Dual-Frequency Retrieval of Soil Moisture from L- and S-Band Radar Data for Corn and Soybean
Abstract
:1. Introduction
2. SMEX02 Field Campaign
3. Forward Model for σ0 and Soil Moisture Retrieval
3.1. Physical Model and Lookup Tables
3.2. VWC Estimated from L-Band HV, as Input to Retrieval
3.3. Single-Frequency Time-Series Retrieval
3.4. L- and S-Band Time-Series Retrieval
4. Results
4.1. VWC Estimation from L-HV
4.2. Forward Model Validation
4.3. Soil Moisture Retrieval: Corn
4.4. Soil Moisture Retrieval: Soybean
5. Discussion
5.1. Comparison of Retrievals Using Single Band and Two Bands
5.2. Retrieval Sensitivity against VWC Bias
6. Conclusions
- The physical model for the radar forward scattering established in the SMAPVEX12 campaign for just the L-band is now successfully extended to S-band. The two frequencies are close enough to each other for the vegetation modeling to remain the same. The model is independently validated with the data from the separate field campaign, SMEX02, for corn and soybean fields.
- The retrieval algorithm using the time-series input backscatter works well. The dual-frequency L-HH and S-HH input gives a soil moisture retrieval with an unbiased RMSE that is better than the single frequencies for both corn and soybean. The unbiased RMSE for corn is 0.031 m3/m3 and the unbiased RMSE for soybean is 0.057 m3/m3. There are two findings from the results. First, either L- or S-band single-frequency retrieval has sensitivity and reliable performance for soil moisture retrieval, even if each retrieval is slightly underdetermined. Second, averaging the retrieved soil moisture from both frequencies, further improves the retrieval performance. This avoids the determination (that is uncertain) of the weights of L- and S-bands sigma0 if the sigma0 minimization is formulated together in one cost function during the soil moisture retrieval.
- The in this study is estimated with HV polarization at the L-band separately for both corn and soybean. The empirical relationships between HV and VWC established from the SMAPVEX12 campaign apply well to estimate for VWC for SMEX02. The regression equation is applied with adjustable VWC bias. It is shown that the retrieval performance is not sensitive to VWC bias. This supports the prospect that the empirical relationship may apply to wider regions of the same crop type. To apply this HV-VWC globally, the VWC bias can be estimated by comparing it with daily climatology data. The NASA SMAP mission produced a 1 km VWC daily climatology database [38]. This will be expanded by the upcoming NISAR mission to generate a 200 m daily climatology database.
Author Contributions
Funding
Conflicts of Interest
References
- Bauer-Marschallinger, B.; Freeman, V.; Cao, S.; Paulik, C.; Schaufler, S.; Stachl, T.; Modanesi, S.; Massari, C.; Ciabatta, L.; Brocca, L.; et al. Toward Global Soil Moisture Monitoring With Sentinel-1: Harnessing Assets and Overcoming Obstacles. IEEE Trans. Geosci. Remote Sens. 2019, 57, 520–539. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Kim, S.-B.; Zyl, J.J.; van Johnson, J.T.; Moghaddam, M.; Tsang, L.; Colliander, A.; Dunbar, R.S.; Jackson, T.J.; Jaruwatanadilok, S.; West, R.; et al. Surface Soil Moisture Retrieval Using the L-Band Synthetic Aperture Radar Onboard the Soil Moisture Active–Passive Satellite and Evaluation at Core Validation Sites. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1897–1914. [Google Scholar] [CrossRef] [PubMed]
- Kellogg, K.; Hoffman, P.; Standley, S.; Shaffer, S.; Rosen, P.; Edelstein, W.; Dunn, C.; Baker, C.; Barela, P.; Shen, Y.; et al. NASA-ISRO Synthetic Aperture Radar (NISAR) Mission. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–21. [Google Scholar]
- Stavros, N.; Siqueira, P.; Cosh, M.; Torbick, N.; Osmanoglu, B. 2018 NISAR Applications Workshop: Agriculture and Soil Moisture; Jet Propulsion Laboratory California Institute of Technology: Pasadena, CA, USA, 2019; 36p. [Google Scholar]
