Spatiotemporal Characteristics and Hazard Assessments of Maize (Zea mays L.) Drought and Waterlogging: A Case Study in Songliao Plain of China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data and Processing
2.2.1. Satellite Remote Sensing Data
2.2.2. Maize Planting Mapping Data
2.2.3. Disaster Data and Yield Data
2.2.4. Meteorological Data
3. Method
3.1. Estimation of TVDI
3.2. Hazard Assessments
3.2.1. Calculation of Drought and Waterlogging Intensities
3.2.2. Calculation of Drought and Waterlogging Frequencies
3.2.3. Construction of Total Hazard Index for Entire Growth Period
3.2.4. Calculation of Weighting Factors
3.3. Theil-Sen Median Trend Analysis and Mann-Kendall Test
3.4. Hurst Index
3.5. Calculation of Yield Fluctuations
4. Result
4.1. Spatiotemporal Patterns of Drought and Waterlogging
4.2. Spatial-Temporal Characteristics of Water Stress in Maize at Different Fertility Stages
4.3. Drought and Waterlogging Hazard Assessment
5. Discussion
5.1. Validation Results of Drought and Waterlogging Hazards in Songliao Plain
5.2. Effects of Water Stress at Different Growth Stages on Maize Field Management
5.3. Limitation
6. Conclusions
- (1)
- During the entire growth period of maize, the joint occurrence of drought and waterlogging was more than a single event. Overall, there existed continuous waterlogging (48%), waterlogging-to-drought (30%), continuous drought (14%), and drought-to-waterlogging (8%) trends. The continuous drought trend occurred during the entire growth period in the south of the Songliao Plain, whereas the significant continuous waterlogging trend occurred in the north of the Songliao Plain.
- (2)
- The drought frequency during the entire growth period of the Songliao Plain declined gradually from west to east, whereas the waterlogging frequency rose gradually from west to east, with the highest frequency occurring in Jilin. The highest waterlogging and drought frequencies were in the late and early growth stages of maize, respectively, in the Songliao Plain. The drought stress most severely influenced maize during the middle growth stage, which led to the largest affected area in the Songliao Plain, followed by the late growth stage. Spatially, the drought stress most severely affected maize in the southern Songliao Plain.
- (3)
- The hazards on the maize cropland in the Songliao Plain were characterized by the high drought hazard in the west and the high waterlogging hazard in the east. The inter-annual distribution of the hazards did not significantly change and was consistent with the spatial patterns of precipitation. Overall, the waterlogging hazard in Jilin was the most severe (0.1 < H < 0.39), whereas the drought hazard in Fuxin (0.27 < H < 0.68) and Jinzhou (0.28 < H < 0.74) was the highest.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Statistic Bureau of Heilongjiang. Hei Long Jiang Statistical Yearbook; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Statistic Bureau of Jilin. Ji Lin Statistical Yearbook; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- Statistic Bureau of Liaoning. Liao Ning Statistical Yearbook; China Statistics Press: Beijing, China, 2021. [Google Scholar]
- D’Agostino, A.L.; Schlenker, W. Recent weather fluctuations and agricultural yields: Implications for climate change. Agric. Econ. 2016, 47, 159–171. [Google Scholar] [CrossRef]
- Gobin, A.; Van de Vyver, H. Spatio-temporal variability of dry and wet spells and their influence on crop yields. Agric. For. Meteorol. 2021, 308–309, 108565. [Google Scholar] [CrossRef]
- Hertel, T.W. Food security under climate change. Nat. Clim. Chang. 2016, 6, 10–13. [Google Scholar] [CrossRef]
- Meng, Q.; Chen, X.; Lobell, D.B.; Cui, Z.; Zhang, Y.; Yang, H.; Zhang, F. Growing sensitivity of maize to water scarcity under climate change. Sci. Rep. 2016, 6, 19605. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; He, X.; Zheng, H.; Guo, R.; Ren, Z.; Zhang, D.; Lin, J. Spatial and temporal analysis of drought risk during the crop-growing season over northeast China. Nat. Hazards 2014, 71, 275–289. [Google Scholar] [CrossRef]
- Guan, X.; Zang, Y.; Meng, Y.; Liu, Y.; Lv, H.; Yan, D. Study on spatiotemporal distribution characteristics of flood and drought disaster impacts on agriculture in China. Int. J. Disaster Risk Reduct. 2021, 64, 102504. [Google Scholar] [CrossRef]
