A High-Performance Thin-Film Sensor in 6G for Remote Sensing of the Sea Surface
Abstract
:1. Introduction
2. Experimental Design
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belkin, I.M. Remote Sensing of Ocean Fronts in Marine Ecology and Fisheries. Remote Sens. 2021, 13, 883. [Google Scholar] [CrossRef]
- Grotte, M.E.; Birkeland, R.; Honore-Livermore, E.; Bakken, S.; Garrett, J.L.; Prentice, E.F.; Sigernes, F.; Orlandic, M.; Gravdahl, J.T.; Johansen, T.A. Ocean Color Hyperspectral Remote Sensing With High Resolution and Low Latency—The HYPSO-1 CubeSat Mission. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–19. [Google Scholar] [CrossRef]
- Kramer, S.J.; Siegel, D.A.; Maritorena, S.; Catlett, D. Modeling surface ocean phytoplankton pigments from hyperspectral remote sensing reflectance on global scales. Remote Sens. Environ. 2022, 270, 112879. [Google Scholar] [CrossRef]
- Su, H.; Qin, T.; Wang, A.; Lu, W. Reconstructing Ocean Heat Content for Revisiting Global Ocean Warming from Remote Sensing Perspectives. Remote Sens. 2021, 13, 3799. [Google Scholar] [CrossRef]
- Liu, H.; He, X.; Li, Q.; Kratzer, S.; Wang, J.; Shi, T.; Hu, Z.; Yang, C.; Hu, S.; Zhou, Q.; et al. Estimating ultraviolet reflectance from visible bands in ocean colour remote sensing. Remote Sens. Environ. 2021, 258, 112404. [Google Scholar] [CrossRef]
- Seydi, S.T.; Hasanlou, M.; Amani, M.; Huang, W. Oil Spill Detection Based on Multiscale Multidimensional Residual CNN for Optical Remote Sensing Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10941–10952. [Google Scholar] [CrossRef]
- Wang, T.; Yu, P.; Wu, Z.; Lu, W.; Liu, X.; Li, Q.P.; Huang, B. Revisiting the Intraseasonal Variability of Chlorophyll-a in the Adjacent Luzon Strait With a New Gap-Filled Remote Sensing Data Set. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–11. [Google Scholar] [CrossRef]
- Hsu, T.Y.; Chang, Y.; Lee, M.A.; Wu, R.F.; Hsiao, S.C. Predicting skipjack tuna fishing grounds in the Western and Central Pacific Ocean based on high-spatial-temporal-resolution satellite data. Remote Sens. 2021, 13, 861. [Google Scholar] [CrossRef]
- Fan, Y.; Li, W.; Chen, N.; Ahn, J.-H.; Park, Y.-J.; Kratzer, S.; Schroeder, T.; Ishizaka, J.; Chang, R.; Stamnes, K. OC-SMART: A machine learning based data analysis platform for satellite ocean color sensors. Remote Sens. Environ. 2021, 253, 112236. [Google Scholar] [CrossRef]
- Xie, T.; Ouyang, R.; Perrie, W.; Zhao, L.; Zhang, X. Proof and Application of Discriminating Ocean Oil Spills and Seawater Based on Polarization Ratio Using Quad-Polarization Synthetic Aperture Radar. Remote Sens. 2023, 15, 1855. [Google Scholar] [CrossRef]
- Silva, G.S.M.; Garcia, C.A.E. Evaluation of ocean chlorophyll-a remote sensing algorithms using in situ fluorescence data in Southern Brazilian Coastal Waters. Ocean. Coast. Res. 2021, 69. [Google Scholar] [CrossRef]
- Seela, B.K.; Janapati, J.; Unnikrishnan, C.K.; Lin, P.-L.; Le Loh, J.; Chang, W.-Y.; Kumar, U.; Reddy, K.K.; Lee, D.-I.; Reddy, M.V. Raindrop Size Distributions of North Indian Ocean Tropical Cyclones Observed at the Coastal and Inland Stations in South India. Remote Sens. 2021, 13, 3178. [Google Scholar] [CrossRef]
