Multiscale Observation Product (MOP) for Temporal Flood Inundation Mapping of the 2015 Dallas Texas Flood
Abstract
:1. Introduction
Remote Sensing and Data Fusion for Flood Assessment
2. Case Study: 2015 Memorial Day Texas–Oklahoma Flood
3. Data
3.1. Remote-Sensing Imagery
3.2. Twitter Data
3.3. Hydrologic Engineering Center River Analysis System (HEC-RAS) Model Output
4. Methodology
4.1. Overview
4.2. Water Identification in Satellite Remote Sensing Imagery
4.3. Water Identification in Aerial Imagery
4.4. Water Identification in Twitter
4.5. River Analysis System Preprocessing
4.6. Data Fusion
4.7. Measure of Fit
5. Results
5.1. Error of Commission and Omission
5.2. Visualizing Areas of Commission and Omission
5.3. Daily Flood Estimation
5.4. Data Comparison: Validation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cutter, S.L. Living with Risk: The Geography of Technological Hazards; Edward Arnold: Cambridge, UK, 1993. [Google Scholar]
- Frazier, T.G.; Wood, N.; Yarnal, B.; Bauer, D.H. Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida. Appl. Geogr. 2010, 30, 490–505. [Google Scholar] [CrossRef]
- Nguyen, P.; Thorstensen, A.; Sorooshian, S.; Hsu, K.; AghaKouchak, A.; Sanders, B.; Koren, V.; Cui, Z.; Smith, M. A high resolution coupled hydrologic–hydraulic model (HiResFlood-UCI) for flash flood modeling. J. Hydrol. 2016, 541, 401–420. [Google Scholar] [CrossRef] [Green Version]
- Singh, Y.K.; Dutta, U.; Prabhu, T.; Prabu, I.; Mhatre, J.; Khare, M.; Srivastava, S.; Dutta, S. Flood Response System—A Case Study. Hydrology 2017, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.S.; Di, L. The state of the art of spaceborne remote sensing in flood management. Nat. Hazards 2017, 85, 1223–1248. [Google Scholar] [CrossRef]
- Kerle, N.; Janssen, L.L.; Huurneman, G.C. Principles of remote sensing. ITC Educ. Textb. Ser. 2004, 2, 250. [Google Scholar]
- Campbell, J.B.; Hall-Beyer, M. Introduction to remote sensing. Cartographica 1997, 34, 70. [Google Scholar] [CrossRef]
- Giustarini, L.; Hostache, R.; Matgen, P.; Schumann, G.; Bates, P.; Mason, D. A Change Detection Approach to Flood Mapping in Urban Areas Using TerraSAR-X. IEEE Trans. Geosci. Remote Sens. Soc. 2013, 51, 2417–2430. [Google Scholar] [CrossRef] [Green Version]
- Mason, D.C.; Bates, P.; Dall’Amico, J. Calibration of uncertain flood inundation models using remotely sensed water levels. J. Hydrol. 2009, 368, 224–236. [Google Scholar] [CrossRef]
- Brouwer, T. Potential of Twitter Derived Flood Maps: Comparing Interpolation Methods and Assesing Uncertainties. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2016. [Google Scholar]
- Teng, J.; Jakeman, A.; Vaze, J.; Croke, B.F.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Bates, P.D. Integrating remote sensing data with flood inundation models: How far have we got? Hydrol. Process. 2012, 26, 2515–2521. [Google Scholar] [CrossRef]
- Haile, A.T.; Rientjes, T. Effects of LiDAR DEM resolution in flood modelling: A model sensitivity study for the city of Tegucigalpa, Honduras. In Proceedings of the ISPRS WG III/3, III/4, V/3 Workshop ‘Laser Scanning 2005’, Enschede, The Netherlands, 12–14 September 2005; Volume 3, pp. 12–14. [Google Scholar]
- Mason, D.C.; Schumann, G.; Bates, P. Data utilization in flood inundation modelling. In Flood Risk Science and Management; Blackwell Publishing Ltd.: Oxford, UK, 2011; pp. 209–233. [Google Scholar]
- Sakamoto, T.; Van Nguyen, N.; Kotera, A.; Ohno, H.; Ishitsuka, N.; Yokozawa, M. Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery. Remote Sens. Environ. 2007, 109, 295–313. [Google Scholar] [CrossRef]
