Monitoring Ecological Changes on a Rapidly Urbanizing Island Using a Remote Sensing-Based Ecological Index Produced Time Series
Abstract
:1. Introduction
- (1)
- How can the RSEI data be determined from the annual Landsat time series images of Haitan Island (1991–2021)?
- (2)
- How can the changes in the spatial patterns of EQ be quantified over time?
2. Materials and Methods
2.1. Study Site
2.2. Data Sources and Pre-Processing
2.3. Methods
2.3.1. Calculation of Remote Sensing-Based Ecological Index (RSEI)
2.3.2. Spatial–Temporal Change Detection Algorithm of RSEI
3. Results
3.1. Quantitative Assessment of Ecological Quality (EQ) from 1991 to 2021
3.2. Cumulative Analysis of Ecological Quality (EQ) from 1991 to 2021 at Each Level
3.3. Spatial–Temporal Analysis of Ecological Quality (EQ) Changes
Cumulative Number of Times | Poor/km2 | Inferior/km2 | Medium/km2 | Good/km2 | Excellent/km2 |
---|---|---|---|---|---|
0 | 235.91 | 85.77 | 47.49 | 84.04 | 209.96 |
1–5 | 36.26 | 91.65 | 55.21 | 63.96 | 36.13 |
6–10 | 6.25 | 44.97 | 33.11 | 49.22 | 13.89 |
11–15 | 2.81 | 19.99 | 37.68 | 34.65 | 7.63 |
16–20 | 1.50 | 14.56 | 50.61 | 27.05 | 5.13 |
21–25 | 0.71 | 11.36 | 41.84 | 17.56 | 4.43 |
26–31 | 0.34 | 15.50 | 17.85 | 7.32 | 6.61 |
4. Discussion
4.1. Ecological Quality (EQ) Changes
4.2. Effects of Urban Expansion on Ecological Quality (EQ)
4.3. Effects of Forest Change on Ecological Quality (EQ)
4.4. Effects of Policies on Ecological Quality (EQ)
4.5. Advantages and Disvantages of RSEI
4.6. Limitations and Future Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jupiter, S.; Mangubhai, S.; Kingsford, R.T. Conservation of biodiversity in the pacific islands of Oceania: Challenges and opportunities. Pac. Conserv. Biol. 2014, 20, 206. [Google Scholar] [CrossRef]
- Rombouts, I.; Beaugrand, G.; Artigas, L.F.; Dauvin, J.C.; Gevaert, F.; Goberville, E.; Kopp, D.; Lefebvre, S.; Luczak, C.; Spilmont, N.; et al. Evaluating marine ecosystem health: Case studies of indicators using direct observations and modelling methods. Ecol. Indic. 2013, 24, 353–365. [Google Scholar] [CrossRef]
- Shifaw, E.; Sha, J.; Li, X.; Bao, Z.; Zhou, Z. An insight into land-cover changes and their impacts on ecosystem services before and after the implementation of a comprehensive experimental zone plan in Pingtan island, China. Land Use Pol. 2019, 82, 631–642. [Google Scholar] [CrossRef]
- Sun, D.Q.; Zhang, J.X.; Zhu, C.G.; Hu, Y.; Zhou, L. An assessment of China’s ecological environment quality change and its spatial variation. Acta Geogr. Sin. 2012, 67, 1599–1610. [Google Scholar]
- Wu, H.Y.; Chen, K.L.; Chen, Z.H.; Chen, Q.H.; Qiu, Y.P.; Wu, J.C.; Zhang, J.F. Evaluation for the ecological quality status of coastal waters in East China Sea using fuzzy integrated assessment method. Mar. Pollut. Bull. 2012, 64, 546–555. [Google Scholar] [PubMed]
- Runge, A.; Nitze, I.; Grosse, G. Remote sensing annual dynamics of rapid permafrost thaw disturbances with LandTrendr. Remote Sens. Environ. 2022, 268, 112752. [Google Scholar] [CrossRef]
- Shan, W.; Jin, X.; Ren, J.; Wang, Y.; Xu, Z.; Fan, Y.; Gu, Z.; Hong, C.; Lin, J.; Zhou, Y. Ecological environment quality assessment based on remote sensing data for land consolidation. J. Clean. Prod. 2019, 239, 118126. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, Z.; Chen, Y.; Guo, C.; Marinello, F. Instability of remote sensing based ecological index (RSEI) and its improvement for time series analysis. Sci. Total Environ. 2022, 814, 152595. [Google Scholar]
