Statistical Bias Correction of Precipitation Forecasts Based on Quantile Mapping on the Sub-Seasonal to Seasonal Scale
Abstract
:1. Introduction
2. Study Area and Data
2.1. Datasets
2.2. Study Area
3. Method
3.1. Quantile Mapping of the Matching Precipitation Threshold by Time
3.2. Discrimination Factors
3.2.1. Discrimination Factor One
3.2.2. Discrimination Factor Two
3.2.3. Discrimination Factors Three and Four
3.2.4. Random Forest
3.3. Additional Spatial Correction
3.4. The DRIVE Model
3.5. Evaluation Methods
4. Results
4.1. Precipitation Assessment Results
4.2. Hydrological Assessment Results
5. Discussion
6. Conclusions
- The MPTT-QM model has better consistency with IMERG than the original QM model in terms of spatial distribution. The MPTT-QM model excelled in terms of the RMSE and MB;
- MPTT-QM can effectively optimize the change in the precipitation series and improve the correlation coefficient between the model and observation data, which the QM method cannot achieve to any meaningful extent. For a 14-day lead time forecast, MPTT-QM increases the average correlation coefficient of the PRB by nearly six times compared to the original FGOALS model on the daily scale;
- MPTT-QM also shows a stable performance in terms of the POD and CSI. MPTT-QM shows a good precipitation detection ability for the 14-day to 90-day lead time forecasts;
- Based on the hydrological performance evaluation, the KGE coefficients of the eight hydrological stations are improved significantly using the MPTT-QM-DRIVE model compared to the QM-DRIVE model.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cross, R. International federation of red cross and Red Crescent Societies. Personnel 2003, 1, 754. [Google Scholar]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Szwitzerland, 2014. [Google Scholar]
- Pappenberger, F.; Bartholmes, J.; Thielen, J.; Cloke, H.L.; Buizza, R.; de Roo, A. New dimensions in early flood warning across the globe using grand-ensemble weather predictions. Geophys. Res. Lett. 2008, 35, L10404. [Google Scholar] [CrossRef]
- Fritsch, J.M.; Carbone, R. Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Am. Meteorol. Soc. 2004, 85, 955–966. [Google Scholar] [CrossRef]
- Schumacher, R.S. The studies of precipitation, flooding, and rainfall extremes across disciplines (SPREAD) workshop: An interdisciplinary research and education initiative. Bull. Am. Meteorol. Soc. 2016, 97, 1791–1796. [Google Scholar] [CrossRef]
- Vitart, F. Monthly forecasting at ECMWF. Mon. Weather Rev. 2004, 132, 2761–2779. [Google Scholar] [CrossRef]
- Keenan, T.; Joe, P.; Wilson, J.; Collier, C.; Golding, B.; Burgess, D.; May, P.; Pierce, C.; Bally, J.; Crook, A. The Sydney 2000 world weather research programme forecast demonstration project: Overview and current status: Overview and current status. Bull. Am. Meteorol. Soc. 2003, 84, 1041–1054. [Google Scholar] [CrossRef]
- Miyakoda, K.; Smagorinsky, J.; Strickler, R.F.; Hembree, G. Experimental extended predictions with a nine-level hemispheric model. Mon. Weather Rev. 1969, 97, 1–76. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Lorenz, E.N. Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci. 1969, 26, 636–646. [Google Scholar] [CrossRef]
- Li, J.; Ding, R. Temporal-spatial distributions of predictability limit of short-term climate. Chin. J. Atmos. Sci 2008, 32, 975–986. [Google Scholar]
- Li, W.; Zhu, Y.; Zhou, X.; Hou, D.; Sinsky, E.; Melhauser, C.; Peña, M.; Guan, H.; Wobus, R. Evaluating the MJO prediction skill from different configurations of NCEP GEFS extended forecast. Clim. Dyn. 2019, 52, 4923–4936. [Google Scholar] [CrossRef]
