Spatiotemporal Analysis of Regional Ionospheric TEC Prediction Using Multi-Factor NeuralProphet Model under Disturbed Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multi-Factor NeuralProphet Model (MF-NPM)
2.2. Long Short-Term Memory Neural Network (LSTMNN) Model
3. Data Processing and Analysis
3.1. Data and Model Parameter Settings
3.2. Results and Discussion
3.2.1. Prediction Accuracy Analysis in the Peak Year of Solar Activity
3.2.2. Accuracy Analysis during Geomagnetic Storm Period
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bilitza, D.; Pezzopane, M.; Truhlik, V.; Altadill, D.; Reinisch, B.W.; Pignalberi, A. The International Reference Ionosphere Model: A Review and Description of an Ionospheric Benchmark. Rev. Geophys. 2022, 60, e2022RG000792. [Google Scholar] [CrossRef]
- Klobuchar, J.A. Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users. IEEE Trans. Aerosp. Electron. Syst. 1987, AES-23, 325–331. [Google Scholar] [CrossRef]
- Bent, R.B.; Llewellyn, S.K.; Nesterczuk, G.; Schmid, P. The development of a highly-successful worldwide empirical ionospheric model and its use in certain aspects of space communications and worldwide total electron content investigations. In Effect of the Ionosphere on Space Systems and Communications; National Technical Information Service: Springfield, VA, USA, 1975; pp. 13–28. [Google Scholar]
- Nava, B.; Coïsson, P.; Radicella, S.M. A new version of the NeQuick ionosphere electron density model. J. Atmos. Sol. Terr. Phys. 2008, 70, 1856–1862. [Google Scholar] [CrossRef]
- Abhigna, M.; Sridhar, M.; Harsha, P.; Krishna, K.S.; Ratnam, D.V. Broadcast ionospheric delay correction algorithm using reduced order adjusted spherical harmonics function for single-frequency GNSS receivers. Acta Geophys. 2021, 69, 335–351. [Google Scholar] [CrossRef]
- Georgiadiou, Y. Modeling the Ionosphere for an Active Control Network of GPS Stations; LGR Series; Delft Geodetic Computing Centre: Delft, The Netherlands, 1994. [Google Scholar]
- Han, D.; Yun, H.; Kee, C. Performance evaluation of ionosphere modeling using spherical harmonics in the Korean Peninsula. J. Position. Navig. Timing 2013, 2, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, N.; Wang, L.; Liu, A.; Yuan, H.; Zhang, K. Regional ionospheric TEC modeling based on a two-layer spherical harmonic approximation for real-time single-frequency PPP. J. Geod. 2019, 93, 1659–1671. [Google Scholar] [CrossRef]
- Mehmood, M.; Saleem, S.; Filjar, R.; Naqvi, N.A.; Ahmed, A. Total Electron Content (TEC) estimation over Pakistan from local GPS network using spherical harmonics. Ann. Geophys. 2021, 64, GD102. [Google Scholar] [CrossRef]
- Schaer, S. Mapping and predicting the Earth’s ionosphere using the Global Positioning System. Ph.D. Thesis, University of Bern, Bern, Switzerland, 1999. [Google Scholar]
- Dabbakuti, J.R.K.K.; Peesapati, R.; Panda, S.K.; Thummala, S. Modeling and analysis of ionospheric TEC variability from GPS–TEC measurements using SSA model during 24th solar cycle. Acta Astronaut. 2021, 178, 24–35. [Google Scholar] [CrossRef]
- Sivavaraprasad, G.; Venkata Ratnam, D. Performance evaluation of ionospheric time delay forecasting models using GPS observations at a low-latitude station. Adv. Space Res. 2017, 60, 475–490. [Google Scholar] [CrossRef]
