Deep ResU-Net Convolutional Neural Networks Segmentation for Smallholder Paddy Rice Mapping Using Sentinel 1 SAR and Sentinel 2 Optical Imagery
Abstract
:1. Introduction
- Which combination is optimal for paddy rice mapping using GEE-sourced multi-temporal S1 SAR and S2 optical derivatives as inputs in a U-Net DL model?
- How does the optimal image composite identified in RQ1 compare with RF experiments performed under different model parameters?
- Based on RQs 1 and 2, what are the implications of these outcomes in building a transferable and operational workflow? The transferability of the optimal model identified in RQs 1 and 2 was tested by upscaling (covering five districts in the southeastern parts of Heilongjiang province) over different years (i.e., 2016, 2018, and 2020).
- Based on the outcomes of RQ3, a spatial-temporal analysis of paddy rice agriculture between 2016 and 2020 was performed to quantify and better understand the dynamics and challenges associated with paddy rice mapping in the study area.
2. Materials and Methods
2.1. Study Site
2.2. Description of the Overall Methodology
2.2.1. Data Preparation
2.2.2. Segmentation and Classification
2.2.3. Performance Assessment
2.2.4. Upscaling of the Identified Optimal Model and Change Detection Analysis
2.3. Inventory and Processing of Radar and Optical Satellite Sensor
2.3.1. Sentinel 1 Radar Data
2.3.2. Sentinel 2 Optical Data
2.3.3. Description of Image Composites Used for Experiments
2.3.4. Ground Validation and Training Data
2.3.5. U-Net CNN Segmentation
2.3.6. Random Forest (RF) Classifier
2.3.7. Accuracy Assessment
2.3.8. Upscale Optimal U-Net Model for Rice Paddy Spatial–Temporal Analysis
3. Results
3.1. Selection of Optimal Image Composite in the U-Net DL Model Experiments
3.2. Comparison of Random Forest and U-Net Predictions
3.3. Transferability of Operational ResU-Net Model
3.4. Spatial–Temporal Dynamics of Paddy Rice Fields from 2016 to 2020
4. Discussion
4.1. Approach for Effective Paddy Rice Mapping
4.2. Understanding Spatial–Temporal Dynamics of Paddy Rice Agriculture
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. FAO Statistical Databases (Food and Agriculture Organization of the United Nations) Databases. UW-Madison Libraries. 2020. Available online: http://digital.library.wisc.edu/1711.web/faostat (accessed on 24 December 2022).
- Shahbandeh, M. Paddy Rice Production Worldwide 2017–2018, by Country. Statista. Available online: https://www.statista.com/statistics/255937/leading-rice-producers-worldwide/ (accessed on 9 July 2020).
- Elert, E. Rice by the numbers: A good grain. Nature 2014, 514, S50–S51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singha, M.; Dong, J.; Zhang, G.; Xiao, X. High resolution paddy rice maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data. Sci. Data 2019, 6, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelraouf, M.A.; Abouelghar, M.A.; Belal, A.-A.; Saleh, N.; Younes, M.; Selim, A.; Emam, E.M.; Elwesemy, A.; Kucher, D.E.; Magignan, S. Crop Yield Prediction Using Multi Sensors Remote Sensing. Egypt. J. Remote Sens. Space Sci. 2022, 25, 711–716. [Google Scholar]
- Son, N.T.; Chen, C.F.; Chen, C.C. Remote Sensing Time Series Analysis for Early Rice Yield Forecasting Using Random Forest Algorithm. In Remote Sensing of Agriculture and Land Cover/Land Use Changes in South and Southeast Asian Countries; Vadrevu, K.P., Toan, T.L., Ray, S.S., Justice, C., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 353–366. [Google Scholar]
- Wen, Y.; Li, X.; Mu, H.; Zhong, L.; Chen, H.; Zeng, Y.; Miao, S.; Su, W.; Gong, P.; Li, B.; et al. Mapping corn dynamics using limited but representative samples with adaptive strategies. ISPRS J. Photogramm. Remote Sens. 2022, 190, 252–266. [Google Scholar] [CrossRef]
- Lowder, S.K.; Skoet, J.; Raney, T. The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Zhang, H.; Wang, C.; Wei, S.; Zhang, B.; Wu, F.; Tang, Y. Paddy Rice Mapping in Thailand Using Time-Series Sentinel-1 Data and Deep Learning Model. Remote Sens. 2021, 13, 3994. [Google Scholar] [CrossRef]