- Yin, X.G.; Jabloun, M.; Olesen, J.E.; Öztürk, I.; Wang, M.; Chen, F. Effects of climatic factors, drought risk and irrigation requirement on maize yield in the Northeast Farming Region of China. J. Agric. Sci. 2016, 154, 1171–1189. [Google Scholar] [CrossRef]
- Clarke, D.; Hess, T.M.; Haro-Monteagudo, D.; Semenov, M.A.; Knox, J.W. Assessing future drought risks and wheat yield losses in England. Agric. For. Meteorol. 2021, 297, 108248. [Google Scholar] [CrossRef]
- Li, K.; Tong, Z.; Liu, X.; Zhang, J.; Tong, S. Quantitative assessment and driving force analysis of vegetation drought risk to climate change:Methodology and application in Northeast China. Agric. For. Meteorol. 2020, 282–283, 107865. [Google Scholar] [CrossRef]
- Potopová, V.; Štěpánek, P.; Možný, M.; Türkott, L.; Soukup, J. Performance of the standardised precipitation evapotranspiration index at various lags for agricultural drought risk assessment in the Czech Republic. Agric. For. Meteorol. 2015, 202, 26–38. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, X.; Lin, D.; Yu, H.; Wang, J.a.; Shi, P. GEPIC-V-R model: A GIS-based tool for regional crop drought risk assessment. Agric. Water Manag. 2014, 144, 107–119. [Google Scholar] [CrossRef]
- Couëdel, A.; Edreira, J.I.R.; Lollato, R.P.; Archontoulis, S.; Sadras, V.; Grassini, P. Assessing environment types for maize, soybean, and wheat in the United States as determined by spatio-temporal variation in drought and heat stress. Agric. For. Meteorol. 2021, 307, 108513. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, T.; Xu, K.; Chen, C. The impact of high temperature and drought stress on the yield of major staple crops in northern China. J. Environ. Manag. 2022, 314, 115092. [Google Scholar] [CrossRef]
- Haqiqi, I.; Grogan, D.S.; Hertel, T.W.; Schlenker, W. Quantifying the impacts of compound extremes on agriculture. Hydrol. Earth Syst. Sci. 2021, 25, 551–564. [Google Scholar] [CrossRef]
- Roberts, M.J.; Schlenker, W.; Eyer, J. Agronomic Weather Measures in Econometric Models of Crop Yield with Implications for Climate Change. Am. J. Agric. Econ. 2013, 95, 236–243. [Google Scholar] [CrossRef]
- Wu, X.; Hao, Z.; Hao, F.; Singh, V.P.; Zhang, X. Dry-hot magnitude index: A joint indicator for compound event analysis. Environ. Res. Lett. 2019, 14, 064017. [Google Scholar] [CrossRef]
- Žydelis, R.; Weihermüller, L.; Herbst, M.; Klosterhalfen, A.; Lazauskas, S. A model study on the effect of water and cold stress on maize development under nemoral climate. Agric. For. Meteorol. 2018, 263, 169–179. [Google Scholar] [CrossRef]
- Dabanlı, İ.; Mishra, A.K.; Şen, Z. Long-term spatio-temporal drought variability in Turkey. J. Hydrol. 2017, 552, 779–792. [Google Scholar] [CrossRef]
- Li, L.; She, D.; Zheng, H.; Lin, P.; Yang, Z.-L. Elucidating Diverse Drought Characteristics from Two Meteorological Drought Indices (SPI and SPEI) in China. J. Hydrometeorol. 2020, 21, 1513–1530. [Google Scholar] [CrossRef]
- Verhoeven, E.; Wardle, G.M.; Roth, G.W.; Greenville, A.C. Characterising the spatiotemporal dynamics of drought and wet events in Australia. Sci. Total Environ. 2022, 846, 157480. [Google Scholar] [CrossRef]
- Alahacoon, N.; Edirisinghe, M. A comprehensive assessment of remote sensing and traditional based drought monitoring indices at global and regional scale. Geomat. Nat. Hazards Risk 2022, 13, 762–799. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, X.; Pan, Y.; Li, S.; Liu, Y.; Ma, Y. Agricultural drought monitoring: Progress, challenges, and prospects. J. Geogr. Sci. 2016, 26, 750–767. [Google Scholar] [CrossRef] [Green Version]
- Kchouk, S.; Melsen, L.A.; Walker, D.; van Oel, P. A geography of drought indices: Mismatch between indicators of drought and its impacts on water and food securities. Nat. Hazards Earth Syst. Sci. 2022, 22, 323–344. [Google Scholar] [CrossRef]
- McKee, T.; Doesken, N.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Dai, A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res. Atmos. 2011, 116, D12115. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W. Meteorological Drought; US Department of Commerce, Weather Bureau: Silver Spring, MD, USA, 2006.