- Ratnam, D.V.; Otsuka, Y.; Sivavaraprasad, G.; Dabbakuti, J.R.K.K. Development of multivariate ionospheric TEC forecasting algorithm using linear time series model and ARMA over low-latitude GNSS station. Adv. Space Res. 2019, 63, 2848–2856. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J. Neural network modeling of the ionospheric electron content at global scale using GPS data. Radio Sci. 1997, 32, 1081–1089. [Google Scholar] [CrossRef] [Green Version]
- Cander, L.R. Spatial correlation of foF2 and vTEC under quiet and disturbed ionospheric conditions: A case study. Acta Geophys. 2007, 55, 410–423. [Google Scholar] [CrossRef]
- Habarulema, J.B.; McKinnell, L.-A.; Opperman, B.D. TEC measurements and modelling over Southern Africa during magnetic storms; a comparative analysis. J. Atmos. Sol. Terr. Phys. 2010, 72, 509–520. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Yang, C.; Zheng, Y.; Fu, H. A Machine Learning-Based Method for Modeling TEC Regional Temporal-Spatial Map. Remote Sens. 2022, 14, 5579. [Google Scholar] [CrossRef]
- Huang, Z.; Yuan, H. Ionospheric single-station TEC short-term forecast using RBF neural network. Radio Sci. 2014, 49, 283–292. [Google Scholar] [CrossRef]
- Ghaffari Razin, M.R.; Voosoghi, B. Wavelet neural networks using particle swarm optimization training in modeling regional ionospheric total electron content. J. Atmos. Sol. Terr. Phys. 2016, 149, 21–30. [Google Scholar] [CrossRef]
- Ghaffari-Razin, S.R.; Moradi, A.R.; Hooshangi, N. Modeling and forecasting of ionosphere TEC using least squares SVM in central Europe. Adv. Space Res. 2022, 70, 2035–2046. [Google Scholar] [CrossRef]
- Iluore, K.; Lu, J. Long Short-Term Memory and Gated Recurrent Neural Networks to Predict the Ionospheric Vertical total electron Content. Adv. Space Res. 2022, 70, 652–665. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, K.; Wu, S.; Shi, J.; Hu, A.; Wu, H.; Li, Y. An Investigation of Ionospheric TEC Prediction Maps Over China Using Bidirectional Long Short-Term Memory Method. Space Weather 2022, 20, e2022SW003103. [Google Scholar] [CrossRef]
- Xiong, P.; Zhai, D.; Long, C.; Zhou, H.; Zhang, X.; Shen, X. Long Short-Term Memory Neural Network for Ionospheric Total Electron Content Forecasting Over China. Space Weather 2021, 19, e2020SW002706. [Google Scholar] [CrossRef]
- Srivani, I.; Prasad, G.S.V.; Ratnam, D.V. A Deep Learning-Based Approach to Forecast Ionospheric Delays for GPS Signals. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1180–1184. [Google Scholar] [CrossRef]
- Lin, X.; Wang, H.; Zhang, Q.; Yao, C.; Chen, C.; Cheng, L.; Li, Z. A Spatiotemporal Network Model for Global Ionospheric TEC Forecasting. Remote Sens. 2022, 14, 1717. [Google Scholar] [CrossRef]
- Bi, C.; Ren, P.; Yin, T.; Xiang, Z.; Zhang, Y. Modeling and Forecasting Ionospheric foF2 Variation in the Low Latitude Region during Low and High Solar Activity Years. Remote Sens. 2022, 14, 5418. [Google Scholar] [CrossRef]
- Benoit, A.G.; Petry, A. Evaluation of F10.7, Sunspot Number and Photon Flux Data for Ionosphere TEC Modeling and Prediction Using Machine Learning Techniques. Atmosphere 2021, 12, 1202. [Google Scholar] [CrossRef]
- Saqib, M.; Şentürk, E.; Sahu, S.A.; Adil, M.A. Comparisons of autoregressive integrated moving average (ARIMA) and long short term memory (LSTM) network models for ionospheric anomalies detection: A study on Haiti (Mw = 7.0) earthquake. Acta Geod. Et Geophys. 2022, 57, 195–213. [Google Scholar] [CrossRef]
- Triebe, O.; Hewamalage, H.; Pilyugina, P.; Laptev, N.; Bergmeir, C.; Rajagopal, R. NeuralProphet: Explainable Forecasting at Scale. arXiv 2021, arXiv:2111.15397. [Google Scholar]