- Ma, Y.; Yin, W.; Guo, Z.; Xuan, J. The Ocean Surface Current in the East China Sea Computed by the Geostationary Ocean Color Imager Satellite. Remote Sens. 2023, 15, 2210. [Google Scholar] [CrossRef]
- Kuroda, H.; Setou, T. Extensive Marine Heatwaves at the Sea Surface in the Northwestern Pacific Ocean in Summer 2021. Remote Sens. 2021, 13, 3989. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Cheng, Z.; Liu, T.; Zhai, J.; Hu, H. Polarization Maintaining 3-D Convolutional Neural Network for Color Polarimetric Images Denoising. IEEE Trans. Instrum. Meas. 2023, 72, 1–9. [Google Scholar] [CrossRef]
- Li, X.; Hu, H.; Zhao, L.; Wang, H.; Yu, Y.; Wu, L.; Liu, T. Polarimetric image recovery method combining histogram stretching for underwater imaging. Sci. Rep. 2018, 8, 12430. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Hu, H.; Jiang, J.; Li, X.; Zhao, K.; Cheng, Z.; Sang, M.; Liu, T. Underwater Imaging by Suppressing the Backscattered Light Based on Mueller Matrix. IEEE Photonics J. 2021, 13, 7800106. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Qi, P.; Zhu, Z.; Xu, J.; Liu, T.; Zhai, J.; Hu, H. Are Indices of Polarimetric Purity Excellent Metrics for Object Identification in Scattering Media? Remote Sens. 2022, 14, 4148. [Google Scholar] [CrossRef]
- Li, X.; Hu, H.; Zhao, L.; Wang, H.; Han, Q.; Cheng, Z.; Liu, T. Pseudo-polarimetric Method for Dense Haze Removal. IEEE Photonics J. 2019, 11, 6900611. [Google Scholar] [CrossRef]
- Li, X.; Hu, H.; Wu, L.; Liu, T. Optimization of instrument matrix for Mueller matrix ellipsometry based on partial elements analysis of the Mueller matrix. Opt. Express 2017, 25, 18872–18884. [Google Scholar] [CrossRef]
- Li, X.; Han, Y.; Wang, H.; Liu, T.; Chen, S.-C.; Hu, H. Polarimetric Imaging Through Scattering Media: A Review. Front. Phys. 2022, 10, 815296. [Google Scholar] [CrossRef]
- Liao, S.; Wu, J.; Li, J.; Konstantin, K. Information-Centric Massive IoT-Based Ubiquitous Connected VR/AR in 6G: A Proposed Caching Consensus Approach. IEEE Internet Things 2021, 8, 5172–5184. [Google Scholar] [CrossRef]
- Rajesh, G.; Dakshita, R.; Sudeep, T. 6G-enabled Edge Intelligence for Ultra -Reliable Low Latency Applications: Vision and Mission. Comput. Stand Inter. 2021, 77, 103521. [Google Scholar]
- Qi, W.; Li, Q.; Song, Q.; Guo, L.; Jamalipour, A. Extensive Edge Intelligence for Future Vehicular Networks in 6G. IEEE Wirel Commun. 2021, 28, 128–135. [Google Scholar] [CrossRef]
- Guo, H.; Zhou, X.; Liu, J.; Zhang, Y. Vehicular intelligence in 6G: Networking communications and computing. Veh. Commun. 2022, 33, 100399. [Google Scholar] [CrossRef]
- Shilpa, T.; Nageen, H.; Hosein, N.; Feng, X.; Geng, W.; Vida, I. 6G: Connectivity in the Era of Distributed Intelligence. IEEE Commun. Mag. 2021, 59, 45–50. [Google Scholar]
- Huang, X.; Zhang, K.; Wu, F.; Leng, S. Collaborative Machine Learning for Energy-Efficient Edge Networks in 6G. IEEE Netw. 2021, 35, 12–19. [Google Scholar] [CrossRef]
- Liu, D.F.; Liang, A.J.; Liu, E.K.; Xu, Q.N.; Li, Y.W.; Chen, C.; Pei, D.; Shi, W.J.; Mo, S.K.; Dudin, P.; et al. Magnetic Weyl semimetal phase in a Kagome crystal. Science 2019, 365, 1282–1285. [Google Scholar] [CrossRef] [Green Version]
- Rees, D.; Manna, K.; Lu, B.; Morimoto, T.; Borrmann, H.; Felser, C.; Moore, J.E.; Darius, T.; Orenstein, J. Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi. Sci. Adv. 2020, 6, eaba0509. [Google Scholar] [CrossRef]