- Zhong, Z.; He, B.; Guo, L.; Zhang, Y. Performance of Various Forms of the Palmer Drought Severity Index in China from 1961 to 2013. J. Hydrometeorol. 2019, 20, 1867–1885. [Google Scholar] [CrossRef]
- Xiujia, C.; Guanghua, Y.; Jian, G.; Ningning, M.; Zihao, W. Application of WNN-PSO model in drought prediction at crop growth stages: A case study of spring maize in semi-arid regions of northern China. Comput. Electron. Agric. 2022, 199, 107155. [Google Scholar] [CrossRef]
- Meng, X.; Mao, K.; Meng, F.; Shi, J.; Zeng, J.; Shen, X.; Cui, Y.; Jiang, L.; Guo, Z. A fine-resolution soil moisture dataset for China in 2002–2018. Earth Syst. Sci. Data 2021, 13, 3239–3261. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Sun, L.; Sun, R.; Li, X.; Liang, S.; Zhang, R. Monitoring surface soil moisture status based on remotely sensed surface temperature and vegetation index information. Agric. For. Meteorol. 2012, 166–167, 175–187. [Google Scholar] [CrossRef]
- Laimighofer, J.; Laaha, G. How standard are standardized drought indices? Uncertainty components for the SPI & SPEI case. J. Hydrol. 2022, 613, 128385. [Google Scholar] [CrossRef]
- Oliveira, N.M.d.; Silva, R.M.d.; Brasil Neto, R.M.; Santos, C.A.G.; Vianna, P.C.G. Spatiotemporal patterns of agricultural and meteorological droughts using SPI and MODIS-based estimates over a Brazilian semiarid region: Study case of Upper Paraíba River basin. Geocarto Int. 2022, 37, 1–24. [Google Scholar] [CrossRef]
- Faiz, M.A.; Zhang, Y.; Tian, X.; Tian, J.; Zhang, X.; Ma, N.; Aryal, S. Drought index revisited to assess its response to vegetation in different agro-climatic zones. J. Hydrol. 2022, 614, 128543. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Yao, N.; Liu, D.L.; Javed, T.; Liu, C.; Liu, F. Impacts of multi-timescale SPEI and SMDI variations on winter wheat yields. Agric. Syst. 2020, 185, 102955. [Google Scholar] [CrossRef]
- Ma, Q.; Li, Y.; Liu, F.; Feng, H.; Biswas, A.; Zhang, Q. SPEI and multi-threshold run theory based drought analysis using multi-source products in China. J. Hydrol. 2023, 616, 128737. [Google Scholar] [CrossRef]
- Zhao, Q.; Sun, T.; Zhang, T.; He, L.; Zhang, Z.; Shen, Z.; Xiong, S. High-Precision Potential Evapotranspiration Model Using GNSS Observation. Remote Sens. 2021, 13, 4848. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, Y.; Li, Z.; Yao, Y. Retrieval of a High-Precision Drought Monitoring Index by Using GNSS-Derived ZTD and Temperature. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8730–8743. [Google Scholar] [CrossRef]
- Li, C.; Peng, L.; Zhou, M.; Wei, Y.; Liu, L.; Li, L.; Liu, Y.; Dou, T.; Chen, J.; Wu, X. SIF-Based GPP Is a Useful Index for Assessing Impacts of Drought on Vegetation: An Example of a Mega-Drought in Yunnan Province, China. Remote Sens. 2022, 14, 1509. [Google Scholar] [CrossRef]
- Zhao, X.; Xia, H.; Liu, B.; Jiao, W. Spatiotemporal Comparison of Drought in Shaanxi–Gansu–Ningxia from 2003 to 2020 Using Various Drought Indices in Google Earth Engine. Remote Sens. 2022, 14, 1570. [Google Scholar] [CrossRef]
- Jacobi, J.; Perrone, D.; Duncan, L.L.; Hornberger, G. A tool for calculating the Palmer drought indices. Water Resour. Res. 2013, 49, 6086–6089. [Google Scholar] [CrossRef]
- Shen, R.; Yu, P.; Yan, J.; Wang, Y. Retrieving Soil Moisture by TVDI Based on Different Vegetation Index: A Case Study of Shanxi Province. In Proceedings of the 2012 International Conference on Computer Science and Electronics Engineering, Hangzhou, China, 23–25 March 2012; pp. 418–422. [Google Scholar]
