarat, India. Geotech. Geol. Eng. 2006, 24, 1581–1602. [Google Scholar] [CrossRef]
- Oommen, T.; Baise, L.G.; Gens, R.; Prakash, A.; Gupta, R.P. Documenting Earthquake-Induced Liquefaction Using Satellite Remote Sensing Image Transformations. Environ. Eng. Geosci. 2013, 19, 303–318. [Google Scholar] [CrossRef]
- Ishitsuka, K.; Tsuji, T.; Matsuoka, T. Detection and Mapping of Soil Liquefaction in the 2011 Tohoku Earthquake Using SAR Interferometry. Earth Planets Space 2012, 64, 1267–1276. [Google Scholar] [CrossRef]
- Baik, H.; Son, Y.-S.; Kim, K.-E. Detection of Liquefaction Phenomena from the 2017 Pohang (Korea) Earthquake Using Remote Sensing Data. Remote Sens. 2019, 11, 2184. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Zhu, A.; Lu, G.; Liu, J.; Qin, C.; Zhou, C. Spatial Prediction Based on Third Law of Geography. Ann. GIS 2018, 24, 225–240. [Google Scholar] [CrossRef]
- Rashidian, V.; Baise, L.G.; Koch, M. Using High Resolution Optical Imagery to Detect Earthquake-Induced Liquefaction: The 2011 Christchurch Earthquake. Remote Sens. 2020, 12, 377. [Google Scholar] [CrossRef] [Green Version]
- Morgenroth, J.; Hughes, M.W.; Cubrinovski, M. Object-Based Image Analysis for Mapping Earthquake-Induced Liquefaction Ejecta in Christchurch, New Zealand. Nat. Hazards 2016, 82, 763–775. [Google Scholar] [CrossRef]
- Adriano, B.; Yokoya, N.; Miura, H.; Matsuoka, M.; Koshimura, S. A Semiautomatic Pixel-Object Method for Detecting Landslides Using Multitemporal ALOS-2 Intensity Images. Remote Sens. 2020, 12, 561. [Google Scholar] [CrossRef] [Green Version]
- Shafique, M. Spatial and Temporal Evolution of Co-Seismic Landslides after the 2005 Kashmir Earthquake. Geomorphology 2020, 362, 107228. [Google Scholar] [CrossRef]
- Zhu, A.X.; Liu, J.; Du, F.; Zhang, S.J.; Qin, C.Z.; Burt, J.; Behrens, T.; Scholten, T. Predictive Soil Mapping with Limited Sample Data. Eur. J. Soil Sci. 2015, 66, 535–547. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, T.; Su, P.; Sun, H.; Ha, G.; Guo, P.; Chen, G.; Thompson Jobe, J. Large Surface-Rupture Gaps and Low Surface Fault Slip of the 2021 Mw 7.4 Maduo Earthquake Along a Low-Activity Strike-Slip Fault, Tibetan Plateau. Geophys. Res. Lett. 2022, 49, e2021GL096874. [Google Scholar] [CrossRef]
- McFEETERS, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Sengar, S.S.; Kumar, A.; Ghosh, S.K.; Wason, H.R.; Roy, P.S. Liquefaction Identification Using Class-Based Sensor Independent Approach Based on Single Pixel Classification after 2001 Bhuj, India Earthquake. J. Appl. Remote Sens. 2012, 6, 063531. [Google Scholar] [CrossRef]
- Acker, J.; Williams, R.; Chiu, L.; Ardanuy, P.; Miller, S.; Schueler, C.; Vachon, P.W.; Manore, M. Remote Sensing from Satellites☆. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 978-0-12-409548-9. [Google Scholar]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing Soil Salinity Using Soil Salinity and Vegetation Indices Derived from IKONOS High-Spatial Resolution Imageries: Applications in a Date Palm Dominated Region. Geoderma 2014, 230–231, 1–8. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, Y.; Tateishi, R.; Bayaer, W. Development of Topsoil Grain Size Index for Monitoring Desertification in Arid Land Using Remote Sensing. Int. J. Remote Sens. 2006, 27, 2411–2422. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Pesaresi, M.; Amason, K. Classification and Feature Extraction for Remote Sensing Images from Urban Areas Based on Morphological Transformations. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1940–1949. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Qin, C.-Z. Identifying Large-Area Mangrove Distribution Based on Remote Sensing: A Binary Classification Approach Considering Subclasses of Non-Mangroves. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102750. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine Learning Methods for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance. Earth-Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Zhu, Z. Change Detection Using Landsat Time Series: A Review of Frequencies, Preprocessing, Algorithms, and Applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Seed, B. Landslides during earthquakes due to soil liquefaction. J. Soil Mech. Found. Div. 1968, 94, 1053–1122. [Google Scholar] [CrossRef]
- Wang, C.Y.; Dreger, D.S.; Wang, C.H.; Mayeri, D.; Berryman, J.G. Field relations among coseismic ground motion, water level change and liquefaction for the 1999 Chi-Chi (Mw = 7.5) earthquake, Taiwan. Geophys. Res. Lett. 2003, 30, 1–4. [Google Scholar] [CrossRef]
Sensor | Date | Parameters | ||
---|---|---|---|---|
Band | Wavelength(μm) | Resolution(m) | ||
GF-7 | 10 June 2021 | Panchromatic | 0.45–0.90 | 0.8 |
Blue | 0.45–0.52 | 3.2 | ||
Green | 0.52–0.59 | 3.2 | ||
Red | 0.63–0.69 | 3.2 | ||
Near-infrared | 0.77–0.89 | 3.2 | ||
GF-1D | 29 April 2021 | Panchromatic | 0.45–0.90 | 2 |
Blue | 0.45–0.52 | 8 | ||
Green | 0.52–0.59 | 8 | ||
Red | 0.63–0.69 | 8 | ||
Near-infrared | 0.77–0.89 | 8 | ||
UAV | 25 July 2021 | RGB | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, P.; Xu, Y.; Li, W.; Zhang, Y.; Tian, Q. Automatic Identification of Liquefaction Induced by 2021 Maduo Mw7.3 Earthquake Based on Machine Learning Methods. Remote Sens. 2022, 14, 5595. https://doi.org/10.3390/rs14215595
Liang P, Xu Y, Li W, Zhang Y, Tian Q. Automatic Identification of Liquefaction Induced by 2021 Maduo Mw7.3 Earthquake Based on Machine Learning Methods. Remote Sensing. 2022; 14(21):5595. https://doi.org/10.3390/rs14215595
Chicago/Turabian StyleLiang, Peng, Yueren Xu, Wenqiao Li, Yanbo Zhang, and Qinjian Tian. 2022. "Automatic Identification of Liquefaction Induced by 2021 Maduo Mw7.3 Earthquake Based on Machine Learning Methods" Remote Sensing 14, no. 21: 5595. https://doi.org/10.3390/rs14215595
APA StyleLiang, P., Xu, Y., Li, W., Zhang, Y., & Tian, Q. (2022). Automatic Identification of Liquefaction Induced by 2021 Maduo Mw7.3 Earthquake Based on Machine Learning Methods. Remote Sensing, 14(21), 5595. https://doi.org/10.3390/rs14215595