Groundwater Potential Assessment in Gannan Region, China, Using the Soil and Water Assessment Tool Model and GIS-Based Analytical Hierarchical Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Groundwater Recharge Estimation
2.3.1. Groundwater Recharge Estimation
2.3.2. Setup for the SWAT Model
2.3.3. Calibration and Validation
2.4. Groundwater Potential Assessment
2.4.1. GWP Assessment Factors
2.4.2. Analytic Hierarchy Process
2.4.3. Sensitivity Analysis
3. Results
3.1. SWAT Model Output
3.2. GWP Assessment Factors
3.3. GWP Map
3.4. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Stratum | Abbreviation | Description |
---|---|---|
Niugouhe Formation of Cambrian | Slate, sandstone, and carbonaceous slate | |
Gautan Formation of Cambrian | Sandstone, slate, and siltstone | |
Shuishi Formation of Cambrian | Slate, sandstone, and carbonaceous slate | |
Zishan Formation of Carboniferous | Conglomerate and sandstone | |
Hutian Group of Carboniferous | Dolomite and biotite | |
Yunshan Formation, Zhongpeng Formation, and Luoduan Formation, Xiashan Group, Devonian | Conglomerates, sandstones, siltstones, and siltstones | |
Yunshan Formation, Zhongpeng Formation, and Zhangdong Formation, Xiashan Group, Devonian | Conglomerate and sandstone | |
Xiashan Formation, Zhangdong Formation, and Zishan Formation, Xiashan Group, Devonian | Siltstone, mudstone, sandstone, siltstone, and shale | |
Beishui Formation, Linshan Group, Jurassic | Sandstone, gravelly sandstone, fine sandstone, and siltstone | |
Luoao Formation | Sandstone, siltstone, and conglomerate | |
Huobashan Group of Cretaceous | Limestone, siltstone, and conglomerate | |
Hekou Formation and Tangbian Formation, Ganzhou Group, Cretaceous | Conglomerates, sandstones, greywacke, and basalt | |
Yangjiaqiao Formation of Nanhua | Mud conglomerate, quartzite, and sand conglomerate | |
Chetou Formation, Liangshan Formation, Qixia Formation, Xiaojiangbian Formation and Maokou Formation of Permian | Siltstone, shale, and limestone | |
Leping Formation, Changxing Formation, and Dalong Formation of Permian | Granite | |
Tantou Formation of Quaternary | Granite | |
Lianyu Group of Quaternary | Granite | |
Water Body | Granite | |
Ganxian Formation of Quaternary | Granite | |
Anyuan Group of Triassic | Granite | |
Lechangxia Group of Sinian | Granite | |
Early Jurassic Granites | Granite | |
Gexianshan Upper Unit of Middle Jurassic | Granite | |
Shangyou Upper Unit of Late Silurian | Granite | |
Qiaotou Upper Unit, Qingxi Upper Unit, Fucheng Upper Unit, and Tuqiao Upper Unit of Late Triassic | Granite | |
Huping Upper Unit and Laoluopi Upper Unit of Late Silurian | Granite | |
Fengshi Upper Unit of Early Jurassic | Granite | |
Lingshan Upper Unit, Yuexing Upper Unit, Mazitang Upper Unit, and Hengshan Upper Unit of Middle Jurassic | Granite | |
Black Mica Diorite Granite of Late Jurassic | Granite | |
Fufang Upper Unit and Tanghu Upper Unit of Middle Silurian | Granite | |
Guikeng Upper Unit, Huping Upper Unit, and Shangyou Upper Unit of Late Silurian | Granite | |
Fucheng Upper Unit, Qingxi Upper Unit, Qiaotou Upper Unit, and Yujingshan Upper Unit of Late Triassic | Granite | |
Shangyou Upper Unit of Late Silurian | Granite |
References
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [Green Version]