- Xiong, Y.; Xu, W.; Lu, N.; Huang, S.; Wu, C.; Wang, L.; Dai, F.; Kou, W. Assessment of spatial-temporal changes of ecological environment quality based on RSEI and GEE: A case study in Erhai Lake Basin, Yunnan province, China. Ecol. Indic. 2021, 125, 107518. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, Q.; Shao, Y.; Sun, S.; Xiao, L.; Guo, J. Ecological environment assessment based on land use simulation: A case study in the Heihe River Basin. Sci. Total Environ. 2019, 697, 133928. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Z.; Long, H.; Liu, Y.; Li, W. Dynamic analysis of ecological environment combined with land cover and NDVI changes and implications for sustainable urban–rural development: The case of Mu Us Sandy Land, China. J. Clean. Prod. 2017, 142, 697–715. [Google Scholar] [CrossRef]
- Wu, S.; Chen, Y. Examining eco-environmental changes at major recreational sites in Kenting National Park in Taiwan by integrating SPOT satellite images and NDVI. Tour. Manag. 2016, 57, 23–36. [Google Scholar] [CrossRef]
- Liang, S.; Yi, Q.; Liu, J. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecol. Indic. 2015, 58, 64–76. [Google Scholar]
- Wang, Q.; Tenhunen, J.; Dinh, N.; Reichstein, M.; Otieno, D.; Granier, A.; Pilegarrd, K. Evaluation of seasonal variation of MODIS derived leaf area index at two European deciduous broadleaf forest sites. Remote Sens. Environ. 2005, 96, 475–484. [Google Scholar]
- Wang, X.D.; Zhong, X.H.; Liu, S.Z.; Liu, J.G.; Wang, Z.Y.; Li, M.H. Regional assessment of environmental vulnerability in the Tibetan Plateau: Development and application of a new method. J. Arid Environ. 2008, 72, 1929–1939. [Google Scholar] [CrossRef]
- Ivits, E.; Cherlet, M.; Mehl, W.; Sommer, S. Estimating the ecological status and change of riparian zones in Andalusia assessed by multi-temporal AVHHR datasets. Ecol. Indic. 2009, 9, 422–431. [Google Scholar]
- Asadi Zarch, M.A.; Malekinezhad, H.; Mobin, M.H.; Dastorani, M.T.; Kousari, M.R. Drought monitoring by Reconnaissance Drought Index (RDI) in Iran. Water Resour. Manag. 2011, 25, 3485–3504. [Google Scholar] [CrossRef] [Green Version]
- Naresh Kumar, M.; Murthy, C.S.; Sesha Sai, M.V.R.; Roy, P.S. On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteorol. Appl. 2009, 16, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Rhee, J.; Im, J.; Carbone, G.J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar]
- Mildrexler, D.J.; Zhao, M.; Running, S.W. Testing a MODIS Global Disturbance Index across North America. Remote Sens. Environ. 2009, 113, 2103–2117. [Google Scholar] [CrossRef]
- Yang, X.; Meng, F.; Fu, P.; Wang, Y.; Liu, Y. Time-frequency optimization of RSEI: A case study of Yangtze River Basin. Ecol. Indic. 2022, 141, 109080. [Google Scholar] [CrossRef]
- Yang, X.; Meng, F.; Fu, P.; Zhang, Y.; Liu, Y. Spatiotemporal change and driving factors of the Eco-Environment quality in the Yangtze River Basin from 2001 to 2019. Ecol. Indic. 2021, 131, 108214. [Google Scholar] [CrossRef]
- Cui, R.; Han, J.; Hu, Z. Assessment of spatial temporal changes of ecological environment quality: A case study in Huaibei City, China. Land 2022, 11, 944. [Google Scholar] [CrossRef]
- Xu, H.Q. A remote sensing index for assessment of regional ecological changes. China Environ. Sci. 2013, 33, 889–897. [Google Scholar]
- Liu, C.; Yang, M.; Hou, Y.; Zhao, Y.; Xue, X. Spatiotemporal evolution of island ecological quality under different urban densities: A comparative analysis of Xiamen and Kinmen Islands, southeast China. Ecol. Indic. 2021, 124, 107438. [Google Scholar]
- Wen, X.; Ming, Y.; Gao, Y.; Hu, X. Dynamic monitoring and analysis of ecological quality of Pingtan Comprehensive Experimental Zone, a new type of sea island city, based on RSEI. Sustainability 2020, 12, 21. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; Fu, L.; Zou, Y.; Zhang, S.; Chen, X.; Li, F.; Deng, Z.; Xie, Y. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 2021, 302, 126995. [Google Scholar]
