EMO-MVS: Error-Aware Multi-Scale Iterative Variable Optimizer for Efficient Multi-View Stereo
Abstract
:1. Introduction
- We propose a low-memory consumption, high-accuracy, and fast-inference-speed EMO-MVS framework for MVS tasks. The previous efficient MVS methods usually produce unrefined depth maps in large-scale aerial datasets, and EMO-MVS dramatically alleviates this problem.
- Specifically, we propose three core modules, including an iterative variable estimator that optimizes the depth variation, a multilevel absorption unit for efficient fusion of multiscale information, and an error-aware module that enhances the initial depth map.
- We validate our method’s effectiveness on the DTU and Tanks and Temples datasets. The results prove that our approach is the most competitive in terms of balancing performance and efficiency.
2. Related Work
2.1. Conventional MVS
2.2. Learning-Based MVS
3. Method
3.1. Overview
3.2. Feature Extractor and Initialization
3.3. Iterative Variable Optimizer
3.4. Multi-Level Absorption Unit
3.5. The Structure of Error-Aware Enhancement
3.5.1. Inverse Projection and Error Calculation
3.5.2. Information Fusion and Optimization
4. Experiments
4.1. Datasets
4.2. Implementation Details
4.3. Main Results on DTU Dataset
4.3.1. Effect Verification on DTU
4.3.2. Efficiency Verification on DTU
4.4. Main Results on the Tanks and Temples Dataset
4.5. Ablation Study
4.5.1. Core Modules
4.5.2. Comparison of Details
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A survey of autonomous driving: Common practices and emerging technologies. IEEE Access 2020, 8, 58443–58469. [Google Scholar] [CrossRef]
- Burdea, G.C.; Coiffet, P. Virtual Reality Technology; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Garcia, E.; Jimenez, M.A.; De Santos, P.G.; Armada, M. The evolution of robotics research. IEEE Robot. Autom. Mag. 2007, 14, 90–103. [Google Scholar] [CrossRef]
- Geiger, A.; Ziegler, J.; Stiller, C. Stereoscan: Dense 3d reconstruction in real-time. In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; pp. 963–968. [Google Scholar]
- Bleyer, M.; Rhemann, C.; Rother, C. Patchmatch Stereo-Stereo Matching with Slanted Support Windows. In Proceedings of the British Machine Vision Conference, Vienna, Austria, 29 August–2 September 2011; Volume 11, pp. 1–11. [Google Scholar]
- Baillard, C.; Zisserman, A. A plane-sweep strategy for the 3D reconstruction of buildings from multiple images. Int. Arch. Photogramm. Remote Sens. 2000, 33, 56–62. [Google Scholar]
- Furukawa, Y.; Ponce, J. Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 1362–1376. [Google Scholar] [CrossRef] [PubMed]
- Galliani, S.; Lasinger, K.; Schindler, K. Massively parallel multiview stereopsis by surface normal diffusion. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 873–881. [Google Scholar]
- Schonberger, J.L.; Frahm, J.M. Structure-from-motion revisited. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 4104–4113. [Google Scholar]
- Xu, Q.; Tao, W. Multi-scale geometric consistency guided multi-view stereo. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5483–5492. [Google Scholar]
- Yao, Y.; Luo, Z.; Li, S.; Fang, T.; Quan, L. Mvsnet: Depth inference for unstructured multi-view stereo. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 767–783. [Google Scholar]
- Gu, X.; Fan, Z.; Zhu, S.; Dai, Z.; Tan, F.; Tan, P. Cascade cost volume for high-resolution multi-view stereo and stereo matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Online, 14–19 June 2020; pp. 2495–2504. [Google Scholar]