- Ouellette, J.D.; Johnson, J.T.; Balenzano, A.; Mattia, F.; Satalino, G.; Kim, S.-B.; Dunbar, R.S.; Colliander, A.; Cosh, M.H.; Caldwell, T.G.; et al. A Time-Series Approach to Estimating Soil Moisture From Vegetated Surfaces Using L-Band Radar Backscatter. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3186–3193. [Google Scholar] [CrossRef]
- Jagdhuber, T.; Hajnsek, I.; Papathanassiou, K.P. An Iterative Generalized Hybrid Decomposition for Soil Moisture Retrieval Under Vegetation Cover Using Fully Polarimetric SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3911–3922. [Google Scholar] [CrossRef]
- Tabatabaeenejad, A.; Burgin, M.; Moghaddam, M. Potential of L-Band Radar for Retrieval of Canopy and Subcanopy Parameters of Boreal Forests. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2150–2160. [Google Scholar] [CrossRef]
- Bousbih, S.; Zribi, M.; Lili-Chabaane, Z.; Baghdadi, N.; El Hajj, M.; Gao, Q.; Mougenot, B. Potential of Sentinel-1 Radar Data for the Assessment of Soil and Cereal Cover Parameters. Sensors 2017, 17, 2617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil Moisture Mapping Using Sentinel-1 Images: Algorithm and Preliminary Validation. Remote Sens. Environ. 2013, 134, 234–248. [Google Scholar] [CrossRef]
- Wang, H.; Magagi, R.; Goïta, K.; Wang, K. Soil Moisture Retrievals Using ALOS2-ScanSAR and MODIS Synergy over Tibetan Plateau. Remote Sens. Environ. 2020, 251, 112100. [Google Scholar] [CrossRef]
- Pierdicca, N.; Pulvirenti, L.; Pace, G. A Prototype Software Package to Retrieve Soil Moisture From Sentinel-1 Data by Using a Bayesian Multitemporal Algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 153–166. [Google Scholar] [CrossRef]
- Kim, S.-B.; Tsang, L.; Johnson, J.T.; Huang, S.; van Zyl, J.J.; Njoku, E.G. Soil Moisture Retrieval Using Time-Series Radar Observations Over Bare Surfaces. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1853–1863. [Google Scholar] [CrossRef]
- Kim, S.-B.; Moghaddam, M.; Tsang, L.; Burgin, M.; Xu, X.; Njoku, E.G. Models of L-Band Radar Backscattering Coefficients Over Global Terrain for Soil Moisture Retrieval. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1381–1396. [Google Scholar] [CrossRef]
- Huang, H.; Kim, S.-B.; Tsang, L.; Xu, X.; Liao, T.-H.; Jackson, T.J.; Yueh, S.H. Coherent Model of L-Band Radar Scattering by Soybean Plants: Model Development, Evaluation, and Retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 272–284. [Google Scholar] [CrossRef]
- Liao, T.-H.; Kim, S.-B.; Tan, S.; Tsang, L.; Su, C.; Jackson, T.J. Multiple Scattering Effects With Cyclical Correction in Active Remote Sensing of Vegetated Surface Using Vector Radiative Transfer Theory. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1414–1429. [Google Scholar] [CrossRef]
- Huang, H.; Liao, T.-H.; Kim, S.B.; Xu, X.; Tsang, L.; Jackson, T.J.; Yueh, S.H. L-Band Radar Scattering and Soil Moisture Retrieval of Wheat, Canola and Pasture Fields for Smap Active Algorithms. Prog. Electromagn. Res. 2021, 170, 129–152. [Google Scholar] [CrossRef]
- Kurum, M.; Kim, S.-B.; Akbar, R.; Cosh, M.H. Surface Soil Moisture Retrievals Under Forest Canopy for L-Band SAR Observations Across a Wide Range of Incidence Angles by Inverting a Physical Scattering Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1741–1753. [Google Scholar] [CrossRef]
- Akbar, R.; Moghaddam, M. A Combined Active–Passive Soil Moisture Estimation Algorithm With Adaptive Regularization in Support of SMAP. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3312–3324. [Google Scholar] [CrossRef]
- Jackson, T.; Cosh, M. SMEX02 Watershed Soil Moisture Data, Walnut Creek, Iowa, Version 1. Available online: https://nsidc.org/data/nsidc-0143/versions/1 (accessed on 11 August 2022).