- Zhu, A.-X.; Zhao, F.-H.; Pan, H.-B.; Liu, J.-Z. Mapping Rice Paddy Distribution Using Remote Sensing by Coupling Deep Learning with Phenological Characteristics. Remote Sens. 2021, 13, 1360. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B., III. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Casu, F.; Manunta, M.; Agram, P.S.; Crippen, R.E. Big Remotely Sensed Data: Tools, applications and experiences. Remote Sens. Environ. 2017, 202, 1–2. [Google Scholar] [CrossRef]
- Gulácsi, A.; Kovács, F. Sentinel-1-imagery-based high-resolution water cover detection on wetlands, Aided by Google Earth Engine. Remote Sens. 2020, 12, 1614. [Google Scholar] [CrossRef]
- Hu, Y.; Dong, Y.; Batunacun. An automatic approach for land-change detection and land updates based on integrated NDVI timing analysis and the CVAPS method with GEE support. ISPRS J. Photogramm. Remote Sens. 2018, 146, 347–359. [Google Scholar] [CrossRef]
- Oliphant, A.J.; Thenkabail, P.S.; Teluguntla, P.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K. Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine cloud. Int. J.App. Earth Observ. Geoinf. 2019, 81, 110–124. [Google Scholar] [CrossRef]
- Le Toan, T.; Ribbes, F.; Wang, L.-F.; Floury, N.; Ding, K.-H.; Kong, J.A.; Fujita, M.; Kurosu, T. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Trans. Geosci. Remote Sens. 1997, 35, 41–56. [Google Scholar] [CrossRef]
- Onojeghuo, A.O.; Blackburn, G.A.; Wang, Q.; Atkinson, P.M.; Kindred, D.; Miao, Y. Mapping paddy rice fields by applying machine learning algorithms to multi-temporal Sentinel-1A and Landsat data. Int. J. Remote Sens. 2018, 39, 1042–1067. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.V.; van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Chandrasekar, K.; Sesha Sai, M.V.R.; Roy, P.S.; Dwevedi, R.S. Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS Vegetation Index product. Int. J. Remote Sens. 2010, 31, 3987–4005. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Onojeghuo, A.O.; Blackburn, G.A.; Wang, Q.; Atkinson, P.; Kindred, D.; Miao, Y. Rice crop phenology mapping at high spatial and temporal resolution using downscaled MODIS time-series. GIScience Remote Sens. 2018, 55, 659–677. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B., III. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Boschetti, M.; Nutini, F.; Manfron, G.; Brivio, P.A.; Nelson, A. Comparative Analysis of Normalised Difference Spectral Indices Derived from MODIS for Detecting Surface Water in Flooded Rice Cropping Systems. PLoS ONE 2014, 9, e88741. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Li, Y.; Ma, M. Mapping Paddy Rice with Satellite Remote Sensing: A Review. Sustainability 2021, 13, 20503. [Google Scholar] [CrossRef]
- Thorp, K.; Drajat, D. Deep machine learning with Sentinel satellite data to map paddy rice production stages across West Java, Indonesia. Remote Sens. Environ. 2021, 265, 112679. [Google Scholar] [CrossRef]
- Sepp, H.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Ni, R.; Tian, J.; Li, X.; Yin, D.; Li, J.; Gong, H.; Zhang, J.; Zhu, L.; Wu, D. An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2021, 178, 282–296. [Google Scholar] [CrossRef]
- Xia, L.; Zhao, F.; Chen, J.; Yu, L.; Lu, M.; Yu, Q.; Liang, S.; Fan, L.; Sun, X.; Wu, S.; et al. A full resolution deep learning network for paddy rice mapping using Landsat data. ISPRS J. Photogramm. Remote Sens. 2022, 194, 91–107. [Google Scholar] [CrossRef]
- Ranjan, A.K.; Parida, B.R. Paddy acreage mapping and yield prediction using sentinel-based optical and SAR data in Sahibganj district, Jharkhand (India). Spat. Inf. Res. 2019, 27, 399–410. [Google Scholar] [CrossRef]
- Gnyp, M.L.; Miao, Y.; Yuan, F.; Ustin, S.L.; Yu, K.; Yao, Y.; Huang, S.; Bareth, G. Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages. Field Crops Res. 2014, 155, 42–55. [Google Scholar] [CrossRef]
- Wang, F.-M.; Huang, J.-F.; Wang, X.-Z. Identification of Optimal Hyperspectral Bands for Estimation of Rice Biophysical Parameters. J. Integr. Plant Biol. 2008, 50, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Kou, W.; Qin, Y.; Zhang, G.; Li, L.; Jin, C.; Zhou, Y.; Wang, J.; Biradar, C.; et al. Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms. Remote Sens. Environ. 2015, 160, 99–113. [Google Scholar] [CrossRef]
- ESA. ESA Step—Science Toolbox Exploitation Platform. European Space Agency. 2019. Available online: http://step.esa.int/main/doc/tutorials/ (accessed on 12 July 2020).