- Vitart, F. Impact of the Madden Julian Oscillation on tropical storms and risk of landfall in the ECMWF forecast system. Geophys. Res. Lett. 2009, 36, L15802. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, X.; Li, W.; Hou, D.; Melhauser, C.; Sinsky, E.; Peña, M.; Fu, B.; Guan, H.; Kolczynski, W. Toward the improvement of subseasonal prediction in the National Centers for environmental prediction global ensemble forecast system. J. Geophys. Res. Atmos. 2018, 123, 6732–6745. [Google Scholar] [CrossRef]
- Guan, H.; Zhu, Y.; Sinsky, E.; Li, W.; Zhou, X.; Hou, D.; Melhauser, C.; Wobus, R. Systematic error analysis and calibration of 2-m temperature for the NCEP GEFS reforecast of the Subseasonal Experiment (SubX) Project. Weather Forecast. 2019, 34, 361–376. [Google Scholar] [CrossRef]
- Delle Monache, L.; Eckel, F.A.; Rife, D.L.; Nagarajan, B.; Searight, K. Probabilistic weather prediction with an analog ensemble. Mon. Weather Rev. 2013, 141, 3498–3516. [Google Scholar] [CrossRef]
- Hagedorn, R.; Buizza, R.; Hamill, T.M.; Leutbecher, M.; Palmer, T. Comparing TIGGE multimodel forecasts with reforecast-calibrated ECMWF ensemble forecasts. Q. J. R. Meteorol. Soc. 2012, 138, 1814–1827. [Google Scholar] [CrossRef]
- Hamill, T.M.; Bates, G.T.; Whitaker, J.S.; Murray, D.R.; Fiorino, M.; Galarneau, T.J.; Zhu, Y.; Lapenta, W. NOAA’s second-generation global medium-range ensemble reforecast dataset. Bull. Am. Meteorol. Soc. 2013, 94, 1553–1565. [Google Scholar] [CrossRef]
- Hamill, T.M.; Whitaker, J.S. Ensemble calibration of 500-hPa geopotential height and 850-hPa and 2-m temperatures using reforecasts. Mon. Weather Rev. 2007, 135, 3273–3280. [Google Scholar] [CrossRef]
- Bennett, J.; Grose, M.; Post, D.; Ling, F.; Corney, S.; Bindoff, N. Performance of quantile-quantile bias-correction for use in hydroclimatological projections. In Proceedings of the MODSIM 2011-19th International Congress on Modelling and Simulation-Sustaining Our Future: Understanding and Living with Uncertainty, Perth, Australia, 12–16 December 2011; pp. 2668–2675. [Google Scholar]
- Devi, U.; Shekhar, M.; Singh, G. Correction of mesoscale model daily precipitation data over Northwestern Himalaya. Theor. Appl. Climatol. 2021, 143, 51–60. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, T.; Zhang, Y.; Cai, H.; Hou, A.; Chen, X. A five-parameter Gamma-Gaussian model to calibrate monthly and seasonal GCM precipitation forecasts. J. Hydrol. 2021, 603, 126893. [Google Scholar] [CrossRef]
- Li, H.; Sheffield, J.; Wood, E.F. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res. Atmos. 2010, 115, D10101. [Google Scholar] [CrossRef]
- Piani, C.; Haerter, J.; Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol. 2010, 99, 187–192. [Google Scholar] [CrossRef]
- Themeßl, M.J.; Gobiet, A.; Heinrich, G. Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim. Chang. 2012, 112, 449–468. [Google Scholar] [CrossRef]
- Gneiting, T.; Raftery, A.E.; Westveld, A.H.; Goldman, T. Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Weather Rev. 2005, 133, 1098–1118. [Google Scholar] [CrossRef]
- Wilks, D.S.; Hamill, T.M. Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Weather Rev. 2007, 135, 2379–2390. [Google Scholar] [CrossRef]
- Raftery, A.E.; Gneiting, T.; Balabdaoui, F.; Polakowski, M. Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather Rev. 2005, 133, 1155–1174. [Google Scholar] [CrossRef]