- Han, M.; Zhang, H.; DeJonge, K.C.; Comas, L.H.; Trout, T.J. Estimating maize water stress by standard deviation of canopy temperature in thermal imagery. Agric. Water Manag. 2016, 177, 400–409. [Google Scholar] [CrossRef]
- Wan, W.; Liu, Z.; Li, J.; Xu, J.; Wu, H.; Xu, Z. Spatiotemporal patterns of maize drought stress and their effects on biomass in the Northeast and North China Plain from 2000 to 2019. Agric. For. Meteorol. 2022, 315, 108821. [Google Scholar] [CrossRef]
- Wan, W.; Liu, Z.; Li, K.; Wang, G.; Wu, H.; Wang, Q. Drought monitoring of the maize planting areas in Northeast and North China Plain. Agric. Water Manag. 2021, 245, 106636. [Google Scholar] [CrossRef]
- Ali, S.; Haixing, Z.; Qi, M.; Liang, S.; Ning, J.; Jia, Q.; Hou, F. Monitoring drought events and vegetation dynamics in relation to climate change over mainland China from 1983 to 2016. Environ. Sci. Pollut. Res. 2021, 28, 21910–21925. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Y.; Chen, X.; Wang, H.; Yao, N.; Liu, F. Monitoring monthly soil moisture conditions in China with temperature vegetation dryness indexes based on an enhanced vegetation index and normalized difference vegetation index. Theor. Appl. Climatol. 2021, 143, 159–176. [Google Scholar] [CrossRef]
- Du, L.; Song, N.; Liu, K.; Hou, J.; Hu, Y.; Zhu, Y.; Wang, X.; Wang, L.; Guo, Y. Comparison of Two Simulation Methods of the Temperature Vegetation Dryness Index (TVDI) for Drought Monitoring in Semi-Arid Regions of China. Remote Sens. 2017, 9, 177. [Google Scholar] [CrossRef] [Green Version]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Chang, L.Y.; Minh, V.Q. Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 417–427. [Google Scholar] [CrossRef]
- Cheng, J.; Dong, S.; Shi, J. 1 km Seamless Land Surface Temperature Dataset of China (2002–2020); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2021. [Google Scholar] [CrossRef]
- Xu, S.; Cheng, J. A new land surface temperature fusion strategy based on cumulative distribution function matching and multiresolution Kalman filtering. Remote Sens. Environ. 2021, 254, 112256. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, N.; Cheng, J.; Xu, S. A Stepwise Downscaling Method for Generating High-Resolution Land Surface Temperature From AMSR-E Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5669–5681. [Google Scholar] [CrossRef]
- Zheng, Y.; Shen, R.; Wang, Y.; Li, X.; Liu, S.; Liang, S.; Chen, J.M.; Ju, W.; Zhang, L.; Yuan, W. Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst. Sci. Data 2020, 12, 2725–2746. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Z.; Li, Z.; Chen, Y.; Zhang, L.; Cao, J.; Tao, F. Identifying the spatiotemporal changes of annual harvesting areas for three staple crops in China by integrating multi-data sources. Environ. Res. Lett. 2020, 15, 074003. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Z.; Li, Z.; Chen, Y.; Zhang, L.; Cao, J.; Tao, F. Data for: Identifying the spatiotemporal changes of annual harvesting areas for three staple crops in China by integrating multi-data sources. Environ. Res. Lett. 2020, 15, 074003. [Google Scholar] [CrossRef]
- China Meteorological Administration. Yearbook of Meteorological Disasters in China; China Meteorological Press: Beijing, China, 2011.