- Kau, L.J.; Lee, T.L. An HSV model-based approach for the sharpening of color images. In Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics, Manchester, UK, 13–16 October 2013; IEEE: New York, NY, USA, 2013. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef] [Green Version]
- ESRI. How U-Net works? 2022. Available online: https://developers.arcgis.com/python/guide/how-unet-works/?rsource=https%3A%2F%2Flinks.esri.com%2FDevHelp_HowUNetWorks (accessed on 29 December 2022).
- Yang, L.; Huang, R.; Huang, J.; Lin, T.; Wang, L.; Mijiti, R.; Wei, P.; Tang, C.; Shao, J.; Li, Q.; et al. Semantic Segmentation Based on Temporal Features: Learning of Temporal-Spatial Information from Time-Series SAR Images for Paddy Rice Mapping. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–16. [Google Scholar] [CrossRef]
- Dang, K.B.; Nguyen, M.H.; Nguyen, D.A.; Phan, T.T.H.; Giang, T.L.; Pham, H.H.; Nguyen, T.N.; Tran, T.T.V.; Bui, D.T. Coastal Wetland Classification with Deep U-Net Convolutional Networks and Sentinel-2 Imagery: A Case Study at the Tien Yen Estuary of Vietnam. Remote Sens. 2020, 12, 3270. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Zhang, Z.; Liu, Q.; Wang, Y. Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Teluguntla, P.; Thenkabail, P.S.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K.; Huete, A. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2018, 144, 325–340. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016, 187, 156–168. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Kussul, N.; Skakun, S.; Shelestov, A.; Kussul, O. The use of satellite SAR imagery to crop classification in Ukraine within JECAM project. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; IEEE: New York, NY, USA, 2014. [Google Scholar]
- Park, S.; Im, J.; Park, S.; Yoo, C.; Han, H.; Rhee, J. Classification and Mapping of Paddy Rice by Combining Landsat and SAR Time Series Data. Remote Sens. 2018, 10, 447. [Google Scholar] [CrossRef] [Green Version]
- Bouvet, A.; Le Toan, T.; Lam-Dao, N. Monitoring of the Rice Cropping System in the Mekong Delta Using ENVISAT/ASAR Dual Polarization Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Kuenzer, C.; Knauer, K. Remote sensing of rice crop areas. Int. J. Remote Sens. 2013, 34, 2101–2139. [Google Scholar] [CrossRef]
- Saadat, M.; Seydi, S.T.; Hasanlou, M.; Homayouni, S. A Convolutional Neural Network Method for Rice Mapping Using Time-Series of Sentinel-1 and Sentinel-2 Imagery. Agriculture 2022, 12, 2083. [Google Scholar] [CrossRef]
- Zhai, P.; Li, S.; He, Z.; Deng, Y.; Hu, Y. Collaborative mapping rice planting areas using multisource remote sensing data. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Kuala Kumpur, Malaysia, 17–22 July 2021. [Google Scholar]
- Zhang, X.; Wu, B.; Ponce-Campos, G.E.; Zhang, M.; Chang, S.; Tian, F. Mapping up-to-Date Paddy Rice Extent at 10 M Resolution in China through the Integration of Optical and Synthetic Aperture Radar Images. Remote Sens. 2018, 10, 1200. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Huang, J.; Wei, P.; Yang, L.; Chai, D.; Peng, D.; Sha, J.; Sun, W.; Huang, R. Dynamic Mapping of Paddy Rice Using Multi-Temporal Landsat Data Based on a Deep Semantic Segmentation Model. Agronomy 2022, 12, 1583. [Google Scholar] [CrossRef]
- Mandal, N.; Das, D.K.; Sahoo, R.N.; Adak, S.; Kumar, A.; Viswanathan, C.; Mukherjee, J.; Rajashekara, H.; Ranjan, R.; DAS, B. Assessing rice blast disease severity through hyperspectral remote sensing. J. Agrometeorol. 2022, 24, 241–248. [Google Scholar] [CrossRef]
- Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J.E. Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2′s red-edge bands to land-use and land-cover mapping in Burkina Faso. GIScience Remote Sens. 2018, 55, 331–354. [Google Scholar] [CrossRef]
- Jiang, X.; Fang, S.; Huang, X.; Liu, Y.; Guo, L. Rice Mapping and Growth Monitoring Based on Time Series GF-6 Images and Red-Edge Bands. Remote Sens. 2021, 13, 579. [Google Scholar] [CrossRef]
- Khabbazan, S.; Steele-Dunne, S.; Vermunt, P.; Judge, J.; Vreugdenhil, M.; Gao, G. The influence of surface canopy water on the relationship between L-band backscatter and biophysical variables in agricultural monitoring. Remote Sens. Environ. 2021, 268, 112789. [Google Scholar] [CrossRef]
- McNairn, H.; Brisco, B. The application of C-band polarimetric SAR for agriculture: A review. Can. J. Remote Sens. 2004, 30, 525–542. [Google Scholar] [CrossRef]
- Woźniak, E.; Rybicki, M.; Kofman, W.; Aleksandrowicz, S.; Wojtkowski, C.; Lewiński, S.; Bojanowski, J.; Musiał, J.; Milewski, T.; Slesiński, P.; et al. Multi-temporal phenological indices derived from time series Sentinel-1 images to country-wide crop classification. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102683. [Google Scholar] [CrossRef]
- Mansaray, L.R.; Huang, W.; Zhang, D.; Huang, J.; Li, J. Mapping Rice Fields in Urban Shanghai, Southeast China, Using Sentinel-1A and Landsat 8 Datasets. Remote Sens. 2017, 9, 257. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.B.; Gruber, A.; Wagner, W. Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data. Remote Sens. Lett. 2016, 7, 1209–1218. [Google Scholar] [CrossRef]
- Xiao, W.; Xu, S.; He, T. Mapping Paddy Rice with Sentinel-1/2 and Phenology-, Object-Based Algorithm—A Implementation in Hangjiahu Plain in China Using GEE Platform. Remote Sens. 2021, 13, 990. [Google Scholar] [CrossRef]
- De Bem, P.P.; Júnior, O.A.D.C.; de Carvalho, O.L.F.; Gomes, R.A.T.; Guimarāes, R.F.; Pimentel, C.M.M. Irrigated rice crop identification in Southern Brazil using convolutional neural networks and Sentinel-1 time series. Remote Sens. Appl. Soc. Environ. 2021, 24, 100627. [Google Scholar] [CrossRef]
- Wei, P.; Chai, D.; Lin, T.; Tang, C.; Du, M.; Huang, J. Large-scale rice mapping under different years based on time-series Sentinel-1 images using deep semantic segmentation model. ISPRS J. Photogramm. Remote Sens. 2021, 174, 198–214. [Google Scholar] [CrossRef]
- Jiao, X.-Q.; Zhang, H.-Y.; Ma, W.-Q.; Wang, C.; Li, X.-L.; Zhang, F.-S. Science and Technology Backyard: A novel approach to empower smallholder farmers for sustainable intensification of agriculture in China. J. Integr. Agric. 2019, 18, 1657–1666. [Google Scholar] [CrossRef]
- Xin, F.; Xiao, X.; Dong, J.; Zhang, G.; Zhang, Y.; Wu, X.; Li, X.; Zou, Z.; Ma, J.; Du, G. Large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000–2017. Sci. Total Environ. 2020, 711, 135183. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Cheng, W.; Zhang, Z.; Xin, X.; Wang, X. Differences in rice water consumption and yield under four irrigation schedules in central Jilin Province, China. Paddy Water Environ. 2016, 14, 473–480. [Google Scholar] [CrossRef]
SAR Data | |||
---|---|---|---|
Sensor | Sentinel 1A | ||
Spatial resolution | 10 m | ||
Wavelength | C band | ||
Polarization | Dual-polarization bands—vertical transmission/horizontal receiver—VH/VV | ||
Orbital properties | Descending | ||
Instrument Mode | Interferometric Wide (IW) swath mode | ||
# of VH/VV scenes | 2016 | 2018 | 2020 |
2219/2233 | 2219/2233 | 2219/2233 | |