- Yang, J.; Mao, W.; Alvarez, J.M.; Liu, M. Cost volume pyramid based depth inference for multi-view stereo. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Online, 13–19 June 2020; pp. 4877–4886. [Google Scholar]
- Yao, Y.; Luo, Z.; Li, S.; Shen, T.; Fang, T.; Quan, L. Recurrent mvsnet for high-resolution multi-view stereo depth inference. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5525–5534. [Google Scholar]
- Ma, X.; Gong, Y.; Wang, Q.; Huang, J.; Chen, L.; Yu, F. EPP-MVSNet: Epipolar-assembling based Depth Prediction for Multi-view Stereo. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Online, 11–17 October 2021; pp. 5732–5740. [Google Scholar]
- Stathopoulou, E.K.; Battisti, R.; Cernea, D.; Remondino, F.; Georgopoulos, A. Semantically derived geometric constraints for MVS reconstruction of textureless areas. Remote Sens. 2021, 13, 1053. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, X.; Liu, W.; Liu, A.A.; Liu, W.; Mei, T. Metasearch: Incremental product search via deep meta-learning. IEEE Trans. Image Process. 2020, 29, 7549–7564. [Google Scholar] [CrossRef]
- Lipson, L.; Teed, Z.; Deng, J. Raft-stereo: Multilevel recurrent field transforms for stereo matching. In Proceedings of the 2021 International Conference on 3D Vision (3DV), Online, 1–3 December 2021; pp. 218–227. [Google Scholar]
- Xu, H.; Zhang, J. Aanet: Adaptive aggregation network for efficient stereo matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Online, 13–19 June 2020; pp. 1959–1968. [Google Scholar]
- Chang, J.R.; Chen, Y.S. Pyramid stereo matching network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 5410–5418. [Google Scholar]
- Yu, Z.; Gao, S. Fast-mvsnet: Sparse-to-dense multi-view stereo with learned propagation and gauss-newton refinement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Online, 18–22 June 2020; pp. 1949–1958. [Google Scholar]
- Yan, J.; Wei, Z.; Yi, H.; Ding, M.; Zhang, R.; Chen, Y.; Wang, G.; Tai, Y.W. Dense hybrid recurrent multi-view stereo net with dynamic consistency checking. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 674–689. [Google Scholar]
- Wang, F.; Galliani, S.; Vogel, C.; Speciale, P.; Pollefeys, M. Patchmatchnet: Learned multi-view patchmatch stereo. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Online, 19–25 June 2021; pp. 14194–14203. [Google Scholar]
- Wang, F.; Galliani, S.; Vogel, C.; Pollefeys, M. IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022; pp. 8606–8615. [Google Scholar]
- Teed, Z.; Deng, J. Raft: Recurrent all-pairs field transforms for optical flow. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 402–419. [Google Scholar]
- Yang, Z.; Ren, Z.; Shan, Q.; Huang, Q. Mvs2d: Efficient multi-view stereo via attention-driven 2d convolutions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022; pp. 8574–8584. [Google Scholar]
- Tanduo, B.; Martino, A.; Balletti, C.; Guerra, F. New Tools for Urban Analysis: A SLAM-Based Research in Venice. Remote Sens. 2022, 14, 4325. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, Q.; Huang, Y.; Tian, J.; Li, H.; Wang, Y. True2 Orthoimage Map Generation. Remote Sens. 2022, 14, 4396. [Google Scholar] [CrossRef]
- Kutulakos, K.N.; Seitz, S.M. A theory of shape by space carving. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–25 September 1999; Volume 1, pp. 307–314. [Google Scholar]
- Seitz, S.M.; Dyer, C.R. Photorealistic scene reconstruction by voxel coloring. Int. J. Comput. Vis. 1999, 35, 151–173. [Google Scholar] [CrossRef]