- Gao, W.; Zhang, S.; Rao, X.; Lin, X.; Li, R. Landsat TM/OLI-Based Ecological and Environmental Quality Survey of Yellow River Basin, Inner Mongolia Section. Remote Sens. 2021, 13, 4477. [Google Scholar]
- Xu, H.; Wang, M.; Shi, T.; Guan, H.; Fang, C.; Lin, Z. Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index (RSEI). Ecol. Indic. 2018, 93, 730–740. [Google Scholar]
- DeVries, B.; Verbesselt, J.; Kooistra, L.; Herold, M. Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series. Remote Sens. Environ. 2015, 161, 107–121. [Google Scholar]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS—J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Wang, L.; Diao, C.; Xian, G.; Yin, D.; Lu, Y.; Zou, S.; Erickson, T.A. A summary of the special issue on remote sensing of land change science with Google Earth Engine. Remote Sens. Environ. 2020, 248, 112002. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Dewi, R.; Bijker, W.; Stein, A. Change vector analysis to monitor the changes in fuzzy shorelines. Remote Sens. 2017, 9, 147. [Google Scholar] [CrossRef] [Green Version]
- Xian, G.; Homer, C.; Fry, J. Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sens. Environ. 2009, 113, 1133–1147. [Google Scholar]
- Yu, W.; Zhou, W.; Qian, Y.; Yan, J. A new approach for land cover classification and change analysis: Integrating backdating and an object-based method. Remote Sens. Environ. 2016, 177, 37–47. [Google Scholar]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Brooks, E.B.; Wynne, R.H.; Thomas, V.A.; Blinn, C.E.; Coulston, J.W. On-the-Fly massively multitemporal change detection using statistical quality control charts and Landsat data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3316–3332. [Google Scholar]
- Vogelmann, J.E.; Gallant, A.L.; Shi, H.; Zhu, Z. Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data. Remote Sens. Environ. 2016, 185, 258–270. [Google Scholar]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- de Jong, S.M.; Shen, Y.; de Vries, J.; Bijnaar, G.; van Maanen, B.; Augustinus, P.; Verweij, P. Mapping mangrove dynamics and colonization patterns at the Suriname coast using historic satellite data and the LandTrendr algorithm. Int. J. Appl. Earth Obs. Geoinf. 2021, 97, 102293. [Google Scholar]
- Fu, B.; Lan, F.; Xie, S.; Liu, M.; He, H.; Li, Y.; Liu, L.; Huang, L.; Fan, D.; Gao, E.; et al. Spatio-temporal coupling coordination analysis between marsh vegetation and hydrology change from 1985 to 2019 using LandTrendr algorithm and Google Earth Engine. Ecol. Indic. 2022, 137, 108763. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar]
- Cohen, W.B.; Yang, Z.; Healey, S.P.; Kennedy, R.E.; Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sens. Environ. 2018, 205, 131–140. [Google Scholar]
- Flood, N. Seasonal composite Landsat TM/ETM+ images using the Medoid (A multi-dimensional median). Remote Sens. 2013, 5, 6481–6500. [Google Scholar]
- Robinson, N.; Allred, B.; Jones, M.; Moreno, A.; Kimball, J.; Naugle, D.; Erickson, T.; Richardson, A. A dynamic Landsat derived Normalized Difference Vegetation Index (NDVI) product for the conterminous united states. Remote Sens. 2017, 9, 863. [Google Scholar]
- Xu, H.Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI). J. Remote Sens. 2005, 9, 589–595. [Google Scholar]
- Xu, H.; Wei, Y.; Liu, C.; Li, X.; Fang, H. A scheme for the long-term monitoring of impervious—Relevant land disturbances using high frequency Landsat archives and the Google Earth Engine. Remote Sens. 2019, 11, 1891. [Google Scholar]