- Bolten, J.D.; Lakshmi, V.; Njoku, E.G. Soil Moisture Retrieval Using the Passive/Active L- and S-Band Radar/Radiometer. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2792–2801. [Google Scholar] [CrossRef]
- Narayan, U. Retrieval of Soil Moisture from Passive and Active L/S Band Sensor (PALS) Observations during the Soil Moisture Experiment in 2002 (SMEX02). Remote Sens. Environ. 2004, 92, 483–496. [Google Scholar] [CrossRef]
- Kim, S.-B.; Liao, T.-H. Robust retrieval of soil moisture at field scale across wide-ranging SAR incidence angles for soybean, wheat, forage, oat and grass. Remote Sens. Environ. 2021, 266, 112712. [Google Scholar] [CrossRef]
- Colliander, A.; Chan, S.; Kim, S.; Das, N.; Yueh, S.; Cosh, M.; Bindlish, R.; Jackson, T.; Njoku, E. Long Term Analysis of PALS Soil Moisture Campaign Measurements for Global Soil Moisture Algorithm Development. Remote Sens. Environ. 2012, 121, 309–322. [Google Scholar] [CrossRef]
- Anderson, M. SMEX02 Regional Vegetation Sampling Data, Iowa, Version 1 [Data Set]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. 2003. Available online: https://nsidc.org/data/nsidc-0188/versions/1 (accessed on 18 May 2018).
- Jackson, T.J.; Chen, D.; Cosh, M.; Li, F.; Anderson, M.; Walthall, C.; Doriaswamy, P.; Hunt, E.R. Vegetation Water Content Mapping Using Landsat Data Derived Normalized Difference Water Index for Corn and Soybeans. Remote Sens. Environ. 2004, 92, 475–482. [Google Scholar] [CrossRef]
- Lang, R.H.; Sighu, J.S. Electromagnetic Backscattering from a Layer of Vegetation: A Discrete Approach. IEEE Trans. Geosci. Remote Sens. 1983, GE-21, 62–71. [Google Scholar] [CrossRef]
- Tsang, L.; Kong, J.A.; Ding, K.-H. Scattering of Electromagnetic Waves Vol. 1: Theories and Applications; John Wiley & Sons, Inc.: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing Active and Passive-Volume III: From Theory to Applications; Artech House Inc: London, UK, 1986. [Google Scholar]
- Ulaby, F.T.; El-rayes, M.A. Microwave Dielectric Spectrum of Vegetation—Part II: Dual-Dispersion Model. IEEE Trans. Geosci. Remote Sens. 1987, GE-25, 550–557. [Google Scholar] [CrossRef]
- Huang, S.; Tsang, L. Electromagnetic Scattering of Randomly Rough Soil Surfaces Based on Numerical Solutions of Maxwell Equations in Three-Dimensional Simulations Using a Hybrid UV/PBTG/SMCG Method. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4025–4035. [Google Scholar] [CrossRef]
- Wu, T.-D.; Chen, K.-S.; Shi, J.; Lee, H.-W.; Fung, A.K. A Study of an AIEM Model for Bistatic Scattering From Randomly Rough Surfaces. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2584–2598. [Google Scholar] [CrossRef]