- Wilson, L.J.; Beauregard, S.; Raftery, A.E.; Verret, R. Calibrated surface temperature forecasts from the Canadian ensemble prediction system using Bayesian model averaging. Mon. Weather Rev. 2007, 135, 1364–1385. [Google Scholar] [CrossRef]
- Robertson, D.; Shrestha, D.; Wang, Q. Post-processing rainfall forecasts from numerical weather prediction models for short-term streamflow forecasting. Hydrol. Earth Syst. Sci. 2013, 17, 3587–3603. [Google Scholar] [CrossRef]
- Shrestha, D.L.; Robertson, D.E.; Bennett, J.C.; Wang, Q. Improving precipitation forecasts by generating ensembles through postprocessing. Mon. Weather Rev. 2015, 143, 3642–3663. [Google Scholar] [CrossRef]
- Wang, Q.; Robertson, D.; Chiew, F. A Bayesian joint probability modeling approach for seasonal forecasting of streamflows at multiple sites. Water Resour. Res. 2009, 45, W05407. [Google Scholar] [CrossRef]
- Cheng, W.Y.; Steenburgh, W.J. Strengths and weaknesses of MOS, running-mean bias removal, and Kalman filter techniques for improving model forecasts over the western United States. Weather Forecast. 2007, 22, 1304–1318. [Google Scholar] [CrossRef]
- Taillardat, M.; Fougères, A.-L.; Naveau, P.; Mestre, O. Forest-based and semiparametric methods for the postprocessing of rainfall ensemble forecasting. Weather Forecast. 2019, 34, 617–634. [Google Scholar] [CrossRef]
- Herman, G.R.; Schumacher, R.S. Money doesn’t grow on trees, but forecasts do: Forecasting extreme precipitation with random forests. Mon. Weather Rev. 2018, 146, 1571–1600. [Google Scholar] [CrossRef]
- Li, H.; Yu, C.; Xia, J.; Wang, Y.; Zhu, J.; Zhang, P. A model output machine learning method for grid temperature forecasts in the Beijing area. Adv. Atmos. Sci. 2019, 36, 1156–1170. [Google Scholar] [CrossRef]
- Li, W.; Pan, B.; Xia, J.; Duan, Q. Convolutional neural network-based statistical post-processing of ensemble precipitation forecasts. J. Hydrol. 2022, 605, 127301. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Y.; Yuan, Q.; Yue, L.; Zhang, L. Spatiotemporal estimation of 6-hour high-resolution precipitation across China based on Himawari-8 using a stacking ensemble machine learning model. J. Hydrol. 2022, 609, 127718. [Google Scholar] [CrossRef]
- Liu, L.; Gao, C.; Xuan, W.; Xu, Y.-P. Evaluation of medium-range ensemble flood forecasting based on calibration strategies and ensemble methods in Lanjiang Basin, Southeast China. J. Hydrol. 2017, 554, 233–250. [Google Scholar] [CrossRef]
- Rajczak, J.; Kotlarski, S.; Schär, C. Does quantile mapping of simulated precipitation correct for biases in transition probabilities and spell lengths? J. Clim. 2016, 29, 1605–1615. [Google Scholar] [CrossRef]
- Zhao, T.; Bennett, J.C.; Wang, Q.; Schepen, A.; Wood, A.W.; Robertson, D.E.; Ramos, M.-H. How suitable is quantile mapping for postprocessing GCM precipitation forecasts? J. Clim. 2017, 30, 3185–3196. [Google Scholar] [CrossRef]
- Lien, G.-Y.; Miyoshi, T.; Kalnay, E. Assimilation of TRMM multisatellite precipitation analysis with a low-resolution NCEP global forecast system. Mon. Weather Rev. 2016, 144, 643–661. [Google Scholar] [CrossRef]
- Da, C.; Kalnay, E. Improving Tropical Cyclone Predictions by Assimilation of Satellite-Retrieved Precipitation with Gaussian Transformation. In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 10–14 December 2018; p. NG23A–02. [Google Scholar]
- Wood, A.W.; Maurer, E.P.; Kumar, A.; Lettenmaier, D.P. Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res. Atmos. 2002, 107, ACL 6-1–ACL 6-15. [Google Scholar] [CrossRef]