- China Meteorological Administration. Yearbook of Meteorological Disasters in China; China Meteorological Press: Beijing, China, 2012.
- China Meteorological Administration. Yearbook of Meteorological Disasters in China; China Meteorological Press: Beijing, China, 2013.
- Gao, Z.; Gao, W.; Chang, N.-B. Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI) for drought assessment with the aid of LANDSAT TM/ETM+ images. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 495–503. [Google Scholar] [CrossRef]
- Li, C.; Adu, B.; Wu, J.; Qin, G.; Li, H.; Han, Y. Spatial and temporal variations of drought in Sichuan Province from 2001 to 2020 based on modified temperature vegetation dryness index (TVDI). Ecol. Indic. 2022, 139, 108883. [Google Scholar] [CrossRef]
- Ali, S.; Tong, D.; Xu, Z.T.; Henchiri, M.; Wilson, K.; Siqi, S.; Zhang, J. Characterization of drought monitoring events through MODIS- and TRMM-based DSI and TVDI over South Asia during 2001–2017. Environ. Sci. Pollut. Res. 2019, 26, 33568–33581. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qian, J.; Yue, H. Comparison and evaluation of different dryness indices based on vegetation indices-land surface temperature/albedo feature space. Adv. Space Res. 2021, 68, 2791–2803. [Google Scholar] [CrossRef]
- Shi, S.; Yao, F.; Zhang, J.; Yang, S. Evaluation of Temperature Vegetation Dryness Index on Drought Monitoring Over Eurasia. IEEE Access 2020, 8, 30050–30059. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, H. The Temperature Vegetation Dryness Index (TVDI) Based on Bi-Parabolic NDVI-Ts Space and Gradient-Based Structural Similarity (GSSIM) for Long-Term Drought Assessment Across Shaanxi Province, China (2000–2016). Remote Sens. 2018, 10, 959. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Guga, S.; Xu, J.; Liu, X.; Tong, Z.; Zhang, J. Assessment of Maize Drought Risk in Midwestern Jilin Province: A Comparative Analysis of TOPSIS and VIKOR Models. Remote Sens. 2022, 14, 2399. [Google Scholar] [CrossRef]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in semi-arid areas across the globe 1981–2007—An Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis; Springer: Dordrecht, The Netherlands, 1992; pp. 345–381. [Google Scholar]
- Hurst, H.E. Long-Term Storage Capacity of Reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–799. [Google Scholar] [CrossRef]
- Chang, J.; Liu, Q.; Wang, S.; Huang, C. Vegetation Dynamics and Their Influencing Factors in China from 1998 to 2019. Remote Sens. 2022, 14, 3390. [Google Scholar] [CrossRef]
- Rivas-Tabares, D.A.; Saa-Requejo, A.; Martín-Sotoca, J.J.; Tarquis, A.M. Multiscaling NDVI Series Analysis of Rainfed Cereal in Central Spain. Remote Sens. 2021, 13, 568. [Google Scholar] [CrossRef]
- Tong, S.; Zhang, J.; Bao, Y.; Lai, Q.; Lian, X.; Li, N.; Bao, Y. Analyzing vegetation dynamic trend on the Mongolian Plateau based on the Hurst exponent and influencing factors from 1982–2013. J. Geogr. Sci. 2018, 28, 595–610. [Google Scholar] [CrossRef] [Green Version]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [Green Version]
- Çakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crop. Res. 2004, 89, 1–16. [Google Scholar] [CrossRef]
- Lu, H.-d.; Xue, J.-q.; Guo, D.-w. Efficacy of planting date adjustment as a cultivation strategy to cope with drought stress and increase rainfed maize yield and water-use efficiency. Agric. Water Manag. 2017, 179, 227–235. [Google Scholar] [CrossRef]