- Kim, Y.; van Zyl, J.J. A Time-Series Approach to Estimate Soil Moisture Using Polarimetric Radar Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2519–2527. [Google Scholar] [CrossRef]
- Ma, J.; Huang, S.; Li, J.; Li, X.; Song, X.; Leng, P.; Sun, Y. Estimating Vegetation Water Content of Corn and Soybean Using Different Polarization Ratios Based on L- and S-Band Radar Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 364–368. [Google Scholar] [CrossRef]
- Kim, S.; Van Zyl, J.; Dunbar, R.S.; Njoku, E.G.; Johnson, J.T.; Moghaddam, M.; Tsang, L. SMAP L3 Radar Global Daily 3 Km EASE-Grid Soil Moisture, Version 3; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2016. [Google Scholar]
- Mironov, V.L.; Dobson, M.C.; Kaupp, V.H.; Komarov, S.A.; Kleshchenko, V.N. Generalized Refractive Mixing Dielectric Model for Moist Soils. IEEE Trans. Geosci. Remote Sens. 2004, 42, 773–785. [Google Scholar] [CrossRef]
- Colliander, A.; Chan, S.; Yueh, S.; Cosh, M.; Bindlish, R.; Jackson, T.; Njoku, E. Utilization of airborne and in situ data obtained in SGP99, SMEX02, CLASIC and SMAPVEX08 Field Campaigns for SMAP Soil Moisture Algorithm Development and Validation. In Proceedings of the 2010 11th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment, Washington, DC, USA, 1–4 March 2010; pp. 43–48. [Google Scholar] [CrossRef]
- Available online: https://smap.jpl.nasa.gov/system/internal_resources/details/original/289_047_veg_water.pdf (accessed on 1 November 2022).
Data | Date (yr. 2002) |
---|---|
Backscattering coefficients | 25 June, 27 June, 1 July, 2 July, 5 July, 6 July, 7 July, 8 July |
Soil moisture | 25 June, 26 June, 27 June, 1 July, 5 July, 6 July, 7 July, 8 July, 9 July, 11 July, 12 July |
Vegetation Water Content | 2 to 4 times during 15 June and 9 July (varying by sites) |
(a) corn field 6 | |||||||||
Date | 6/25 | 6/27 | 7/1 | 7/2 | 7/3 | 7/5 | 7/6 | 7/7 | 7/8 |
Flight/Sapling | F | F/S | F | F | S | F | F | F/S | F |
VWC NDWI | 2.71 | 3.17 | 3.99 | 4.11 | NA | 4.51 | 4.62 | 4.72 | 4.82 |
VWC in situ * | NA | 3.17 | NA | NA | 4.7 | NA | NA | 5.57 | NA |
(b) soybean field 10 | |||||||||
Date | 6/25 | 6/27 | 6/29 | 7/1 | 7/2 | 7/5 | 7/6 | 7/7 | 7/8 |
Flight/Sampling | F | F | S | F | F/S | F | F | F/S | F |
VWC NDWI | 0.35 | 0.44 | NA | 0.63 | 0.67 | 0.83 | 0.88 | 0.94 | 0.98 |
VWC in situ * | NA | NA | 0.47 | NA | 0.49 | NA | NA | 1.19 | NA |
Site | L-HH | S-HH |
---|---|---|
1 | (1.28, 4.22, 1.00) | (1.45, 1.77, 0.99) |
4 | (1.54, 4.34, 0.98) | (0.78, 0.99, 1.00) |