- Cao, H.; Liu, J.; Fu, C.; Zhang, W.; Wang, G.; Yang, G.; Luo, L. Urban expansion and its impact on the land use pattern in Xishuangbanna since the reform and opening up of China. Remote Sens. 2017, 9, 137. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.; Xue, X.; Shi, L.; Gao, L. Urban spatial expansion and its impacts on island ecosystem services and landscape pattern: A case study of the island city of Xiamen, Southeast China. Ocean. Coast. Manag. 2013, 81, 90–96. [Google Scholar]
- Lin, L.; Hao, Z.; Post, C.J.; Mikhailova, E.A.; Yu, K.; Yang, L.; Liu, J. Monitoring land cover change on a rapidly urbanizing island using Google Earth Engine. Appl. Sci. 2020, 10, 7336. [Google Scholar] [CrossRef]
- Federici, S.; Tubiello, F.N.; Salvatore, M.; Jacobs, H.; Schmidhuber, J. New estimates of CO2 forest emissions and removals: 1990–2015. For. Ecol. Manag. 2015, 352, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R.A. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 2017, 358, 230–234. [Google Scholar] [CrossRef] [Green Version]
- Campbell, M.J.; Dennison, P.E.; Tune, J.W.; Kannenberg, S.A.; Kerr, K.L.; Codding, B.F.; Anderegg, W.R.L. A multi-sensor, multi-scale approach to mapping tree mortality in woodland ecosystems. Remote Sens. Environ. 2020, 245, 111853. [Google Scholar]
- Gomez Selvaraj, M.; Vergara, A.; Montenegro, F.; Alonso Ruiz, H.; Safari, N.; Raymaekers, D.; Ocimati, W.; Ntamwira, J.; Tits, L.; Omondi, A.B.; et al. Detection of banana plants and their major diseases through aerial images and machine learning methods: A case study in DR Congo and Republic of Benin. ISPRS–J. Photogramm. Remote Sens. 2020, 169, 110–124. [Google Scholar] [CrossRef]
- Meng, R.; Gao, R.; Zhao, F.; Huang, C.; Sun, R.; Lv, Z.; Huang, Z. Landsat-based monitoring of southern pine beetle infestation severity and severity change in a temperate mixed forest. Remote Sens. Environ. 2022, 269, 112847. [Google Scholar]
- Yu, R.; Luo, Y.; Zhou, Q.; Zhang, X.; Wu, D.; Ren, L. A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102363. [Google Scholar] [CrossRef]
- Li, J.; Gong, J.; Guldmann, J.; Yang, J. Assessment of urban ecological quality and spatial heterogeneity based on remote sensing: A case study of the rapid urbanization of Wuhan city. Remote Sens. 2021, 13, 4440. [Google Scholar] [CrossRef]
- Cardille, J.A.; Perez, E.; Crowley, M.A.; Wulder, M.A.; White, J.C.; Hermosilla, T. Multi-sensor change detection for within-year capture and labelling of forest disturbance. Remote Sens. Environ. 2022, 268, 112741. [Google Scholar]
- Claverie, M.; Vermote, E.F.; Franch, B.; Masek, J.G. Evaluation of the Landsat-5 TM and Landsat-7 ETM+ surface reflectance products. Remote Sens. Environ. 2015, 169, 390–403. [Google Scholar] [CrossRef]
- Ke, Y.; Im, J.; Lee, J.; Gong, H.; Ryu, Y. Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote Sens. Environ. 2015, 164, 298–313. [Google Scholar]
- Che, X.; Zhang, H.K.; Liu, J. Making Landsat 5, 7 and 8 reflectance consistent using MODIS nadir-BRDF adjusted reflectance as reference. Remote Sens. Environ. 2021, 262, 112517. [Google Scholar]
Indicator | Calculation Method | Explanation |
---|---|---|
NDVI | NIR and Red are the values of near-infrared and red band in the Landsat image, respectively. | |
WET | Blue, Green, Red, NIR, SWIR1, and SWIR2 are the values of blue, green, red, near-infrared, short-wavelength infrared 1, and short-wavelength infrared 2 band in Landsat image, respectively. WetTM was used for Landsat 5, WetETM was used for Landsat 7, and WetOLI was used for Landsat 8 due to the different sensors. | |