- Terink, W.; Hurkmans, R.; Torfs, P.; Uijlenhoet, R. Bias correction of temperature and precipitation data for regional climate model application to the Rhine basin. Hydrol. Earth Syst. Sci. Discuss. 2009, 6, 5377–5413. [Google Scholar]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- He, B.; Bao, Q.; Wang, X.; Zhou, L.; Wu, X.; Liu, Y.; Wu, G.; Chen, K.; He, S.; Hu, W. CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation. Adv. Atmos. Sci. 2019, 36, 771–778. [Google Scholar] [CrossRef]
- He, B.; Liu, Y.; Wu, G.; Bao, Q.; Zhou, T.; Wu, X.; Wang, L.; Li, J.; Wang, X.; Li, J. CAS FGOALS-f3-L model datasets for CMIP6 GMMIP Tier-1 and Tier-3 experiments. Adv. Atmos. Sci. 2020, 37, 18–28. [Google Scholar] [CrossRef]
- Zhao, Y.; Zou, X.; Cao, L.; Xu, X. Changes in precipitation extremes over the Pearl River Basin, southern China, during 1960–2012. Quat. Int. 2014, 333, 26–39. [Google Scholar] [CrossRef]
- Minville, M.; Brissette, F.; Leconte, R. Uncertainty of the impact of climate change on the hydrology of a nordic watershed. J. Hydrol. 2008, 358, 70–83. [Google Scholar] [CrossRef]
- Wilby, R.L.; Hay, L.E.; Leavesley, G.H. A comparison of downscaled and raw GCM output: Implications for climate change scenarios in the San Juan River basin, Colorado. J. Hydrol. 1999, 225, 67–91. [Google Scholar] [CrossRef]
- Grillakis, M.G.; Koutroulis, A.G.; Tsanis, I.K. Multisegment statistical bias correction of daily GCM precipitation output. J. Geophys. Res. Atmos. 2013, 118, 3150–3162. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Fan, Y. Sample quantiles in statistical packages. Am. Stat. 1996, 50, 361–365. [Google Scholar]
- Zhang, H.; Zhai, P. Temporal and spatial characteristics of extreme hourly precipitation over eastern China in the warm season. Adv. Atmos. Sci. 2011, 28, 1177–1183. [Google Scholar] [CrossRef]
- Bharti, V.; Singh, C.; Ettema, J.; Turkington, T. Spatiotemporal characteristics of extreme rainfall events over the Northwest Himalaya using satellite data. Int. J. Climatol. 2016, 36, 3949–3962. [Google Scholar] [CrossRef]
- Martius, O.; Pfahl, S.; Chevalier, C. A global quantification of compound precipitation and wind extremes. Geophys. Res. Lett. 2016, 43, 7709–7717. [Google Scholar] [CrossRef]
- Navarro-Racines, C.; Tarapues, J.; Thornton, P.; Jarvis, A.; Ramirez-Villegas, J. High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci. Data 2020, 7, 7. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, C.; Liaw, A.; Breiman, L. Using random forest to learn imbalanced data. Univ. Calif. Berkeley 2004, 110, 24. [Google Scholar]
- Primajaya, A.; Sari, B.N. Random forest algorithm for prediction of precipitation. Indones. J. Artif. Intell. Data Min. 2018, 1, 27–31. [Google Scholar] [CrossRef]
- Tian, Y.; Peters-Lidard, C.D.; Eylander, J.B.; Joyce, R.J.; Huffman, G.J.; Adler, R.F.; Hsu, K.l.; Turk, F.J.; Garcia, M.; Zeng, J. Component analysis of errors in satellite-based precipitation estimates. J. Geophys. Res. Atmos. 2009, 114, D24101. [Google Scholar] [CrossRef]
- Dixon, W.J. Analysis of extreme values. Ann. Math. Stat. 1950, 21, 488–506. [Google Scholar] [CrossRef]
- Reed, S.; Schaake, J.; Zhang, Z. A distributed hydrologic model and threshold frequency-based method for flash flood forecasting at ungauged locations. J. Hydrol. 2007, 337, 402–420. [Google Scholar] [CrossRef]
- Yilmaz, K.K.; Adler, R.F.; Tian, Y.; Hong, Y.; Pierce, H.F. Evaluation of a satellite-based global flood monitoring system. Int. J. Remote Sens. 2010, 31, 3763–3782. [Google Scholar] [CrossRef]