- ChikkaKrishna, N.K.; Rachakonda, P.; Tallam, T. Short-Term Traffic Prediction Using Fb-PROPHET and Neural-PROPHET. In Proceedings of the 2022 IEEE Delhi Section Conference (DELCON), New Delhi, India, 11–13 February 2022; pp. 1–4. [Google Scholar]
- Zhang, Y.; Hou, J.; Huang, C. Integration of Satellite-Derived and Ground-Based Soil Moisture Observations for a Precipitation Product over the Upper Heihe River Basin, China. Remote Sens. 2022, 14, 5355. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
Dst/nT | Geomagnetic Activity | SSN | Solar Activity |
---|---|---|---|
−30 < Dst | Quiet | 0 ≤ SSN < 40 | Low |
−50 < Dst ≤ −30 | Minor Storm | 40 ≤ SSN < 80 | Moderate |
−100 <Dst ≤ −50 | Moderate storm | 80 ≤ SSN < 150 | High |
−200 < Dst ≤ −100 | Major Storm | 150 ≤ SSN < 250 | Very High |
Dst ≤ −200 | Severe Storm | 250 ≤ SSN | Extreme |
Model | Parameters | Setting |
---|---|---|
MF-NPM | weekly_seasonality | FALSE |
yearly_seasonality | FALSE | |
daily_seasonality | FALSE | |
n_lags | 12 | |
num_hidden_layers | 48 | |
d_hidden | 4 | |
batch_size | 512 | |
epochs | 120 | |
loss_func | mean_squared_error | |
normalize | “standardize” | |
seasonality_mode | “multiplicative” | |
LSTMNN | LSTM layer | Units = 256, activation = ‘relu’, return_sequences = True |
Dropout | 0.2 | |
LSTM layer 1 | Units = 256, activation = ‘relu’, return_sequences = True | |
Dropout1 | 0.2 | |
LSTM layer 2 | Units = 256 | |
Dense | 1 | |
Compile | Optimizer = ‘adam’, Loss = ‘mean_squared_error’ | |
batch_size | 512 | |
seq_len | 12 | |
epochs | 120 |
Model | Percentage of Bias Δ/TECU | ||||
---|---|---|---|---|---|
|Δ| ≤ 2 | |Δ| ≤ 5 | |Δ| ≤ 10 | |Δ| ≤ 15 | 20 < |Δ| | |
MF-NPM | 69.70% | 94.00% | 99.50% | 99.95% | 0.01% |
LSTMNN | 59.17% | 88.46% | 98.32% | 99.77% | 0.03% |
COPG_P1 | 42.67% | 78.59% | 95.54% | 98.94% | 0.24% |
Model | Region | Evaluation Indicators | |
---|---|---|---|
RMSE/TECU | RA/% | ||
MF-NPM | low | 3.24 | 93.33 |
mid | 1.70 | 94.06 | |
LSTMNN | low | 4.32 | 91.21 |
mid | 2.22 | 92.33 | |
COPG_P1 | low | 5.29 | 89.13 |
mid | 3.90 | 85.47 |
Model | Percentage of Bias Δ/TECU | ||||
---|---|---|---|---|---|
|Δ| ≤ 2 | |Δ| ≤ 5 | |Δ| ≤ 10 | |Δ| ≤ 15 | 20 < |Δ| | |
MF-NPM | 59.18% | 88.11% | 98.08% | 99.73% | 0.01% |
LSTMNN | 47.53% | 78.30% | 94.51% | 98.98% | 0.12% |
COPG_P1 | 34.77% | 69.61% | 90.41% | 96.53% | 0.98% |
Model | Region | Evaluation Indicators | |
---|---|---|---|
RMSE/TECU | RA/% | ||
MF-NPM | low | 4.33 | 92.62 |
mid | 2.34 | 93.04 | |
LSTMNN | low | 6.11 | 90.02 |
mid | 3.00 | 90.82 | |
COPG_P1 | low | 6.94 | 89.07 |
mid | 5.14 | 82.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Wu, H.; Lou, Y.; Zhang, H.; Liu, L.; Huang, L. Spatiotemporal Analysis of Regional Ionospheric TEC Prediction Using Multi-Factor NeuralProphet Model under Disturbed Conditions. Remote Sens. 2023, 15, 195. https://doi.org/10.3390/rs15010195
Huang L, Wu H, Lou Y, Zhang H, Liu L, Huang L. Spatiotemporal Analysis of Regional Ionospheric TEC Prediction Using Multi-Factor NeuralProphet Model under Disturbed Conditions. Remote Sensing. 2023; 15(1):195. https://doi.org/10.3390/rs15010195
Chicago/Turabian StyleHuang, Ling, Han Wu, Yidong Lou, Hongping Zhang, Lilong Liu, and Liangke Huang. 2023. "Spatiotemporal Analysis of Regional Ionospheric TEC Prediction Using Multi-Factor NeuralProphet Model under Disturbed Conditions" Remote Sensing 15, no. 1: 195. https://doi.org/10.3390/rs15010195