- Yi, J.; Li, H.; Zhao, Y.; Shao, M.a.; Zhang, H.; Liu, M. Assessing soil water balance to optimize irrigation schedules of flood-irrigated maize fields with different cultivation histories in the arid region. Agric. Water Manag. 2022, 265, 107543. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, K.; Liu, Y.; Guo, R.; Chen, L. Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model. Agric. Syst. 2021, 189, 103040. [Google Scholar] [CrossRef]
- Huang, C.; Gao, Y.; Qin, A.; Liu, Z.; Zhao, B.; Ning, D.; Ma, S.; Duan, A.; Liu, Z. Effects of waterlogging at different stages and durations on maize growth and grain yields. Agric. Water Manag. 2022, 261, 107334. [Google Scholar] [CrossRef]
- Jin, N.; He, J.; Fang, Q.; Chen, C.; Ren, Q.; He, L.; Yao, N.; Song, L.; Yu, Q. The Responses of Maize Yield and Water Use to Growth Stage-Based Irrigation on the Loess Plateau in China. Int. J. Plant Prod. 2020, 14, 621–633. [Google Scholar] [CrossRef]
- Tian, L.; Li, J.; Bi, W.; Zuo, S.; Li, L.; Li, W.; Sun, L. Effects of waterlogging stress at different growth stages on the photosynthetic characteristics and grain yield of spring maize (Zea mays L.) Under field conditions. Agric. Water Manag. 2019, 218, 250–258. [Google Scholar] [CrossRef]
- Ge, T.; Sui, F.; Bai, L.; Tong, C.; Sun, N. Effects of water stress on growth, biomass partitioning, and water-use efficiency in summer maize (Zea mays L.) throughout the growth cycle. Acta Physiol. Plant. 2012, 34, 1043–1053. Acta Physiol. Plant. 2012, 34, 1043–1053. [Google Scholar] [CrossRef]
- Ma, Y.; Guga, S.; Xu, J.; Liu, X.; Tong, Z.; Zhang, J. Evaluation of Drought Vulnerability of Maize and Influencing Factors in Songliao Plain Based on the SE-DEA-Tobit Model. Remote Sens. 2022, 14, 3711. [Google Scholar] [CrossRef]
- Su, Z.e.; Zhao, J.; Marek, T.H.; Liu, K.; Harrison, M.T.; Xue, Q. Drought tolerant maize hybrids have higher yields and lower water use under drought conditions at a regional scale. Agric. Water Manag. 2022, 274, 107978. [Google Scholar] [CrossRef]
- Qi, D.; Pan, C. Responses of shoot biomass accumulation, distribution, and nitrogen use efficiency of maize to nitrogen application rates under waterlogging. Agric. Water Manag. 2022, 261, 107352. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, J.; Wang, Y.; Sun, H.; Hannaford, J.; Su, Z.; Barker, L.J.; Qu, Y. Drought risk assessment of spring maize based on APSIM crop model in Liaoning province, China. Int. J. Disaster Risk Reduct. 2020, 45, 101483. [Google Scholar] [CrossRef]
- Jedd, T.; Smith, K.H. Drought-Stricken U.S. States Have More Comprehensive Water-Related Hazard Planning. Water Resour. Manag. 2022. [Google Scholar] [CrossRef]
Data Type | Data Contents | Resolution | Time Span | Data Sources |
---|---|---|---|---|
Satellite remote sensing data | 8-day EVI, MOD09A1 | 250 m × 250 m | 2000–2020 | National Aeronautics and Space Administration (https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 10 May 2022)) |
8-day LST, MOD11A2 | 1 km × 1 km | 2000, 2001 | ||
8-day GPP, MOD17A2HGF | 500 m × 500 m | 2018–2020 | ||
1-day LST | 1 km × 1 km | 2002–2020 | A global seamless 1-km resolution daily land surface temperature dataset (2003–2020) (https://doi.org/10.25380/iastate.c.5078492 (accessed on 10 May 2022)) | |
