Contribution of Land Cover Classification Results Based on Sentinel-1 and 2 to the Accreditation of Wetland Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.2.1. Satellite Images and Data Preprocessing
2.2.2. Wetland and Auxiliary Data
2.2.3. Wetland Protected Area Data
2.3. Research Methods
2.3.1. Classification Scheme
2.3.2. Samples
2.3.3. Feature Construction
2.3.4. GEE-Based 10-Random Forest Classification
2.3.5. Accuracy Assessment
2.3.6. Calculate the Wetland Rate (WR) and Wetland Protection Rate (WPR) to Support Wetland City Accreditation
3. Results
3.1. Accuracy Assessment
3.2. Land Cover Classification Maps and Statistics
3.3. Contribution of Land Cover Classification Results to Wetland City Certification
4. Discussion
4.1. Comparison with Other Studies
4.2. Reasons for the Change in Wetland Rate and Wetland Protection Rate in Different Cities
4.3. Deficiencies and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Wang, M.; Mao, D.; Wang, Y.; Song, K.; Yan, H.; Jia, M.; Wang, Z. Annual Wetland Mapping in Metropolis by Temporal Sample Migration and Random Forest Classification with Time Series Landsat Data and Google Earth Engine. Remote Sens. 2022, 14, 3191. [Google Scholar] [CrossRef]
- Junk, W.J.; An, S.; Finlayson, C.M.; Gopal, B.; Květ, J.; Mitchell, S.A.; Mitsch, W.J.; Robarts, R.D. Current State of Knowledge Regarding the World’s Wetlands and Their Future under Global Climate Change: A Synthesis. Aquat. Sci. 2013, 75, 151–167. [Google Scholar] [CrossRef] [Green Version]
- Alikhani, S.; Nummi, P.; Ojala, A. Urban Wetlands: A Review on Ecological and Cultural Values. Water 2021, 13, 3301. [Google Scholar] [CrossRef]
- Dong, M. Urban Wetland Ecosystem Ecology; Ecological research; Science Press: Beijing, China, 2018; pp. 10–20. [Google Scholar]
- Mao, D.; Wang, Z.; Wu, J.; Wu, B.; Zeng, Y.; Song, K.; Yi, K.; Luo, L. China’s Wetlands Loss to Urban Expansion. Land Degrad. Dev. 2018, 29, 2644–2657. [Google Scholar] [CrossRef]
- Kent, B.J.; Mast, J.N. Wetland Change Analysis of San Dieguito Lagoon, California, USA: 1928–1994. Wetlands 2005, 25, 780. [Google Scholar] [CrossRef]
- Hettiarachchi, M.; Morrison, T.H.; McAlpine, C. Forty-Three Years of Ramsar and Urban Wetlands. Glob. Environ. Chang. 2015, 32, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, M.; Zhao, Y.; Wen, Y. International Wetland City Certification and suggestions for China’s promotion. World For. Res. 2017, 30, 6–11. (In Chinese) [Google Scholar]
- Zhang, M.; Cui, L.; Guo, Z.; Lei, Y.; Li, M.; Wang, H.; Yang, S.; Wei, Y.; Xiao, H. The concept, connotation and prospect of “wetland city” Wetland. Sci. Manag. 2017, 13, 63–66. (In Chinese) [Google Scholar]
- Ma, Z.; Zhang, M. From the 12th Conference of the Parties to the Wetlands Convention to see the development trend of international wetland protection and management. Wetl. Sci. 2015, 13, 523–527. (In Chinese) [Google Scholar]
- Zhang, H.; Jia, E.; Fang, Y.; Dong, K.; Jia, W. Experience and enlightenment of Haikou International Wetland City. Wetl. Sci. Manag. 2019, 15, 23–26. (In Chinese) [Google Scholar]
- Mahdianpari, M.; Granger, J.E.; Mohammadimanesh, F.; Warren, S.; Puestow, T.; Salehi, B.; Brisco, B. Smart Solutions for Smart Cities: Urban Wetland Mapping Using Very-High Resolution Satellite Imagery and Airborne LiDAR Data in the City of St. John’s, NL, Canada. J. Environ. Manag. 2021, 280, 111676. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global Land Cover Mapping at 30m Resolution: A POK-Based Operational Approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global Land-Cover Product with Fine Classification System at 30 m Using Time-Series Landsat Imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near Real-Time Global 10 m Land Use Land Cover Mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10 m 2020 v100 (Version v100) [Data set]. Zenodo 2021. [Google Scholar] [CrossRef]
- Feng, S.; Li, W.; Xu, J.; Liang, T.; Ma, X.; Wang, W.; Yu, H. Land Use/Land Cover Mapping Based on GEE for the Monitoring of Changes in Ecosystem Types in the Upper Yellow River Basin over the Tibetan Plateau. Remote Sens. 2022, 14, 5361. [Google Scholar] [CrossRef]
- Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J.E. Landsat-8 vs. Sentinel-2: Examining the Added Value of Sentinel-2’s Red-Edge Bands to Land-Use and Land-Cover Mapping in Burkina Faso. GIScience Remote Sens. 2018, 55, 331–354. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, X. Improving Land Cover Classification in an Urbanized Coastal Area by Random Forests: The Role of Variable Selection. Remote Sens. Environ. 2020, 251, 112105. [Google Scholar] [CrossRef]
- Denize, J.; Hubert-Moy, L.; Betbeder, J.; Corgne, S.; Baudry, J.; Pottier, E. Evaluation of Using Sentinel-1 and -2 Time-Series to Identify Winter Land Use in Agricultural Landscapes. Remote Sens. 2019, 11, 37. [Google Scholar] [CrossRef] [Green Version]
- Valdivieso-Ros, C.; Alonso-Sarria, F.; Gomariz-Castillo, F. Effect of the Synergetic Use of Sentinel-1, Sentinel-2, LiDAR and Derived Data in Land Cover Classification of a Semiarid Mediterranean Area Using Machine Learning Algorithms. Remote Sens. 2023, 15, 312. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Homayouni, S.; Gill, E. The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Remote Sens. 2019, 11, 43. [Google Scholar] [CrossRef] [Green Version]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The Global Distribution and Trajectory of Tidal Flats. Nature 2019, 565, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Mcowen, C.J.; Weatherdon, L.V.; Van Bochove, J.-W.; Sullivan, E.; Blyth, S.; Zockler, C.; Stanwell-Smith, D.; Kingston, N.; Martin, C.S.; Spalding, M.; et al. A Global Map of Saltmarshes. Biodivers. Data J. 2017, 5, e11764. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Hu, S.; He, Y.; You, S.; Yang, X.; Gan, Y.; Liu, A. A Fine-Scale Mangrove Map of China Derived from 2-Meter Resolution Satellite Observations and Field Data. ISPRS Int. J. Geo-Inf. 2021, 10, 92. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, N.; Li, Y.; Li, Y. Sub-Continental-Scale Mapping of Tidal Wetland Composition for East Asia: A Novel Algorithm Integrating Satellite Tide-Level and Phenological Features. Remote Sens. Environ. 2022, 269, 112799. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, W.; Peng, K.; Li, Z.; Rao, P. A Framework for Fine Classification of Urban Wetlands Based on Random Forest and Knowledge Rules: Taking the Wetland Cities of Haikou and Yinchuan as Examples. GIScience Remote Sens. 2022, 59, 2144–2163. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Du, B.; Li, L.; Tian, Y.; Jia, M.; Zeng, Y.; Song, K.; Jiang, M.; Wang, Y. National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS J. Photogramm. Remote Sens. 2020, 164, 11–25. [Google Scholar] [CrossRef]
- Jia, M.; Mao, D.; Wang, Z.; Ren, C.; Zhu, Q.; Li, X.; Zhang, Y. Tracking Long-Term Floodplain Wetland Changes: A Case Study in the China Side of the Amur River Basin. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102185. [Google Scholar] [CrossRef]
- Calderón-Loor, M.; Hadjikakou, M.; Bryan, B. High-resolution wall-to-wall land-cover mapping and land change assessment for Australia from 1985 to 2015. Remote Sens. Environ. 2021, 252, 112148. [Google Scholar] [CrossRef]
- Schulz, D.; Yin, H.; Tischbein, B.; Verleysdonk, S.; Adamou, R.; Kumar, N. Land Use Mapping Using Sentinel-1 and Sentinel-2 Time Series in a Heterogeneous Landscape in Niger, Sahel. ISPRS J. Photogramm. Remote Sens. 2021, 178, 97–111. [Google Scholar] [CrossRef]
- Peng, K.; Jiang, W.; Ling, Z.; Hou, P.; Deng, Y. Evaluating the Potential Impacts of Land Use Changes on Ecosystem Service Value under Multiple Scenarios in Support of SDG Reporting: A Case Study of the Wuhan Urban Agglomeration. J. Clean. Prod. 2021, 307, 127321. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good Practices for Estimating Area and Assessing Accuracy of Land Change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Hu, B.; Xu, Y.; Huang, X.; Cheng, Q.; Ding, Q.; Bai, L.; Li, Y. Improving Urban Land Cover Classification with Combined Use of Sentinel-2 and Sentinel-1 Imagery. ISPRS Int. J. Geo-Inf. 2021, 10, 533. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, P.; Li, Z.; Pu, S.; Wu, X.; Bi, N.; Wang, H. Spatiotemporal Changes of Coastline over the Yellow River Delta in the Previous 40 Years with Optical and SAR Remote Sensing. Remote Sens. 2021, 13, 1940. [Google Scholar] [CrossRef]