- Islam, A.S.; Bala, S.K.; Haque, M. Flood inundation map of Bangladesh using MODIS time-series images. J. Flood Risk Manag. 2010, 3, 210–222. [Google Scholar] [CrossRef]
- Thomas, R.F.; Kingsford, R.T.; Lu, Y.; Hunter, S.J. Landsat mapping of annual inundation (1979–2006) of the Macquarie Marshes in semi-arid Australia. Int. J. Remote Sens. 2011, 32, 4545–4569. [Google Scholar] [CrossRef]
- Pulvirenti, L.; Chini, M.; Pierdicca, N.; Guerriero, L.; Ferrazzoli, P. Flood monitoring using multi-temporal COSMO-SkyMed data: Image segmentation and signature interpretation. Remote Sens. Environ. 2011, 115, 990–1002. [Google Scholar] [CrossRef]
- Chini, M.; Piscini, A.; Cinti, F.R.; Amici, S.; Nappi, R.; DeMartini, P.M. The 2011 Tohoku (Japan) Tsunami inundation and liquefaction investigated through optical, thermal, and SAR data. IEEE Geosci. Remote Sens. Lett. 2013, 10, 347–351. [Google Scholar] [CrossRef]
- Assumpção, T.H.; Popescu, I.; Jonoski, A.; Solomatine, D.P. Citizen observations contributing to flood modelling: Opportunities and challenges. Hydrol. Earth Syst. Sci. 2018, 22, 1473. [Google Scholar] [CrossRef] [Green Version]
- Paz, A.R.D.; Collischonn, W.; Tucci, C.E.; Padovani, C.R. Large-scale modelling of channel flow and floodplain inundation dynamics and its application to the Pantanal (Brazil). Hydrol. Process. 2011, 25, 1498–1516. [Google Scholar] [CrossRef]
- Yamazaki, D.; Kanae, S.; Kim, H.; Oki, T. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour. Res. 2011, 47, W04501. [Google Scholar] [CrossRef]
- Khan, S.I.; Hong, Y.; Wang, J.; Yilmaz, K.K.; Gourley, J.J.; Adler, R.F.; Brakenridge, G.R.; Policelli, F.; Habib, S.; Irwin, D. Satellite remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria basin: Implications for hydrologic prediction in ungauged basins. IEEE Trans. Geosci. Remote Sens. 2011, 49, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Colby, J.; Mulcahy, K. An efficient method for mapping flood extent in a coastal floodplain using Landsat TM and DEM data. Int. J. Remote Sens. 2002, 23, 3681–3696. [Google Scholar] [CrossRef]
- Mourato, S.; Fernandez, P.; Pereira, L.; Moreira, M. Improving a DSM Obtained by Unmanned Aerial Vehicles for Flood Modelling. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; Volume 95, pp. 14–22. [Google Scholar]
- Goodchild, M.F. Citizens as sensors: The world of volunteered geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Schnebele, E.; Cervone, G. Improving remote sensing flood assessment using volunteered geographical data. Nat. Hazards Earth Syst. Sci. 2013, 13, 669–677. [Google Scholar] [CrossRef] [Green Version]
- Schnebele, E.; Cervone, G.; Waters, N. Road assessment after flood events using non-authoritative data. Nat. Hazards Earth Syst. Sci. 2014, 14, 1007–1015. [Google Scholar] [CrossRef] [Green Version]
- Fohringer, J.; Dransch, D.; Kreibich, H.; Schröter, K. Social media as an information source for rapid flood inundation mapping. Nat. Hazards Earth Syst. Sci. 2015, 15, 2725–2738. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.; Liang, Q.; James, P.; Lin, W. Assessing the utility of social media as a data source for flood risk management using a real-time modelling framework. J. Flood Risk Manag. 2015, 10, 370–380. [Google Scholar] [CrossRef]
- Slade, R.; Persky, K. Floods in the Guadalupe and San Antonio River Basins in Texas, October 1998; Technical Report; US Geological Survey: Tallahassee, FL, USA, 1999.