8-day GPP | 0.05° × 0.05° | 2000–2017 | Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017 (https://doi.org/10.6084/m9.figshare.8942336.v3 (accessed on 10 May 2022)) | |
Crop mapping data | Maize planting area | 1 km × 1 km | 2000–2015 | Identifying the spatiotemporal changes of annual cropland areas for three staple crops in China by integrating multi-data sources (http://dx.doi.org/10.17632/jbs44b2hrk.2 (accessed on 10 May 2022)) |
Historical disaster data | Drought and waterlogging data | Provinces in Songliao Plain | 2006–2020 | The China Waterlogging and Drought Disaster Bulletin of the Ministry of water resources of China (http://www.mwr.gov.cn/ (accessed on 23 May 2022)) |
2000–2020 | The China Meteorological Disaster Yearbook of the China Meteorological Administration | |||
Yield data | Maize yield and area | Cities in Songliao Plain | 2000–2020 | National Bureau of Statistics of China (https://data.stats.gov.cn/ (accessed on 20 May 2022)) |
Meteorological data | Daily precipitation | 17 weather stations in NEC | Available in Table S2 | Meteorological Data Center of China Meteorological Administration (http://data.cma.cn/ (accessed on 20 May 2022)) |
Other data | Maize varieties | 1999–2016 | China Seed Industry Big Data Platform (http://seedchina.com.cn/ (accessed on 20 December 2022)) |
Grades | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
TVDI | 0 ≤ TVDI ≤ 0.2 | 0.2 < TVDI ≤ 0.4 | 0.4 < TVDI ≤ 0.6 | 0.6 < TVDI ≤ 0.8 | 0.8 < TVDI ≤ 1 |
Grades of events | Severe waterlogging | Mild waterlogging | Normal | Mild drought | Severe drought |
Grades | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
ρi | 0 ≤ ρi ≤ 0.2 | 0.2 < ρi ≤ 0.4 | 0.4 < ρi ≤ 0.6 | 0.6 < ρi ≤ 0.8 | 0.8 < ρi ≤ 1 |
−0.2 ≤ ρi ≤ 0 | −0.4 < ρi ≤ −0.2 | −0.6 < ρi ≤ −0.4 | −0.8 < ρi ≤ −0.6 | −1 < ρi ≤ −0.8 |
Type of Change | Type Code | Hurst | Slop |
---|---|---|---|
From drought to waterlogging | I | <0.5 | >0 |
Continuously getting drought | II | >0.5 | >0 |
From waterlogging to drought | III | <0.5 | <0 |
Continuously getting waterlogging | IV | >0.5 | <0 |
Unable to determine | V | =0.5 | ≠0 |
≠0.5 | =0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Rong, G.; Liu, C.; Du, W.; Zhang, J.; Tong, Z.; Liu, X. Spatiotemporal Characteristics and Hazard Assessments of Maize (Zea mays L.) Drought and Waterlogging: A Case Study in Songliao Plain of China. Remote Sens. 2023, 15, 665. https://doi.org/10.3390/rs15030665
Wang R, Rong G, Liu C, Du W, Zhang J, Tong Z, Liu X. Spatiotemporal Characteristics and Hazard Assessments of Maize (Zea mays L.) Drought and Waterlogging: A Case Study in Songliao Plain of China. Remote Sensing. 2023; 15(3):665. https://doi.org/10.3390/rs15030665
Chicago/Turabian StyleWang, Rui, Guangzhi Rong, Cong Liu, Walian Du, Jiquan Zhang, Zhijun Tong, and Xingpeng Liu. 2023. "Spatiotemporal Characteristics and Hazard Assessments of Maize (Zea mays L.) Drought and Waterlogging: A Case Study in Songliao Plain of China" Remote Sensing 15, no. 3: 665. https://doi.org/10.3390/rs15030665
APA StyleWang, R., Rong, G., Liu, C., Du, W., Zhang, J., Tong, Z., & Liu, X. (2023). Spatiotemporal Characteristics and Hazard Assessments of Maize (Zea mays L.) Drought and Waterlogging: A Case Study in Songliao Plain of China. Remote Sensing, 15(3), 665. https://doi.org/10.3390/rs15030665