On the Ion Line Calibration by Plasma Line in ISR Measurements
Abstract
:1. Introduction
2. Data and Methodology
3. Results
3.1. The Calibration Factor
3.2. Calibration Effect on Multiple Ionospheric Parameters
3.3. Statistical Effect of the Calibration on Ionospheric F2 Peak Results
4. Discussions
4.1. Potential Reason of the Residuals after Calibration
4.2. The Effect of the Used Te/Ti in the Formula (1)
4.3. Shortcomings of the Current Calibration Method
4.4. Applicability to Multiple Beams Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gordon, W.E. Incoherent scattering of radio waves by free electrons with applications to space exploration by radar. Proc. IEEE 1958, 46, 1824–1829. [Google Scholar] [CrossRef]
- Lehtinen, M.S. Statistical Theory of Incoherent Scatter Radar Measurements. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, 1986. [Google Scholar]
- Bilitza, D.; Pezzopane, M.; Truhlik, V.; Altadill, D.; Reinisch, B.W.; Pignalberi, A. The International Reference Ionosphere model: A review and description of an ionospheric benchmark. Rev. Geophys. 2022, 60, e2022RG000792. [Google Scholar] [CrossRef]
- Kirkwood, S.; Collis, P.N.; Schmidt, W. Calibration of electron densities for the EISCAT UHF radar. J. Atmos. Terr. Phys. 1986, 48, 773–775. [Google Scholar] [CrossRef]
- Rietveld, M.T.; Isham, B.; Häggström, I. Calibration of EISCAT Incoherent Scatter Radar Electron Densities and the Anomaly of 23–25 October 2003. In EISCAT Scientific Association Report; EISCAT: Kiruna, Sweden, 2005. [Google Scholar]
- Bahcivan, H.; Tsunoda, R.; Nicolls, M.; Heinselman, C. Initial ionospheric observations made by the new Resolute incoherent scatter radar and comparison to solar wind IMF. Geophys. Res. Lett. 2010, 37, L15103. [Google Scholar] [CrossRef]
- Gillies, R.G.; van Eyken, A.; Spanswick, E.; Nicolls, M.; Kelly, J.; Greffen, M.; Knudsen, D.; Connors, M.; Schutzer, M.; Valentic, T.; et al. First observations from the RISR-C incoherent scatter radar. Radio Sci. 2016, 51, 1645–1659. [Google Scholar] [CrossRef] [Green Version]
- Akbari, H.; Bhatt, A.; Hoz, C.L.; Semeter, J.L. Incoherent Scatter Plasma Lines: Observations and Applications. Space Sci. Rev. 2017, 212, 249–294. [Google Scholar] [CrossRef]
- Showen, R.L. The spectral measurement of plasma lines. Radio Sci. 1979, 14, 503–508. [Google Scholar] [CrossRef]
- Vierinen, J.; Bhatt, A.; Hirsch, M.A.; Strømme, A.; Semeter, J.L.; Zhang, S.R.; Erickson, P.J. High temporal resolution observations of auroral electron density using superthermal electron enhancement of Langmuir waves. Geophys. Res. Lett. 2016, 43, 5979–5987. [Google Scholar] [CrossRef]
- Setov, A.G.; Medvedev, A.V.; Lebedev, V.P.; Kushnarev, D.S.; Alsatkin, S.S.; Tashlykov, V.P. Calibration methods for absolute measurements at the Irkutsk incoherent scatter radar. In Proceedings of the 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Irkutsk, Russia, 3–7 July 2017; Volume 10466, p. 104665Y. [Google Scholar] [CrossRef]
- Alsatkin, S.S.; Medvedev, A.V.; Ratovsky, K.G. Features of Ne recovery at the Irkutsk Incoherent Scatter Radar. Sol.-Terr. Phys. 2020, 6, 77–88. [Google Scholar] [CrossRef]
- Yue, X.; Wan, W.; Ning, B.; Jin, L. An active phased array radar in China. Nat. Astron. 2022, 6, 619. [Google Scholar] [CrossRef]
- Yue, X.; Wan, W.; Ning, B.; Jin, L.; Ke, C.; Ding, F.; Zhao, B.; Zeng, L.; Deng, X.; Wang, J.; et al. Development of the Sanya Incoherent Scatter Radar and Preliminary Results. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030451. [Google Scholar] [CrossRef]