- Osman, A.I.A.; Ahmed, A.N.; Chow, M.F.; Huang, Y.F.; El-Shafie, A. Extreme gradient boosting (Xgboost) model to predict the groundwater levels in Selangor Malaysia. Ain Shams Eng. J. 2021, 12, 1545–1556. [Google Scholar] [CrossRef]
- Osman, A.I.A.; Ahmed, A.N.; Huang, Y.F.; Kumar, P.; Birima, A.H.; Sherif, M.; Sefelnasr, A.; Ebraheemand, A.A.; El-Shafie, A. Past, present and perspective methodology for groundwater modeling-based machine learning approaches. Arch. Comput. Method Eng. 2022, 29, 3843–3859. [Google Scholar] [CrossRef]
- Water, U.N. Groundwater: Making the invisible visible. Legal Lock J. 2022, 1, 69. [Google Scholar]
- Naghibi, S.A.; Moghaddam, D.D.; Kalantar, B.; Pradhan, B.; Kisi, O. A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping. J. Hydrol. 2017, 548, 471–483. [Google Scholar] [CrossRef]
- Ammar, A.I.; Kamal, K.A. Resistivity method contribution in determining of fault zone and hydro-geophysical characteristics of carbonate aquifer, eastern desert, Egypt. Appl. Water Sci. 2018, 8, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Allafta, H.; Opp, C.; Patra, S. Identification of groundwater potential zones using remote sensing and GIS techniques: A case study of the Shatt Al-Arab Basin. Remote Sens. 2020, 13, 112. [Google Scholar]
- Moss, R.; Moss, G.E. Handbook of Ground Water Development; Wiley-Interscience: New York, NY, USA, 1990. [Google Scholar]
- Fetter, C.W. Applied Hydrogeology; Waveland Press: Long Grove, IL, USA, 2018. [Google Scholar]
- Elmahdy, S.I.; Mohamed, M.M. Automatic detection of near surface geological and hydrological features and investigating their influence on groundwater accumulation and salinity in southwest Egypt using remote sensing and GIS. Geocarto Int. 2015, 30, 132–144. [Google Scholar] [CrossRef]
- Elfadaly, A.; Attia, W.; Lasaponara, R. Monitoring the environmental risks around Medinet Habu and Ramesseum Temple at West Luxor, Egypt, using remote sensing and GIS techniques. J. Archaeol. Method Theory 2018, 25, 587–610. [Google Scholar] [CrossRef]
- Díaz-Alcaide, S.; Martínez-Santos, P. Advances in groundwater potential mapping. Hydrogeol. J. 2019, 27, 2307–2324. [Google Scholar] [CrossRef]
- Elbeih, S.F. An overview of integrated remote sensing and GIS for groundwater mapping in Egypt. Ain Shams Eng. J. 2015, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, E.; Agarwal, R.; Garg, R.D.; Garg, P.K. Delineation of groundwater potential zone: An AHP/ANP approach. J. Earth Syst. Sci. 2013, 122, 887–898. [Google Scholar]
- Abrams, W.; Ghoneim, E.; Shew, R.; LaMaskin, T.; Al-Bloushi, K.; Hussein, S.; AbuBakr, M.; Al-Mulla, E.; Al-Awar, M.; El-Baz, F. Delineation of groundwater potential (GWP) in the northern United Arab Emirates and Oman using geospatial technologies in conjunction with Simple Additive Weight (SAW), Analytical Hierarchy Process (AHP), and Probabilistic Frequency Ratio (PFR) techniques. J. Arid. Environ. 2018, 157, 77–96. [Google Scholar]
- Thapa, R.; Gupta, S.; Gupta, A.; Reddy, D.V.; Kaur, H. Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India. Hydrogeol. J. 2018, 26, 899–922. [Google Scholar] [CrossRef]
- Manikandan, J.; Kiruthika, A.M.; Sureshbabu, S. Evaluation of groundwater potential zones in Krishnagiri District, Tamil Nadu using MIF Technique. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 10524–10534. [Google Scholar]