- Morali, N.; Batabyal, R.; Nag Pranab, K.; Liu, E.; Xu, Q.; Sun, Y.; Yan, B.; Felser, C.; Avraham, N.; Beidenkopf, H. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 2019, 365, 1286–1291. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhang, T.; Wang, J.; Xu, L.; Lin, Z.; Liu, J.; Wang, C.; Lau, S.P.; Zhang, W.; Chhowalla, M.; et al. Topological phase change transistors based on tellurium Weyl semiconductor. Sci. Adv. 2022, 8, eabn3837. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Li, Z.; Liu, X.; Zhang, C.; Peng, S.; Han, J.; Zhou, H.; Gou, J.; Xiu, F.; et al. Weyl Semiconductor Te/Sb2Se3 Heterostructure for Broadband Photodetection and Its Binary Photoresponse by C60 as Charge-Regulation Medium. Adv. Opt. Mater. 2021, 9, 2101256. [Google Scholar] [CrossRef]
- Zhang, N.; Zhao, G.; Li, L.; Wang, P.; Xie, L.; Cheng, B.; Li, H.; Lin, Z.; Xi, C.; Ke, J.; et al. Magnetotransport signatures of Weyl physics and discrete scale invariance in the elemental semiconductor tellurium. Proc. Natl. Acad. Sci. USA 2020, 117, 11337–11343. [Google Scholar] [CrossRef]
- Liu, N.; Wang, Y.; Li, W.B.; Zhang, L.Y.; He, S.K.; Zhao, J.K.; Zhao, J.J. Thermal stability study of Weyl semimetal WTe2/Ti heterostructures by Raman scattering. Acta Phys. Sin. Ch. Ed. 2022, 71, 197501. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, Y.D.; Zhu, Z.S.; Lai, J.W.; Zhao, C.; Liu, X.F.; Liu, J.; Sun, D. Thin tungsten telluride layer preparation by thermal annealing. Nanotechnology 2017, 27, 414006. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Chai, L.; Liu, W.; Ma, Q.; Li, Y.; Hu, M. THz polarization-sensitive characterization of a large-area multilayer rhenium diselenide nanofilm. Nanotechnology 2019, 30, 505203. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Chen, H.; Zhang, M.; Li, L.; Yang, J.; Yan, P. Broadband electrically controlled bismuth nanofilm THz modulator. APL Photonics 2021, 6, 056103. [Google Scholar] [CrossRef]
- Tong, J.; Suo, F.; Zhang, T.; Huang, Z.; Chu, J.; Zhang, D.H. Plasmonic semiconductor nanogroove array enhanced broad spectral band millimetre and terahertz wave detection. Light Sci. Appl. 2021, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.W.; Politano, A.; Guo, C.; Guo, W.L.; Liu, C.L.; Wang, L.; Chen, X.S.; Lu, W. Ultrasensitive Room-Temperature Terahertz Direct Detection Based on a Bismuth Selenide Topological Insulator. Adv. Funct. Mater. 2018, 28, 1801786. [Google Scholar] [CrossRef]
- Xu, H.; Guo, C.; Zhang, J.; Guo, W.; Kuo, C.-N.; Lue, C.S.; Hu, W.; Wang, L.; Chen, G.; Politano, A.; et al. PtTe2-Based Type-II Dirac Semimetal and Its van der Waals Heterostructure for Sensitive Room Temperature Terahertz Photodetection. Small 2019, 15, 1903362. [Google Scholar] [CrossRef]
- Guo, C.; Hu, Y.; Chen, G.; Wei, D.; Zhang, L.; Chen, Z.; Guo, W.; Xu, H.; Kuo, C.-N.; Lue, C.S.; et al. Anisotropic ultrasensitive PdTe2 -based phototransistor for room-temperature long-wavelength detection. Sci. Adv. 2020, 6, eabb6500. [Google Scholar] [CrossRef]
- Song, Q.; Xu, Y.F.; Zhou, Z.W.; Liang, H.W.; Zhang, M.Y.; Zhu, G.Y.; Yang, J.B.; Yan, P.G. Terahertz Detectors for 6G Technology Using Quantum Dot 3D Concave Convergence Microwheel Arrays. ACS Photonics 2022, 9, 2520–2527. [Google Scholar] [CrossRef]