5 | (2.02, 2.19, 1.00) | (0.99, 2.16, 0.99) |
6 | (0.59, 4.05, 0.99) | (0.51, 1.19, 0.98) |
8 | (0.50, 1.25, 0.98) | (1.01, 2.01, 0.96) |
11 | (1.20, 3.78, 1.00) | (1.38, 2.17, 1.00) |
12 | (0.48, 2.23, 0.99) | (1.34, 2.60, 0.99) |
15 | (0.53, 3.97, 0.99) | (0.85, 1.32, 0.98) |
17 | (0.90, 2.19, 0.97) | (0.76, 1.21, 0.92) |
18 | (0.63, 3.43, 0.97) | (0.72, 1.94, 0.90) |
19 | (1.96, 2.98, 0.95) | (0.86, 1.22, 0.98) |
20 | (1.20, 2.89, 0.92) | (0.69, 0.89, 0.91) |
24 | (0.79, 3.53, 0.98) | (1.10, 1.29, 0.95) |
25 | (1.34, 3.41, 0.95) | (1.15, 1.17, 0.93) |
26 | (1.49, 1.77, 0.95) | (0.85, 1.70, 0.95) |
27 | (1.56, 6.31, 0.97) | (1.55, 1.59, 0.95) |
28 | (2.63, 3.07, 0.95) | (0.76, 2.06, 0.96) |
30 | (0.78, 5.12, 1.00) | (0.30, 0.70, 1.00) |
33 | (2.09, 2.50, 0.94) | (1.03, 1.79, 0.96) |
Average | (1.24, 3.32, 0.97) | (0.95, 1.57, 0.96) |
Site | L-HH | S-HH |
---|---|---|
3 | (0.59, 0.89, 0.99) | (1.09, 2.31, 0.97) |
9 | (0.72,1.18, 0.97) | (1.55, 1.94, 0.98) |
10 | (0.78, 1.16,1.00) | (1.58, 2.02, 0.96) |
13 | (1.31, 1.46, 0.93) | (0.85, 1.76, 0.98) |
14 | (0.82, 1.77, 0.99) | (1.04, 1.32, 0.99) |
16 | (0.98, 4.22, 0.99) | (1.56, 1.93, 0.98) |
21 | (1.23, 1.84, 0.93) | (1.62, 1.66, 0.99) |
22 | (0.54, 2.04, 0.99) | (1.50, 2.63, 1.00) |
23 | (0.75, 0.78, 1.00) | (1.17, 1.52, 0.99) |
32 | (2.13, 4.58, 0.94) | (1.95, 2.19, 0.19) |
Average | (0.99, 1.99, 0.97) | (1.39, 1.93, 0.90) |
Site | |||
---|---|---|---|
1 | (0.037, 0.063, 0.09) | (0.020, 0.033, 0.75) | (0.026, 0.047, 0.44) |
4 | (0.030, 0.041, 0.42) | (0.046, 0.064, 0.45) | (0.030, 0.047, 0.52) |
5 | (0.026, 0.059, 0.76) | (0.026, 0.059, 0.76) | (0.026, 0.059, 0.76) |
6 | (0.030, 0.031, 0.77) | (0.023, 0.055, 0.88) | (0.017, 0.028, 0.91) |
8 | (0.038, 0.038, 0.59) | (0.048, 0.053, 0.09) | (0.025, 0.029, 0.67) |
11 | (0.031, 0.031, 0.82) | (0.039, 0.039, 0.77) | (0.034, 0.034, 0.80) |
12 | (0.061, 0.071, −0.56) | (0.013, 0.079, 0.95) | (0.025, 0.033, 0.05) |
15 | (0.049, 0.050, −0.07) | (0.035, 0.068, 0.55) | (0.031, 0.039, 0.43) |
17 | (0.022, 0.083, 0.79) | (0.037, 0.102, 0.03) | (0.023, 0.091, 0.57) |
18 | (0.053, 0.054, 0.27) | (0.062, 0.165, −0.32) | (0.024, 0.074, −0.08) |
19 | (0.031, 0.082, 0.79) | (0.034, 0.078, 0.33) | (0.021, 0.076, 0.79) |
20 | (0.033, 0.066, 0.85) | (0.043, 0.069, 0.65) | (0.029, 0.063, 0.85) |
24 | (0.045, 0.047, 0.61) | (0.035, 0.093, 0.84) | (0.031, 0.059, 0.82) |
25 | (0.040, 0.049, 0.58) | (0.037, 0.102, 0.67) | (0.032, 0.069, 0.70) |
26 | (0.028, 0.060, 0.64) | (0.038, 0.076, −0.10) | (0.027, 0.066, 0.38) |
27 | (0.072, 0.088, 0.13) | (0.047, 0.050, 0.64) | (0.055, 0.058, 0.42) |