LST | is the wavelength of the thermal infrared band. The values of for Landsat 5, 7, and 8 were 11.45 μm, 11.45 μm, and 10.80 μm, respectively; p is a constant (1.438 × 10−2 mK); is the surface emissivity, and was calculated by NDVI using Sobrino’s model; TB is the at-sensor brightness temperature. K1, K2, MF, and AF are the band-specific thermal conversion constants, and they are the different values for Landsat 5, 7 and 8. DN is quantized and calibrated pixel value. All values were decided according to [7,24]. | |
NDISI | Normalized Difference Impervious Surface index is the average of the soil index (SI) and index-based built-up index (IBI), and regarded as Dryness. SWIR1, Red, NIR, Blue, and Green are the values of short-wavelength infrared 1, red, near-infrared, blue, and green band in the Landsat image. |
Parameter | Values |
---|---|
Max segments | 4 |
5 | |
6 | |
Recovery threshold | 0.3 |
0.5 | |
0.7 | |
Best model proportion | 0.5 |
1 | |
1.25 |
Year | Areas of Initial Disturbance | Areas of Ending Disturbance | ||||
---|---|---|---|---|---|---|
First Disturbance/km2 | Second Disturbance/km2 | Cumulative Sum | First Disturbance/km2 | Second Disturbance/km2 | Cumulative Sum | |
1991 | 1.34 | - | 1.34 | - | - | - |
1992 | 0.02 | - | 0.02 | 0.27 | - | 0.27 |
1993 | 3.19 | - | 3.19 | 0.16 | - | 0.16 |
1994 | 0.53 | - | 0.53 | 0.24 | - | 0.24 |
1995 | 1.20 | 0.05 | 1.25 | 0.05 | - | 0.05 |
1996 | 4.62 | 0.02 | 4.64 | 0.41 | - | 0.41 |
1997 | 1.13 | 0.02 | 1.14 | 0.39 | - | 0.39 |
1998 | 1.74 | 0.03 | 1.78 | 0.97 | 0.02 | 0.98 |
1999 | 2.39 | 0.04 | 2.44 | 0.94 | 0.01 | 0.96 |
2000 | 0.41 | 0.01 | 0.42 | 1.51 | 0.02 | 1.53 |
2001 | 1.56 | 0.05 | 1.61 | 3.46 | 0.01 | 3.47 |
2002 | 2.15 | 0.10 | 2.24 | 1.34 | 0.02 | 1.36 |
2003 | 0.44 | 0.01 | 0.45 | 1.64 | 0.01 | 1.65 |
2004 | 2.40 | 0.10 | 2.50 | 0.52 | 0.01 | 0.52 |
2005 | 1.12 | 0.13 | 1.25 | 1.34 | 0.03 | 1.36 |
2006 | 0.67 | 0.12 | 0.79 | 2.11 | 0.05 | 2.16 |
2007 | 1.10 | 0.13 | 1.23 | 1.64 | 0.02 | 1.66 |
2008 | 0.35 | 0.07 | 0.42 | 1.87 | 0.06 | 1.93 |
2009 | 1.82 | 0.16 | 1.98 | 1.28 | 0.04 | 1.32 |
2010 | 1.38 | 0.11 | 1.49 | 1.79 | 0.09 | 1.88 |
2011 | 0.59 | 0.15 | 0.74 | 0.85 | 0.05 | 0.90 |
2012 | 0.55 | 0.14 | 0.69 | 3.05 | 0.22 | 3.27 |
2013 | 2.04 | 0.57 | 2.61 | 0.94 | 0.08 | 1.03 |
2014 | 0.75 | 0.12 | 0.87 | 1.27 | 0.19 | 1.47 |
2015 | 1.31 | 0.22 | 1.54 | 0.68 | 0.21 | 0.89 |
2016 | 1.60 | 0.25 | 1.85 | 0.74 | 0.23 | 0.97 |
2017 | 0.59 | 0.07 | 0.66 | 2.55 | 0.38 | 2.93 |
2018 | 0.41 | 0.07 | 0.48 | 1.33 | 0.24 | 1.57 |
2019 | 0.72 | 0.19 | 0.91 | 0.98 | 0.10 | 1.07 |
2020 | 0.12 | 0.09 | 0.21 | 0.09 | 0.01 | 0.10 |
2021 | - | - | 0.00 | 3.83 | 0.95 | 4.77 |
Total | 38.22 | 3.05 | 41.27 | 34.40 | 2.10 | 41.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; Hao, Z.; Post, C.J.; Mikhailova, E.A. Monitoring Ecological Changes on a Rapidly Urbanizing Island Using a Remote Sensing-Based Ecological Index Produced Time Series. Remote Sens. 2022, 14, 5773. https://doi.org/10.3390/rs14225773
Lin L, Hao Z, Post CJ, Mikhailova EA. Monitoring Ecological Changes on a Rapidly Urbanizing Island Using a Remote Sensing-Based Ecological Index Produced Time Series. Remote Sensing. 2022; 14(22):5773. https://doi.org/10.3390/rs14225773
Chicago/Turabian StyleLin, Lili, Zhenbang Hao, Christopher J. Post, and Elena A. Mikhailova. 2022. "Monitoring Ecological Changes on a Rapidly Urbanizing Island Using a Remote Sensing-Based Ecological Index Produced Time Series" Remote Sensing 14, no. 22: 5773. https://doi.org/10.3390/rs14225773
APA StyleLin, L., Hao, Z., Post, C. J., & Mikhailova, E. A. (2022). Monitoring Ecological Changes on a Rapidly Urbanizing Island Using a Remote Sensing-Based Ecological Index Produced Time Series. Remote Sensing, 14(22), 5773. https://doi.org/10.3390/rs14225773