- Song, Q.; Zhou, Z.; Zhu, G.; Liang, H.; Zhang, M.; Zhang, B.; Liu, F.; Yan, P. Microdisk array based Weyl semimetal nanofilm terahertz detector. Nanophotonics 2022, 11, 3595–3602. [Google Scholar] [CrossRef]
- Zhou, Z.; Song, Q.; Xu, Y.; Liang, H.; Zhang, M.; Zhang, B.; Yan, P. Magnetron sputtering deposited large-scale Weyl semimetal THz detector. Infrared Phys. Technol. 2022, 121, 104060. [Google Scholar] [CrossRef]
- Ma, W.N.; Gao, Y.Q.; Shang, L.Y.; Zhou, W.; Yao, N.J.; Jiang, L.; Qiu, Q.X.; Li, J.B.; Shi, Y.; Hu, Z.G.; et al. Ultrabroadband Tellurium Photoelectric Detector from Visible to Millimeter Wave. Adv. Sci. 2021, 9, 2103873. [Google Scholar] [CrossRef]
- Khodzitsky, M.; Tukmakova, A.; Zykov, D.; Novoselov, M.; Tkhorzhevskiy, I.; Sedinin, A.; Novotelnova, A.; Zaitsev, A.; Demchenko, P.; Makarova, E.; et al. THz room-temperature detector based on thermoelectric frequency-selective surface fabricated from Bi88Sb12 thin film. Appl. Phys. Lett. 2021, 119, 164101. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, T.; Yan, L.; Zhu, C.; Shen, W.; Hu, C.; Lei, H.; Luo, H.; Zhang, D.; Liu, F.; et al. Colossal Room-Temperature Terahertz Topological Response in Type-II Weyl Semimetal NbIrTe4. Adv. Mater. 2022, 34, 2204621. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Chen, Z.; Zhang, S.; Shi, C.; Li, G.; Yu, X.; Xu, Z.; Zhang, L.; Zhao, W.; et al. A candidate material EuSn2As2-based terahertz direct detection and imaging. npj 2D Mater. Appl. 2022, 6, 26. [Google Scholar] [CrossRef]
- Li, J.; Ma, W.; Jiang, L.; Yao, N.; Deng, J.; Qiu, Q.; Shi, Y.; Zhou, W.; Huang, Z. High Performance of Room-Temperature NbSe2 Terahertz Photoelectric Detector. ACS Appl. Mater. Interfaces 2022, 14, 14331–14341. [Google Scholar] [CrossRef]
- Li, J.; Zou, Y.; Hu, D.; Gu, Y.; Han, Z.; Liu, J.; Xu, X. Enhanced room-temperature terahertz detection and imaging derived from anti-reflection 2D perovskite layer on MAPbI3 single crystals. Nanoscale 2022, 14, 6109–6117. [Google Scholar] [CrossRef]
- Li, J.; Jiang, L.; Ma, W.; Wu, T.; Qiu, Q.; Shi, Y.; Zhou, W.; Yao, N.; Huang, Z. VSe2 Nanosheets for Broadband Photodetection from Visible to Terahertz. ACS Appl. Nano Mater. 2022, 5, 5158–5167. [Google Scholar] [CrossRef]
- Huang, Z.; Yan, W.; Li, Z.; Dong, H.; Yang, F.; Wang, X. High-Responsivity, Low-Leakage Current, Ultra-Fast Terahertz Detectors Based on a GaN High-Electron-Mobility Transistor with Integrated Bowtie Antennas. Sensors 2022, 22, 933. [Google Scholar] [CrossRef]
- Jia, H.; Tang, X.; Zhu, X.; Li, M.; Wu, D.; Li, P.; Wang, J.; Li, M.; Li, J. Low-noise room-temperature terahertz detector based on the photothermoelectric effect of graphene oxide-Bi films. Opt. Mater. 2023, 136, 113432. [Google Scholar] [CrossRef]
- Delgado-Notario, J.A.; Knap, W.; Clericò, V.; Salvador-Sánchez, J.; Calvo-Gallego, J.; Taniguchi, T.; Watanabe, K.; Otsuji, T.; Popov, V.V.; Fateev, D.V.; et al. Enhanced terahertz detection of multigate graphene nanostructures. Nanophotonics 2022, 11, 519–529. [Google Scholar] [CrossRef]