- Wu, H.; Adler, R.F.; Hong, Y.; Tian, Y.; Policelli, F. Evaluation of global flood detection using satellite-based rainfall and a hydrologic model. J. Hydrometeorol. 2012, 13, 1268–1284. [Google Scholar] [CrossRef]
- Wu, H.; Adler, R.F.; Tian, Y.; Huffman, G.J.; Li, H.; Wang, J. Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res. 2014, 50, 2693–2717. [Google Scholar] [CrossRef]
- Huffman, G.; Adler, R.; Bolvin, D.; Gu, G.; Nelkin, E.; Bowman, K.; Hong, Y.; Stocker, E.; Wolff, D. The TRMM multi-satellite precipitation analysis: Quasi-global, multi-year, combined sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 28–55. [Google Scholar] [CrossRef]
Num. | Name | Longitude | Latitude | Drainage Area (Km2) |
---|---|---|---|---|
1 | Boluo | 114.3 | 23.167 | 25,325 |
2 | Feilaixia | 113.236 | 23.786 | 34,000 |
3 | Shijiao | 112.963 | 23.554 | 38,363 |
4 | Liuzhou | 109.397 | 24.329 | 45,413 |
5 | Nanning | 108.236 | 22.833 | 72,656 |
6 | Guigang | 109.613 | 23.089 | 85,148 |
7 | Dahuangjiangkou | 110.204 | 23.582 | 288,544 |
8 | Wuzhou | 111.329 | 23.465 | 327,006 |
Statistical Metrics | Formulas | Optimal Score |
---|---|---|
Correlation coefficient (R) | 1 | |
Root mean square error (RMSE) | 0 | |
Mean bias (MB) | 0 | |
Probability of detection (POD) | 1 | |
Critical success index (CSI) | 1 | |
False alarm ratio (FAR) | 0 | |
Bias ratio (β) | 1 | |
Variability ratio (γ) | 1 | |
Kling–Gupta efficiency (KGE) | 1 |
Names | CSI | POD | FAR |
---|---|---|---|
FGOALS | 0.302 | 0.412 | 0.461 |
QM-14day | 0.322 | 0.444 | 0.462 |
QM-90day | 0.322 | 0.443 | 0.462 |
MPTT-QM-14day | 0.486 | 0.950 | 0.501 |
MPTT-QM-90day | 0.488 | 0.946 | 0.498 |
Names | Boluo | Feilaixia | Shijiao | Liuzhou | Nanning | Guigang | Dahuangjiangkou | Wuzhou | |
---|---|---|---|---|---|---|---|---|---|
FGOAlS | P | 0.291 | 0.006 | 0.018 | 0.053 | 0.220 | 0.201 | 0.300 | 0.293 |
Q | 0.428 | 0.012 | −0.014 | −0.033 | −0.085 | −0.107 | 0.103 | 0.093 | |
QM-14day | P | 0.365 | 0.188 | 0.204 | 0.352 | 0.383 | 0.369 | 0.478 | 0.480 |
Q | 0.439 | 0.194 | 0.186 | 0.242 | 0.364 | 0.313 | 0.344 | 0.318 | |
QM-90day | P | 0.364 | 0.186 | 0.202 | 0.348 | 0.381 | 0.366 | 0.475 | 0.476 |
Q | 0.437 | 0.191 | 0.184 | 0.240 | 0.360 | 0.309 | 0.342 | 0.316 | |
MPTT-QM-14day | P | 0.761 | 0.798 | 0.804 | 0.793 | 0.892 | 0.886 | 0.876 | 0.863 |
Q | 0.701 | 0.573 | 0.617 | 0.550 | 0.793 | 0.768 | 0.777 | 0.766 | |
MPTT-QM-90day | P | 0.731 | 0.780 | 0.788 | 0.774 | 0.882 | 0.881 | 0.890 | 0.883 |
Q | 0.701 | 0.573 | 0.594 | 0.524 | 0.802 | 0.769 | 0.724 | 0.720 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wu, H.; Nanding, N.; Chen, S.; Hu, Y.; Li, L. Statistical Bias Correction of Precipitation Forecasts Based on Quantile Mapping on the Sub-Seasonal to Seasonal Scale. Remote Sens. 2023, 15, 1743. https://doi.org/10.3390/rs15071743
Li X, Wu H, Nanding N, Chen S, Hu Y, Li L. Statistical Bias Correction of Precipitation Forecasts Based on Quantile Mapping on the Sub-Seasonal to Seasonal Scale. Remote Sensing. 2023; 15(7):1743. https://doi.org/10.3390/rs15071743
Chicago/Turabian StyleLi, Xiaomeng, Huan Wu, Nergui Nanding, Sirong Chen, Ying Hu, and Lingfeng Li. 2023. "Statistical Bias Correction of Precipitation Forecasts Based on Quantile Mapping on the Sub-Seasonal to Seasonal Scale" Remote Sensing 15, no. 7: 1743. https://doi.org/10.3390/rs15071743
APA StyleLi, X., Wu, H., Nanding, N., Chen, S., Hu, Y., & Li, L. (2023). Statistical Bias Correction of Precipitation Forecasts Based on Quantile Mapping on the Sub-Seasonal to Seasonal Scale. Remote Sensing, 15(7), 1743. https://doi.org/10.3390/rs15071743