- Li, M.; Yue, X.; Zhao, B.; Zhang, N.; Wang, J.; Zeng, L.; Hao, H.; Ding, F.; Ning, B.; Wan, W. Simulation of the Signal-to-Noise Ratio of Sanya Incoherent Scatter Radar Tristatic System. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2982–2993. [Google Scholar] [CrossRef]
- Hao, H.; Zhao, B.; Wan, W.; Yue, X.; Ding, F.; Ning, B.; Zeng, L.; Jin, Y.; Wang, J.; Zhang, N. Initial Ionospheric Ion Line Results and Evaluation by Sanya Incoherent Scatter Radar (SYISR). J. Geophys. Res. Space Phys. 2022, 127, e2022JA030563. [Google Scholar] [CrossRef]
- Wang, J.; Yue, X.; Ding, F.; Ning, B.; Jin, L.; Ke, C.; Zhang, N.; Luo, J.; Wang, Y.; Yin, H.; et al. The Effect of Space Objects on Ionospheric Observations: Perspective of SYISR. Remote Sens. 2022, 14, 5092. [Google Scholar] [CrossRef]
- Feng, T.; Liu, M.; Xu, B.; Xu, T.; Gao, S.; Wang, X.; Zhou, C. Auroral-enhanced plasma lines by suprathermal electrons observed by EISCAT. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028495. [Google Scholar] [CrossRef]
- Salpeter, E.E. Electron density fluctuations in a plasma. Phys. Rev. 1961, 120, 1528. [Google Scholar] [CrossRef]
- Lan, J.; Ning, B.; Li, G.; Zhu, Z.; Hu, L.; Sun, W. Observation of short-period ionospheric disturbances using a portable digital ionosonde at Sanya. Radio Sci. 2018, 53, 1521–1532. [Google Scholar] [CrossRef]
- Reinisch, B.W.; Huang, X. Deducing topside profiles and total electron content from bottomside ionograms. Adv. Space Res. 2001, 27, 23–30. [Google Scholar] [CrossRef]
- Scotto, C.; Sabbagh, D. The Accuracy of Real-Time hmF2 Estimation from Ionosondes. Remote Sens. 2020, 12, 2671. [Google Scholar] [CrossRef]
- Dalgarno, A.; McElrow, M.B. Ionospheric electron temperatures near dawn. Planet. Space Sci. 1965, 13, 143–145. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, H.L.; Lu, X.; Zhang, R.; Maute, A.; Wu, H.; Yue, X.; Wan, W. Quiet-time day-to-day variability of equatorial vertical E × B drift from atmosphere perturbations at dawn. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027824. [Google Scholar] [CrossRef]
- Lehtinen, M.; Markkanen, J.; Väänänen, A.; Huuskonen, A.; Damtie, B.; Nygrén, T.; Rahkola, J. A new incoherent scatter technique in the EISCAT Svalbard Radar. Radio Sci. 2002, 37, 3-1–3-14. [Google Scholar] [CrossRef]
- Skolnik, M.I. Introduction to Radar System, 3rd ed.; McGraw-Hill Education: New Delhi, India, 2001; pp. 482–535. [Google Scholar]
# | Waveform | Sampling Rate | Time Interval | Figures |
---|---|---|---|---|
1 | LP, 100 μs | 4 MHz (3 channels) | 28 December 2021 | 1–3 |
2 | 16-bit AC, 480 μs | 0.1 MHz (1 channel) | 6 May 2022 | 4 |
3 | 13-bit BC, 390 μs | 0.1 MHz (1 channel) | 12 March 2022 to 10 April 2022 | 5–7 |
4 | 32-bit AC, 100 μs LP | 4 MHz (3 channels) | 6 January 2022 | 8 |
5 | N/A | 0.1 MHz | 26 November 2022 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, X.; Liu, F.; Wang, J.; Wang, Y.; Cai, Y.; Ding, F.; Ning, B.; Li, M.; Zhang, N.; Wang, Z.; et al. On the Ion Line Calibration by Plasma Line in ISR Measurements. Remote Sens. 2023, 15, 1553. https://doi.org/10.3390/rs15061553
Yue X, Liu F, Wang J, Wang Y, Cai Y, Ding F, Ning B, Li M, Zhang N, Wang Z, et al. On the Ion Line Calibration by Plasma Line in ISR Measurements. Remote Sensing. 2023; 15(6):1553. https://doi.org/10.3390/rs15061553
Chicago/Turabian StyleYue, Xinan, Fanyu Liu, Junyi Wang, Yonghui Wang, Yihui Cai, Feng Ding, Baiqi Ning, Mingyuan Li, Ning Zhang, Zhongqiu Wang, and et al. 2023. "On the Ion Line Calibration by Plasma Line in ISR Measurements" Remote Sensing 15, no. 6: 1553. https://doi.org/10.3390/rs15061553