- Mohammadi-Behzad, H.R.; Charchi, A.; Kalantari, N.; Nejad, A.M.; Vardanjani, H.K. Delineation of groundwater potential zones using remote sensing (RS), geographical information system (GIS) and analytic hierarchy process (AHP) techniques: A case study in the Leylia–Keynow watershed, southwest of Iran. Carbonates Evaporites 2019, 34, 1307–1319. [Google Scholar]
- Ozdemir, A. GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. J. Hydrol. 2011, 411, 290–308. [Google Scholar]
- Oh, H.; Kim, Y.; Choi, J.; Park, E.; Lee, S. GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J. Hydrol. 2011, 399, 158–172. [Google Scholar]
- Naghibi, S.A.; Pourghasemi, H.R.; Dixon, B. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ. Monit. Assess. 2016, 188, 44. [Google Scholar]
- Guru, B.; Seshan, K.; Bera, S. Frequency ratio model for groundwater potential mapping and its sustainable management in cold desert, India. J. King Saud Univ.-Sci. 2017, 29, 333–347. [Google Scholar]
- Lee, S.; Kim, Y.; Oh, H. Application of a weights-of-evidence method and GIS to regional groundwater productivity potential mapping. J. Environ. Manag. 2012, 96, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Deng, Z.; Deng, F.; Wang, D. Assessment of groundwater potential based on multicriteria decision making model and decision tree algorithms. Math. Probl. Eng. 2016, 2016, 2064575. [Google Scholar]
- Das, S. Comparison among influencing factor, frequency ratio, and analytical hierarchy process techniques for groundwater potential zonation in Vaitarna basin, Maharashtra, India. Groundw. Sustain. Dev. 2019, 8, 617–629. [Google Scholar]
- Chen, W.; Li, H.; Hou, E.; Wang, S.; Wang, G.; Panahi, M.; Li, T.; Peng, T.; Guo, C.; Niu, C. GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Sci. Total Environ. 2018, 634, 853–867. [Google Scholar]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Finizio, A.; Villa, S. Environmental risk assessment for pesticides: A tool for decision making. Environ. Impact Assess. Rev. 2002, 22, 235–248. [Google Scholar]
- Arulbalaji, P.; Padmalal, D.; Sreelash, K. GIS and AHP techniques based delineation of groundwater potential zones: A case study from southern Western Ghats, India. Sci. Rep. 2019, 9, 2082. [Google Scholar]
- Saranya, T.; Saravanan, S. Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Model. Earth Syst. Environ. 2020, 6, 1105–1122. [Google Scholar]
- Nithya, C.N.; Srinivas, Y.; Magesh, N.S.; Kaliraj, S. Assessment of groundwater potential zones in Chittar basin, Southern India using GIS based AHP technique. Remote Sens. Appl. Soc. Environ. 2019, 15, 100248. [Google Scholar] [CrossRef]
- Achu, A.L.; Thomas, J.; Reghunath, R. Multi-criteria decision analysis for delineation of groundwater potential zones in a tropical river basin using remote sensing, GIS and analytical hierarchy process (AHP). Groundw. Sustain. Dev. 2020, 10, 100365. [Google Scholar]
- Bera, A.; Mukhopadhyay, B.P.; Barua, S. Delineation of groundwater potential zones in Karha river basin, Maharashtra, India, using AHP and geospatial techniques. Arab. J. Geosci. 2020, 13, 693. [Google Scholar]
- Genjula, W.; Jothimani, M.; Gunalan, J.; Abebe, A. Applications of statistical and AHP models in groundwater potential mapping in the Mensa river catchment, Omo river valley, Ethiopia. Model. Earth Syst. Environ. 2023, 1–19. [Google Scholar] [CrossRef]