- Guo, W.; Dong, Z.; Xu, Y.; Liu, C.; Wei, D.; Zhang, L.; Shi, X.; Guo, C.; Xu, H.; Chen, G.; et al. Sensitive Terahertz Detection and Imaging Driven by the Photothermoelectric Effect in Ultrashort-Channel Black Phosphorus Devices. Adv. Sci. 2020, 7, 1902699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safin, A.; Puliafito, V.; Carpentieri, M.; Finocchio, G.; Nikitov, S.; Stremoukhov, P.; Kirilyuk, A.; Tyberkevych, V.; Slavin, A. Electrically tunable detector of THz-frequency signals based on an antiferromagnet. Appl. Phys. Lett. 2020, 117, 222411. [Google Scholar] [CrossRef]
- Gayduchenko, I.; Xu, S.G.; Alymov, G.; Moskotin, M.; Tretyakov, I.; Taniguchi, T.; Watanabe, K.; Goltsman, G.; Geim, A.K.; Fedorov, G.; et al. Tunnel field-effect transistors for sensitive terahertz detection. Nat. Commun. 2021, 12, 543. [Google Scholar] [CrossRef]
- Čibiraitė-Lukenskienė, D.; Ikamas, K.; Lisauskas, T.; Krozer, V.; Roskos, H.G.; Lisauskas, A. Passive Detection and Imaging of Human Body Radiation Using an Uncooled Field-Effect Transistor-Based THz Detector. Sensors 2020, 20, 4087. [Google Scholar] [CrossRef]
Materials | Detection Frequency | Photoresponsivity | NEP (pW/Hz1/2) | Effective Detection Area | Ref |
---|---|---|---|---|---|
Bi2Se3 | 0.3 THz | 0.29 × 10−2 V/W | 0.36 | Nanoscale | [39] |
PtTe2 | 0.12 THz | 1400 V/W | 10 | Nanoscale | [40] |
PdTe2 | 0.3 THz | 1.3 × 10−8 V/W | 57 | Nanoscale | [41] |
PbS | 0.14 THz | 3.12 A/W | 0.661 | Millimeter scale | [42] |
WTe2 | 0.1 THz | 8.78 A/W | 0.74 | Millimetre scale | [43] |
MoTe2 | 0.1 THz | 4 A/W | 9.74 | Millimetre scale | [44] |
Te crystal | 0.305 THz | 9.83 A/W | 0.6 | Nanoscale | [45] |
Bi88Sb12 | 0.14 THz | 12–20 mV/W | 770 | Micron scale | [46] |
NbIrTe4 | 0.03 THz | 5.7 × 104 V/W | - | Nanoscale | [47] |
EuSn2As2 | 0.02 THz | 0.2 A/W | 30 | Nanoscale | [48] |
NbSe2 | 0.173 THz | 7.8 × 106 V/W | 0.05 | Nanoscale | [49] |
MAPbI3 | 0.1 THz | 88.8 μA/W | 2160 | Nanoscale | [50] |
VSe2 | 0.256 THz | 1.3 × 103 A/W | 0.02 | Nanoscale | [51] |
GaN | 0.21~0.23 THz | 4.9 kV/W | 72 | Nanoscale | [52] |
GO/Bi | 0.22 THz | 0.226 V/W | 1340 | Nanoscale | [53] |
multigate graphene | 0.3 THz | 1.9 mA/W | 670 | Nanoscale | [54] |
Black Phosphorus | 0.12 THz | 297 V/W | 58 | Nanoscale | [55] |
antiferromagnetic/heavy metal | 0.45 THz | 2500 V/W | - | Nanoscale | [56] |
bilayer graphene | 0.13THz | >4 kV/W | 0.2 | Microscale | [57] |
Si-metal | 0.1–1.5 THz | 40 mA/W | 42 | Millimeter scale | [58] |
Te | 0.1 THz | 19.8 A/W | 2.8 | Centimeter scale | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Q.; Xu, X.; Zi, J.; Wang, J.; Peng, Z.; Zhang, B.; Zhang, M. A High-Performance Thin-Film Sensor in 6G for Remote Sensing of the Sea Surface. Remote Sens. 2023, 15, 3682. https://doi.org/10.3390/rs15143682
Song Q, Xu X, Zi J, Wang J, Peng Z, Zhang B, Zhang M. A High-Performance Thin-Film Sensor in 6G for Remote Sensing of the Sea Surface. Remote Sensing. 2023; 15(14):3682. https://doi.org/10.3390/rs15143682
Chicago/Turabian StyleSong, Qi, Xiaoguang Xu, Jianchen Zi, Jiatong Wang, Zhongze Peng, Bingyuan Zhang, and Min Zhang. 2023. "A High-Performance Thin-Film Sensor in 6G for Remote Sensing of the Sea Surface" Remote Sensing 15, no. 14: 3682. https://doi.org/10.3390/rs15143682
APA StyleSong, Q., Xu, X., Zi, J., Wang, J., Peng, Z., Zhang, B., & Zhang, M. (2023). A High-Performance Thin-Film Sensor in 6G for Remote Sensing of the Sea Surface. Remote Sensing, 15(14), 3682. https://doi.org/10.3390/rs15143682