- Fu, F. Research on the Development and Protection of Coastline in Jiangdong New District of Haikou City. Technol. Ind. Straits 2019, 237, 20–21+24. (In Chinese) [Google Scholar]
- Zhang, X.; Zhang, J.; Li, Q.; Chen, F.; Jiang, J. Comprehensive Evaluation of the Suitability of Coastline Resources Development in Haikou City. J. Appl. Oceanogr. 2021, 40, 493–501. (In Chinese) [Google Scholar]
City | Area (km2) | Wetland Characteristics |
---|---|---|
Yinchuan | 1805.03 | The city is located in the arid northwest region, which is where the Yellow River flows, characterized by swampy wetlands along the river |
Changde | 18,176.79 | The city is located in the Dongting Lake Basin, characterized by lake wetlands |
Haikou | 2232.42 (2745.46) | The city is located in a low latitude area, characterized by offshore and coastal wetlands |
Dongying | 7146.67 (11,900.37) | The city located at the mouth of the Yellow River, characterized by the Yellow River Delta wetlands |
Harbin | 10,184.40 | The city is located in a high latitude area, through which the Songhua River flows, characterized by alpine wetlands, swamps and riverine wetlands |
Changshu | 1276.48 | The city is a county-level city belonging to Suzhou, Jiangsu Province. It is located in the economically developed Yangtze River Delta area and is characterized by wetlands along the Yangtze River and wetlands in Jiangnan water towns |
Year | Image | Yinchuan | Changde | Haikou | Dongying | Harbin | Changshu |
---|---|---|---|---|---|---|---|
2015 | Sentinel-1 | 3 | 39 | 20 | 52 | 58 | 27 |
Sentinel-2 | 10 | 19 | 8 | 73 | 20 | 21 | |
Landsat-8 | 34 | 19 | 26 | 61 | 53 | 8 | |
2020 | Sentinel-1 | 117 | 137 | 154 | 289 | 112 | 142 |
Sentinel-2 | 111 | 197 | 97 | 372 | 356 | 107 |
Class | Description | |
---|---|---|
Wetland | Water | Persistent water cover (e.g., ocean, estuaries, rivers, lakes, canals) |
Swamp | Natural wetland with dominant woody vegetation, including forested wetland and shrub wetland | |
Marsh | Natural wetland with dominant herbaceous vegetation | |
Beach | Beach environments between the normal water level and the flood level of rivers and lakes or below the flood level of seasonal lakes and rivers | |
Non-wetland | Forest | Natural woody vegetation coverage area, including forests and shrubs |
Grass | The land is covered by natural herbaceous vegetation, and the coverage is greater than 10%, and urban artificial grassland. | |
Built | The surface is formed by artificial construction activities, including various residential areas, such as towns, industrial and mining, transportation facilities, etc. | |
Cropland | Land cover for planting crops | |
Bare | Naturally, covered land with vegetation coverage of less than 10%, including desert, sandy land, gravel land, bare rock, saline–alkali land, etc. |
Year | Yinchuan | Changde | Haikou | Dongying | Harbin | Changshu | |
---|---|---|---|---|---|---|---|
Training | 2020 | 2428 | 18,305 | 7789 | 7162 | 3139 | 5042 |
2015 | 2503 | 18,305 | 6994 | 4756 | 3074 | 4078 | |
Validation | 2020 | 1228 | 4553 | 1048 | 1270 | 1168 | 1123 |
2015 | 1205 | 4553 | 1135 | 1312 | 1168 | 1117 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Jiang, W.; Deng, Y.; Yin, X.; Peng, K.; Rao, P.; Li, Z. Contribution of Land Cover Classification Results Based on Sentinel-1 and 2 to the Accreditation of Wetland Cities. Remote Sens. 2023, 15, 1275. https://doi.org/10.3390/rs15051275
Wang X, Jiang W, Deng Y, Yin X, Peng K, Rao P, Li Z. Contribution of Land Cover Classification Results Based on Sentinel-1 and 2 to the Accreditation of Wetland Cities. Remote Sensing. 2023; 15(5):1275. https://doi.org/10.3390/rs15051275
Chicago/Turabian StyleWang, Xiaoya, Weiguo Jiang, Yawen Deng, Xiaogan Yin, Kaifeng Peng, Pinzeng Rao, and Zhuo Li. 2023. "Contribution of Land Cover Classification Results Based on Sentinel-1 and 2 to the Accreditation of Wetland Cities" Remote Sensing 15, no. 5: 1275. https://doi.org/10.3390/rs15051275
APA StyleWang, X., Jiang, W., Deng, Y., Yin, X., Peng, K., Rao, P., & Li, Z. (2023). Contribution of Land Cover Classification Results Based on Sentinel-1 and 2 to the Accreditation of Wetland Cities. Remote Sensing, 15(5), 1275. https://doi.org/10.3390/rs15051275