- Mahato, R.; Bushi, D.; Nimasow, G.; Nimasow, O.D.; Joshi, R.C. AHP and GIS-based delineation of groundwater potential of Papum Pare District of Arunachal Pradesh, India. J. Geol. Soc. India 2022, 98, 102–112. [Google Scholar]
- Moharir, K.N.; Pande, C.B.; Gautam, V.K.; Singh, S.K.; Rane, N.L. Integration of hydrogeological data, GIS and AHP techniques applied to delineate groundwater potential zones in sandstone, limestone and shales rocks of the Damoh district,(MP) central India. Environ. Res. 2023, 228, 115832. [Google Scholar] [PubMed]
- Ashwini, K.; Verma, R.K.; Sriharsha, S.; Chourasiya, S.; Singh, A. Delineation of groundwater potential zone for sustainable water resources management using remote sensing-GIS and analytic hierarchy approach in the state of Jharkhand, India. Groundw. Sustain. Dev. 2023, 21, 100908. [Google Scholar]
- Arumugam, M.; Kulandaisamy, P.; Karthikeyan, S.; Thangaraj, K.; Senapathi, V.; Chung, S.Y.; Muthuramalingam, S.; Rajendran, M.; Sugumaran, S.; Manimuthu, S. An Assessment of Geospatial Analysis Combined with AHP Techniques to Identify Groundwater Potential Zones in the Pudukkottai District, Tamil Nadu, India. Water 2023, 15, 1101. [Google Scholar]
- Gautam, V.K.; Pande, C.B.; Kothari, M.; Singh, P.K.; Agrawal, A. Exploration of groundwater potential zones mapping for hard rock region in the Jakham river basin using geospatial techniques and aquifer parameters. Adv. Space Res. 2023, 71, 2892–2908. [Google Scholar]
- Etuk, M.N.; Igwe, O.; Egbueri, J.C. An integrated geoinformatics and hydrogeological approach to delineating groundwater potential zones in the complex geological terrain of Abuja, Nigeria. Model. Earth Syst. Environ. 2023, 9, 285–311. [Google Scholar]
- Ikirri, M.; Boutaleb, S.; Ibraheem, I.M.; Abioui, M.; Echogdali, F.Z.; Abdelrahman, K.; Id-Belqas, M.; Abu-Alam, T.; El Ayady, H.; Essoussi, S. Delineation of Groundwater Potential Area using an AHP, Remote Sensing, and GIS Techniques in the Ifni Basin, Western Anti-Atlas, Morocco. Water 2023, 15, 1436. [Google Scholar]
- Yadav, B.; Malav, L.C.; Jangir, A.; Kharia, S.K.; Singh, S.V.; Yeasin, M.; Nogiya, M.; Meena, R.L.; Meena, R.S.; Tailor, B.L. Application of analytical hierarchical process, multi-influencing factor, and geospatial techniques for groundwater potential zonation in a semi-arid region of western India. J. Contam. Hydrol. 2023, 253, 104122. [Google Scholar]
- Danso, S.Y.; Ma, Y. Geospatial techniques for groundwater potential zones delineation in a coastal municipality, Ghana. Egypt. J. Remote Sens. Space Sci. 2023, 26, 75–84. [Google Scholar]
- Goswami, A.; Gor, N.; Borah, A.J.; Chauhan, G.; Saha, D.; Kothyari, G.C.; Barpatra, D.; Hazarika, A.; Lakhote, A.; Jani, C. Groundwater potential zone demarcation in the Khadir Island of Kachchh, Western India. Groundw. Sustain. Dev. 2023, 20, 100876. [Google Scholar]
- Petrick, N.; Jubidi, M.F.B.; Ahmad Abir, I. Groundwater Potential Assessment of Penang Island, Malaysia, Through Integration of Remote Sensing and GIS with Validation by 2D ERT. Nat. Resour. Res. 2023, 32, 523–541. [Google Scholar]
- Ifediegwu, S.I. Assessment of groundwater potential zones using GIS and AHP techniques: A case study of the Lafia district, Nasarawa State, Nigeria. Appl. Water Sci. 2022, 12, 10. [Google Scholar] [CrossRef]
- Melese, T.; Belay, T. Groundwater potential zone mapping using analytical hierarchy process and GIS in Muga Watershed, Abay Basin, Ethiopia. Glob. Chall. 2022, 6, 2100068. [Google Scholar] [CrossRef]