28 | (0.070, 0.079, 0.63) | (0.072, 0.160, 0.65) | (0.064, 0.083, 0.83) |
30 | (0.049, 0.049, −0.52) | (0.019, 0.060, 0.95) | (0.023, 0.036, 0.32) |
33 | (0.035, 0.092, 0.70) | (0.067, 0.230, 0.26) | (0.043, 0.158, 0.51) |
Average | (0.041, 0.060, 0.44) | (0.039, 0.086, 0.52) | (0.031, 0.060, 0.56) |
Site | |||
---|---|---|---|
3 | (0.038, 0.059, 0.86) | (0.074, 0.116, −0.39) | (0.037, 0.043, 0.79) |
9 | (0.071, 0.071, −0.54) | (0.061, 0.086, −0.06) | (0.062, 0.071, −0.37) |
10 | (0.038, 0.040, 0.81) | (0.040, 0.040, 0.79) | (0.038, 0.039, 0.81) |
13 | (0.053, 0.061, −0.42) | (0.037, 0.074, 0.37) | (0.047, 0.067, −0.31) |
14 | (0.046, 0.047, 0.51) | (0.075, 0.080, −0.39) | (0.060, 0.061, 0.04) |
16 | (0.099, 0.116, −0.74) | (0.074, 0.081, −0.39) | (0.086, 0.098, −0.63) |
21 | (0.025, 0.048, 0.68) | (0.036, 0.046, 0.39) | (0.029, 0.045, 0.55) |
22 | (0.081, 0.084, −0.28) | (0.098, 0.107, −0.47) | (0.089, 0.095, −0.39) |
23 | (0.053, 0.063, 0.62) | (0.059, 0.059, 0.48) | (0.055, 0.057, 0.59) |
32 | (0.090, 0.233 −0.34) | (0.051, 0.105, 0.14) | (0.069, 0.168, −0.17) |
Average | (0.059, 0.082, 0.12) | (0.061, 0.079, 0.05) | (0.057, 0.074, 0.09) |
1 | (0.041, 0.060, 0.44) | (0.039, 0.086, 0.52) | (0.031, 0.060, 0.56) |
1.1 | (0.038, 0.057, 0.54) | (0.036, 0.076, 0.59) | (0.030, 0.059, 0.69) |
1.2 | (0.040, 0.059, 0.54) | (0.034, 0.079, 0.64) | (0.031, 0.061, 0.70) |
1.3 | (0.039, 0.060, 0.60) | (0.036, 0.066, 0.66) | (0.033, 0.058, 0.71) |
1.4 | (0.040, 0.061, 0.63) | (0.039, 0.059, 0.62) | (0.036, 0.057, 0.68) |
0.06 | (0.059, 0.082, 0.12) | (0.061, 0.079, 0.05) | (0.057, 0.074, 0.09) |
0.08 | (0.061, 0.080, 0.08) | (0.062, 0.079, 0.02) | (0.060, 0.076, 0.06) |
0.10 | (0.060, 0.080, 0.10) | (0.061, 0.079, 0.03) | (0.060, 0.077, 0.07) |
0.12 | (0.060, 0.083, 0.09) | (0.057, 0.074, 0.16) | (0.057, 0.076, 0.14) |
0.14 | (0.060, 0.083, 0.12) | (0.058, 0.076, 0.16) | (0.057, 0.076, 0.16) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, T.-H.; Kim, S.-B. Dual-Frequency Retrieval of Soil Moisture from L- and S-Band Radar Data for Corn and Soybean. Remote Sens. 2022, 14, 5875. https://doi.org/10.3390/rs14225875
Liao T-H, Kim S-B. Dual-Frequency Retrieval of Soil Moisture from L- and S-Band Radar Data for Corn and Soybean. Remote Sensing. 2022; 14(22):5875. https://doi.org/10.3390/rs14225875
Chicago/Turabian StyleLiao, Tien-Hao, and Seung-Bum Kim. 2022. "Dual-Frequency Retrieval of Soil Moisture from L- and S-Band Radar Data for Corn and Soybean" Remote Sensing 14, no. 22: 5875. https://doi.org/10.3390/rs14225875