- Ulusoy, A.O.; Black, M.J.; Geiger, A. Semantic multi-view stereo: Jointly estimating objects and voxels. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4531–4540. [Google Scholar]
- Lhuillier, M.; Quan, L. A quasi-dense approach to surface reconstruction from uncalibrated images. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 418–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, G.; Gonçalves, D.; Gómez-Gutiérrez, Á.; Andriolo, U.; Pérez-Alvárez, J.A. 3D reconstruction of coastal cliffs from fixed-wing and multi-rotor uas: Impact of sfm-mvs processing parameters, image redundancy and acquisition geometry. Remote Sens. 2021, 13, 1222. [Google Scholar] [CrossRef]
- Wang, F.; Yang, J.F.; Wang, M.Y.; Jia, C.Y.; Shi, X.X.; Hao, G.F.; Yang, G.F. Graph attention convolutional neural network model for chemical poisoning of honey bees’ prediction. Sci. Bull. 2020, 65, 1184–1191. [Google Scholar] [CrossRef]
- Campbell, N.D.; Vogiatzis, G.; Hernández, C.; Cipolla, R. Using multiple hypotheses to improve depth-maps for multi-view stereo. In Proceedings of the European Conference on Computer Vision, Marseille, France, 12–18 October 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 766–779. [Google Scholar]
- Schönberger, J.L.; Zheng, E.; Frahm, J.M.; Pollefeys, M. Pixelwise view selection for unstructured multi-view stereo. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 501–518. [Google Scholar]
- Zhou, L.; Zhang, Z.; Jiang, H.; Sun, H.; Bao, H.; Zhang, G. DP-MVS: Detail Preserving Multi-View Surface Reconstruction of Large-Scale Scenes. Remote Sens. 2021, 13, 4569. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, Y.; Li, S.; Luo, Z.; Fang, T. Visibility-aware multi-view stereo network. arXiv 2020, arXiv:2008.07928. [Google Scholar]
- Wei, Z.; Zhu, Q.; Min, C.; Chen, Y.; Wang, G. Aa-rmvsnet: Adaptive aggregation recurrent multi-view stereo network. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 6187–6196. [Google Scholar]
- Ding, Y.; Yuan, W.; Zhu, Q.; Zhang, H.; Liu, X.; Wang, Y.; Liu, X. Transmvsnet: Global context-aware multi-view stereo network with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 21–24 June 2022; pp. 8585–8594. [Google Scholar]
- Gu, X.; Yuan, W.; Dai, Z.; Tang, C.; Zhu, S.; Tan, P. Dro: Deep recurrent optimizer for structure-from-motion. arXiv 2021, arXiv:2103.13201. [Google Scholar]
- Dai, A.; Nießner, M.; Zollhöfer, M.; Izadi, S.; Theobalt, C. Bundlefusion: Real-time globally consistent 3d reconstruction using on-the-fly surface reintegration. ACM Trans. Graph. (ToG) 2017, 36, 1. [Google Scholar] [CrossRef]
- Izadi, S.; Kim, D.; Hilliges, O.; Molyneaux, D.; Newcombe, R.; Kohli, P.; Shotton, J.; Hodges, S.; Freeman, D.; Davison, A.; et al. KinectFusion: Real-time 3D reconstruction and interaction using a moving depth camera. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, Santa Barbara, CA, USA, 16–19 October 2011; pp. 559–568. [Google Scholar]
- Xu, Q.; Tao, W. Pvsnet: Pixelwise visibility-aware multi-view stereo network. arXiv 2020, arXiv:2007.07714. [Google Scholar]
- Guo, X.; Yang, K.; Yang, W.; Wang, X.; Li, H. Group-wise correlation stereo network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3273–3282. [Google Scholar]
- Aanæs, H.; Jensen, R.R.; Vogiatzis, G.; Tola, E.; Dahl, A.B. Large-scale data for multiple-view stereopsis. Int. J. Comput. Vis. 2016, 120, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Ji, M.; Gall, J.; Zheng, H.; Liu, Y.; Fang, L. Surfacenet: An end-to-end 3d neural network for multiview stereopsis. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2307–2315. [Google Scholar]