- Winters, K.E. Floods in Central Texas, September 7–14, 2010. Tex. Water J. 2012, 3, 14–25. [Google Scholar] [CrossRef]
- Sava, E.; Clemente-Harding, L.; Cervone, G. Supervised classification of civil air patrol (CAP). Nat. Hazards 2017, 86, 535–556. [Google Scholar] [CrossRef]
- Cervone, G.; Sava, E.; Huang, Q.; Schnebele, E.; Harrison, J.; Waters, N. Using Twitter for tasking remote-sensing data collection and damage assessment: 2013 Boulder flood case study. Int. J. Remote Sens. 2016, 37, 100–124. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Hall, D.L.; Llinas, J. An introduction to multisensor data fusion. Proc. IEEE 1997, 85, 6–23. [Google Scholar] [CrossRef] [Green Version]
- Bhuyian, M.N.; Kalyanapu, A. Accounting digital elevation uncertainty for flood consequence assessment. J. Flood Risk Manag. 2018, 11, S1051–S1062. [Google Scholar] [CrossRef] [Green Version]
- Bhuyian, M.N.; Kalyanapu, A.J.; Nardi, F. Approach to digital elevation model correction by improving channel conveyance. J. Hydrol. Eng. 2014, 20, 04014062. [Google Scholar] [CrossRef]
- Onorati, T.; Díaz, P. Giving meaning to tweets in emergency situations: A semantic approach for filtering and visualizing social data. SpringerPlus 2016, 5, 1782. [Google Scholar] [CrossRef] [Green Version]
Type | Source | Count | Acquisition Date |
---|---|---|---|
Satellite | |||
WorldView-2 | 2 | 27 May | |
WorldView-3 | 2 | 18 June | |
SPOT-6 | 2 | 31 May | |
Landsat 8 | 2 | 2 June, 18 June | |
Aerial Imagery | |||
CAP | 273 | 21 May, 31 May, 1 June–5 June | |
Ground | |||
97 | 21 May–29 May, 31 May, 1 June–4 June |
Date | MOP | HEC-RAS | Intersect | Omission | Commission | Fit |
---|---|---|---|---|---|---|
(km) | (km) | (km) | (%) | (%) | (%) | |
14 April | 7.25 | 7.88 | 4.46 | 27.08 | 29.60 | 43.32 |
15 April | 7.25 | 7.66 | 4.44 | 27.59 | 28.83 | 43.58 |
16 April | 7.25 | 7.72 | 4.47 | 27.34 | 28.66 | 44.00 |
30 April | 6.35 | 8.46 | 4.49 | 19.28 | 34.00 | 46.72 |
1 May | 6.35 | 8.11 | 4.49 | 19.47 | 33.48 | 47.05 |
2 May | 6.35 | 7.74 | 4.45 | 20.62 | 31.20 | 48.18 |
26 May | 13.16 | 11.39 | 6.27 | 40.73 | 22.23 | 37.04 |
27 May | 13.21 | 12.97 | 6.70 | 36.19 | 26.62 | 37.19 |
28 May | 13.21 | 14.82 | 6.91 | 33.64 | 29.52 | 36.84 |
30 May | 22.06 | 22.97 | 12.98 | 31.34 | 23.87 | 44.78 |
31 May | 20.97 | 27.35 | 13.95 | 21.95 | 34.43 | 43.61 |
1 June | 21.33 | 27.55 | 15.46 | 19.47 | 29.24 | 51.28 |
2 June | 17.38 | 26.33 | 13.91 | 12.94 | 35.30 | 51.76 |
3 June | 20.13 | 25.21 | 14.76 | 19.79 | 26.84 | 53.37 |
4 June | 9.40 | 22.86 | 7.84 | 7.40 | 55.27 | 37.34 |
5 June | 9.17 | 23.15 | 7.02 | 9.99 | 57.54 | 32.47 |
6 June | 9.17 | 22.05 | 6.83 | 11.37 | 55.53 | 33.09 |
17 June | 15.09 | 15.71 | 7.94 | 34.99 | 26.15 | 38.86 |
18 June | 15.09 | 15.71 | 7.94 | 34.99 | 26.15 | 38.86 |
19 June | 14.52 | 15.71 | 7.88 | 33.35 | 27.10 | 39.55 |
Average | 42% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sava, E.; Cervone, G.; Kalyanapu, A. Multiscale Observation Product (MOP) for Temporal Flood Inundation Mapping of the 2015 Dallas Texas Flood. Remote Sens. 2023, 15, 1615. https://doi.org/10.3390/rs15061615
Sava E, Cervone G, Kalyanapu A. Multiscale Observation Product (MOP) for Temporal Flood Inundation Mapping of the 2015 Dallas Texas Flood. Remote Sensing. 2023; 15(6):1615. https://doi.org/10.3390/rs15061615
Chicago/Turabian StyleSava, Elena, Guido Cervone, and Alfred Kalyanapu. 2023. "Multiscale Observation Product (MOP) for Temporal Flood Inundation Mapping of the 2015 Dallas Texas Flood" Remote Sensing 15, no. 6: 1615. https://doi.org/10.3390/rs15061615