Provider | European Space Agency | ||
Optical Data | |||
Sensor | Sentinel 2A MSI (Multispectral Instrument) | ||
Spatial resolution | 10/20 m | ||
Band and wavelength (µm) | Band 2 (Blue)–490 µm | Band 3 (Green)–560 µm | |
Band 4 (Red)–665 µm | Band 5 (Red edge 1)–704 µm | ||
Band 6 (Red edge 2)–740 µm | Band 7 (Red edge 3)–780 µm | ||
Band 8 (Near-infrared)–842 µm | Band 8A (Red edge 4)–865 µm | ||
Band 11 (SWIR-1)–1614 µm | Band 12 (SWIR-2)–2202 µm | ||
# of image scenes | 2016 | 2018 | 2020 |
296 | 634 | 511 | |
Provider | European Space Agency | ||
Date Range | Vegetative: 10 April–25 June (2016, 2018 and 2020) Reproductive: 28 June–10 August (2016, 2018, and 2020) Ripening: 10 August–10 October (2016, 2018, and 2020) |
Dataset # | Input Bands | Description | # of Input Bands |
---|---|---|---|
Dataset 1 | B2, B3, B4 and B8 | Visible and Near Infrared (VNIR) | 10 |
B5, B6, and B8A | Red edge | ||
B11 and B12 | Short Wave Infrared (SWIR) | ||
Dataset 2 | VHVEG+REP+RIP | Vertical–Horizontal polarization band | 6 |
VVVEG+REP+RIP | Vertical–Vertical polarization band | ||
Dataset 3 | EVI NDVI LSWI | Enhanced Vegetation Index Normalized Difference Vegetation Index Land Surface Water Index | 3 |
Dataset 4 | Datasets (1 + 2) | Multispectral + SARVEG+REP+RIP bands | 16 |
Dataset 5 | Datasets (2 + 3) | SARVEG+REP+RIP bands + Optical Indices | 9 |
Dataset 6 | Datasets (1 + 3) | Multispectral bands + Optical Indices | 13 |
Dataset 7 | Datasets (1 + 2 + 3) | Multispectral + SAR + Optical indices | 19 |
Input Dataset | Learning Rate | Padding | Batch Size | Tile Size | Predict Background | Test Time Augmentation |
---|---|---|---|---|---|---|
Dataset 1 | 0.00016 | 54 | 4 | 256 | False | False |
Dataset 2 | 0.00009 | 54 | 4 | 256 | False | False |
Dataset 3 | 0.00008 | 54 | 4 | 256 | False | False |
Dataset 4 | 0.00013 | 54 | 4 | 256 | False | False |
Dataset 5 | 0.00009 | 54 | 4 | 256 | False | False |
Dataset 6 | 0.00033 | 54 | 4 | 256 | False | False |
Dataset 7 | 0.00016 | 54 | 4 | 256 | False | False |
Class | # Samples | Pixels (%) |
---|---|---|
Built-up area | 113 | 12.2 |
Vegetated | 652 | 11.72 |
Non-rice fields | 1179 | 37.43 |
Rice fields | 394 | 38.66 |
Class Name | Class from | Class to | Land-Use Change Extent (Hectares) | |
---|---|---|---|---|
2016–2018 | 2018–2020 | |||
Other land-use (unchanged) | Other landuse | Other land-use | 6,832,948.43 | 6,459,425.82 |
Other land-use to Rice fields | Other landuse | Rice fields | 378,830.84 | 328,353.98 |
Rice fields Other land-use | Rice fields | Other land-use | 437,123.16 | 359,514.62 |
Rice fields (unchanged) | Rice fields | Rice fields | 1,932,609.97 | 1,689,886.41 |
Total area (ha) | 9,581,512.40 | 8,837,180.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onojeghuo, A.O.; Miao, Y.; Blackburn, G.A. Deep ResU-Net Convolutional Neural Networks Segmentation for Smallholder Paddy Rice Mapping Using Sentinel 1 SAR and Sentinel 2 Optical Imagery. Remote Sens. 2023, 15, 1517. https://doi.org/10.3390/rs15061517
Onojeghuo AO, Miao Y, Blackburn GA. Deep ResU-Net Convolutional Neural Networks Segmentation for Smallholder Paddy Rice Mapping Using Sentinel 1 SAR and Sentinel 2 Optical Imagery. Remote Sensing. 2023; 15(6):1517. https://doi.org/10.3390/rs15061517
Chicago/Turabian StyleOnojeghuo, Alex Okiemute, Yuxin Miao, and George Alan Blackburn. 2023. "Deep ResU-Net Convolutional Neural Networks Segmentation for Smallholder Paddy Rice Mapping Using Sentinel 1 SAR and Sentinel 2 Optical Imagery" Remote Sensing 15, no. 6: 1517. https://doi.org/10.3390/rs15061517