- Yao, Y.; Luo, Z.; Li, S.; Zhang, J.; Ren, Y.; Zhou, L.; Fang, T.; Quan, L. Blendedmvs: A large-scale dataset for generalized multi-view stereo networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2020; pp. 1790–1799. [Google Scholar]
- Knapitsch, A.; Park, J.; Zhou, Q.Y.; Koltun, V. Tanks and temples: Benchmarking large-scale scene reconstruction. ACM Trans. Graph. (ToG) 2017, 36, 1–13. [Google Scholar] [CrossRef]
- Peng, R.; Wang, R.; Wang, Z.; Lai, Y.; Wang, R. Rethinking Depth Estimation for Multi-View Stereo: A Unified Representation and Focal Loss. arXiv 2022, arXiv:2201.01501. [Google Scholar]
- Hartmann, W.; Galliani, S.; Havlena, M.; Van Gool, L.; Schindler, K. Learned multi-patch similarity. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1586–1594. [Google Scholar]
- Cheng, S.; Xu, Z.; Zhu, S.; Li, Z.; Li, L.E.; Ramamoorthi, R.; Su, H. Deep stereo using adaptive thin volume representation with uncertainty awareness. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2524–2534. [Google Scholar]
- Moulon, P.; Monasse, P.; Perrot, R.; Marlet, R. Openmvg: Open multiple view geometry. In International Workshop on Reproducible Research in Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2016; pp. 60–74. [Google Scholar]
- Xi, J.; Shi, Y.; Wang, Y.; Guo, Y.; Xu, K. RayMVSNet: Learning Ray-based 1D Implicit Fields for Accurate Multi-View Stereo. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 21–24 June 2022; pp. 8595–8605. [Google Scholar]
Method | Acc. | Comp. | Overrall | |
---|---|---|---|---|
A | Tola | 0.342 | 1.190 | 0.766 |
Gipuma | 0.283 | 0.873 | 0.578 | |
B | MVSNet | 0.396 | 0.527 | 0.462 |
R-MVSNet | 0.383 | 0.452 | 0.417 | |
CIDER | 0.417 | 0.437 | 0.427 | |
P-MVSNet | 0.406 | 0.434 | 0.420 | |
CasMVSNet | 0.325 | 0.385 | 0.355 | |
HC-RMVSNet | 0.395 | 0.378 | 0.386 | |
CVP-MVSNet | 0.296 | 0.406 | 0.351 | |
AA-RMVSNet | 0.376 | 0.339 | 0.357 | |
Vis-MVSNet | 0.369 | 0.361 | 0.365 | |
EPP-MVSNet | 0.413 | 0.296 | 0.355 | |
C | Fast-MVSNet | 0.336 | 0.403 | 0.370 |
PatchMatchNet | 0.427 | 0.277 | 0.352 | |
IterMVS | 0.373 | 0.354 | 0.363 | |
D | EMO-MVS-light (ours) | 0.372 | 0.345 | 0.358 |
EMO-MVS (ours) | 0.360 | 0.328 | 0.344 |
Method | Input Size | Memory (GB) | Time (s) | Acc. (mm) | Comp. (mm) | Overall (mm) |
---|---|---|---|---|---|---|
UCS-Net | 1600 × 1184 | 7.76 | 0.964 | 0.340 | 0.349 | 0.345 |
CVP-MVSNet | 1600 × 1200 | 9.86 | 1.912 | 0.296 | 0.406 | 0.351 |
CasMVSNet | 1600 × 1200 | 9.58 | 0.796 | 0.325 | 0.385 | 0.355 |
Fast-MVSNet | 1600 × 1200 | 6.05 | 0.642 | 0.331 | 0.401 | 0.366 |
PatchmatchNet | 1600 × 1200 | 2.68 | 0.345 | 0.427 | 0.277 | 0.352 |
IterMVS | 1600 × 1152 | 2.26 | 0.278 | 0.373 | 0.354 | 0.363 |
EMO-MVS-light(ours) | 1600 × 1152 | 2.24 | 0.281 | 0.372 | 0.345 | 0.358 |
EMO-MVS(ours) | 1600 × 1152 | 3.83 | 0.446 | 0.360 | 0.328 | 0.344 |
Intermediate Dataset | Advanced Dataset | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F-Score | Fam. | Franc. | Horse | Light. | M60 | Pan. | Play. | Train | Mean | Audi. | Ballr. | Courtr. | Museum | Palace | Temple | Mean |
OpenMVS | 71.69 | 51.12 | 42.76 | 58.98 | 54.72 | 56.17 | 59.77 | 45.69 | 55.11 | 24.49 | 37.39 | 38.21 | 47.48 | 27.25 | 31.79 | 34.43 |
MVSNet | 55.99 | 28.55 | 25.07 | 50.79 | 53.96 | 50.86 | 47.90 | 34.69 | 43.48 | - | - | - | - | - | - | - |
R-MVSNet | 69.96 | 46.65 | 32.59 | 42.95 | 51.88 | 48.80 | 52.00 | 42.38 | 48.40 | 12.55 | 29.09 | 25.06 | 38.68 | 19.14 | 24.96 | 24.91 |
CIDER | 56.79 | 32.39 | 29.89 | 54.67 | 53.46 | 53.51 | 50.48 | 42.85 | 46.76 | 12.77 | 24.94 | 25.01 | 33.64 | 19.18 | 23.15 | 23.12 |
Point-MVSNet | 61.79 | 41.15 | 34.20 | 50.79 | 51.97 | 50.85 | 52.38 | 43.06 | 48.27 | - | - | - | - | - | - | - |
CasMVSNet | 76.37 | 58.45 | 46.26 | 55.81 | 56.11 | 54.06 | 58.18 | 49.51 | 56.84 | 19.81 | 38.46 | 29.10 | 43.87 | 27.36 | 28.11 | 31.12 |
UCS-Net | 76.09 | 53.16 | 43.03 | 54.00 | 55.60 | 51.49 | 57.38 | 47.89 | 54.83 | - | - | - | - | - | - | - |
CVP-MVSNet | 76.50 | 47.74 | 36.34 | 55.12 | 57.28 | 54.28 | 57.43 | 47.54 | 54.03 | - | - | - | - | - | - | - |
D2HC-RMVSNet | 74.69 | 56.04 | 49.42 | 60.08 | 59.81 | 59.61 | 60.04 | 53.92 | 59.20 | - | - | - | - | - | - | - |
Fast-MVSNet | 65.18 | 39.59 | 34.98 | 47.81 | 49.16 | 46.20 | 53.27 | 42.91 | 47.39 | - | - | - | - | - | - | - |
PatchMatchNet | 66.99 | 52.64 | 43.24 | 54.87 | 52.87 | 49.54 | 54.21 | 50.81 | 53.15 | 23.69 | 37.73 | 30.04 | 41.80 | 28.31 | 32.29 | 32.31 |
MVSTR | 76.92 | 59.82 | 50.16 | 56.73 | 56.53 | 51.22 | 56.58 | 47.48 | 56.93 | 22.83 | 39.04 | 33.87 | 45.46 | 27.95 | 27.97 | 32.85 |
PatchMatch-RL | 60.37 | 43.26 | 36.43 | 56.27 | 57.30 | 53.43 | 59.85 | 47.61 | 51.81 | 24.28 | 40.25 | 35.87 | 44.13 | 22.43 | 23.73 | 31.78 |
RayMVSNet | 78.56 | 61.96 | 45.48 | 57.58 | 61.01 | 59.76 | 59.20 | 52.32 | 59.49 | - | - | - | - | - | - | - |
IterMVS | 76.12 | 55.80 | 50.53 | 56.05 | 57.68 | 52.62 | 55.70 | 50.99 | 56.94 | 25.90 | 38.41 | 31.16 | 44.83 | 29.59 | 35.15 | 34.17 |
EMO-MVS-light (ours) | 76.07 | 55.09 | 51.81 | 56.10 | 60.23 | 56.27 | 54.33 | 53.35 | 57.91 | 25.88 | 38.90 | 31.94 | 44.48 | 29.94 | 36.72 | 34.65 |
EMO-MVS (ours) | 77.85 | 59.69 | 54.73 | 57.69 | 58.62 | 56.40 | 56.19 | 54.88 | 59.51 | 24.42 | 40.71 | 33.62 | 46.40 | 30.38 | 38.35 | 35.65 |
NO. | Baseline | Iterative Variable Optimizer | Multi-Level Absorption | Error-Aware | Acc. | Comp. | Overall |
---|---|---|---|---|---|---|---|
1 | √ | 0.373 | 0.354 | 0.363 | |||
2 | √ | 0.369 | 0.352 | 0.360 | |||
3 | √ | √ | 0.370 | 0.347 | 0.358 | ||
4 | √ | √ | √ | 0.360 | 0.328 | 0.344 |
Method | Acc. (mm) | Comp. (mm) | Overall (mm) | Runtime (s) |
---|---|---|---|---|
Common multiscale fusion | 0.380 | 0.339 | 0.359 | 0.412 |
Multi-level absorption unit | 0.370 | 0.347 | 0.358 | 0.281 |
Method | DTU (↓) | Tanks and Temples (↑) | ||
---|---|---|---|---|
Acc. (mm) | Comp. (mm) | Overall (mm) | F-Score (Mean) | |
Summation | 0.361 | 0.332 | 0.346 | 58.80 |
Weighted Summation | 0.360 | 0.328 | 0.344 | 59.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Zhao, H.; Wang, Q.; Lei, L.; Hao, G.; Xu, Y.; Ye, Z. EMO-MVS: Error-Aware Multi-Scale Iterative Variable Optimizer for Efficient Multi-View Stereo. Remote Sens. 2022, 14, 6085. https://doi.org/10.3390/rs14236085
Zhou H, Zhao H, Wang Q, Lei L, Hao G, Xu Y, Ye Z. EMO-MVS: Error-Aware Multi-Scale Iterative Variable Optimizer for Efficient Multi-View Stereo. Remote Sensing. 2022; 14(23):6085. https://doi.org/10.3390/rs14236085
Chicago/Turabian StyleZhou, Huizhou, Haoliang Zhao, Qi Wang, Liang Lei, Gefei Hao, Yusheng Xu, and Zhen Ye. 2022. "EMO-MVS: Error-Aware Multi-Scale Iterative Variable Optimizer for Efficient Multi-View Stereo" Remote Sensing 14, no. 23: 6085. https://doi.org/10.3390/rs14236085
APA StyleZhou, H., Zhao, H., Wang, Q., Lei, L., Hao, G., Xu, Y., & Ye, Z. (2022). EMO-MVS: Error-Aware Multi-Scale Iterative Variable Optimizer for Efficient Multi-View Stereo. Remote Sensing, 14(23), 6085. https://doi.org/10.3390/rs14236085