- Kaur, L.; Rishi, M.S. Integrated geospatial, geostatistical, and remote-sensing approach to estimate groundwater level in North-western India. Environ. Earth Sci. 2018, 77, 786. [Google Scholar] [CrossRef]
- Wakode, H.B.; Baier, K.; Jha, R.; Azzam, R. Impact of urbanization on groundwater recharge and urban water balance for the city of Hyderabad, India. Int. Soil Water Conserv. Res. 2018, 6, 51–62. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, S.; Zhang, Y.; Li, M.; Wei, Y.; Chen, M.; Zhang, Z.; Dai, Z. GIS-Based Groundwater Potential Assessment in Varied Topographic Areas of Mianyang City, Southwestern China, Using AHP. Remote Sens. 2021, 13, 4684. [Google Scholar] [CrossRef]
- Mallick, J.; Khan, R.A.; Ahmed, M.; Alqadhi, S.D.; Alsubih, M.; Falqi, I.; Hasan, M.A. Modeling groundwater potential zone in a semi-arid region of Aseer using fuzzy-AHP and geoinformation techniques. Water 2019, 11, 2656. [Google Scholar]
- Yifru, B.A.; Mitiku, D.B.; Tolera, M.B.; Chang, S.W.; Chung, I. Groundwater potential mapping using SWAT and GIS-based multi-criteria decision analysis. KSCE J. Civ. Eng. 2020, 24, 2546–2559. [Google Scholar]
- Githui, F.; Selle, B.; Thayalakumaran, T. Recharge estimation using remotely sensed evapotranspiration in an irrigated catchment in southeast Australia. Hydrol. Process. 2012, 26, 1379–1389. [Google Scholar]
- Jin, G.; Shimizu, Y.; Onodera, S.; Saito, M.; Matsumori, K. Evaluation of drought impact on groundwater recharge rate using SWAT and Hydrus models on an agricultural island in western Japan. Proc. Int. Assoc. Hydrol. Sci. 2015, 371, 143–148. [Google Scholar]
- Awan, U.K.; Ismaeel, A. A new technique to map groundwater recharge in irrigated areas using a SWAT model under changing climate. J. Hydrol. 2014, 519, 1368–1382. [Google Scholar] [CrossRef]
- Eshtawi, T.; Evers, M.; Tischbein, B. Quantifying the impact of urban area expansion on groundwater recharge and surface runoff. Hydrol. Sci. J. 2016, 61, 826–843. [Google Scholar] [CrossRef]
- Putthividhya, A.; Laonamsai, J. SWAT and MODFLOW modeling of spatio-temporal runoff and groundwater recharge distribution. In World Environmental and Water Resources Congress; ASCE Press: Reston, VA, USA, 2017; Volume 2017, pp. 51–65. [Google Scholar]
- Jun, C.; Ban, Y.; Li, S. Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar] [CrossRef] [Green Version]
- Fischer, G.; Nachtergaele, F.; Prieler, S.; Van Velthuizen, H.T.; Verelst, L.; Wiberg, D. Global Agro-Ecological Zones Assessment for Agriculture (GAEZ 2008); IIASA: Laxenburg, Austria; FAO: Rome, Italy, 2008; Volume 10. [Google Scholar]
- Meng, X.; Wang, H. China meteorological assimilation driving datasets for the SWAT model Version 1.1 (2008–2016). Natl. Tibet. Plateau Data Cent. 2018. [Google Scholar] [CrossRef]
- Li, C.Y.; Wang, X.C.; He, C.Z.; Wu, X.; Kong, Z.Y.; Li, X.L. China National Digital Geological Map (Public Version at 1: 200 000 Scale) Spatial Database (V1). China Geol. Surv. 2017, 46, 1–10. [Google Scholar]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: Hoboken, NJ, USA, 1977. [Google Scholar]
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT model special section: Overview and insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [PubMed]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar]
- Ayivi, F.; Jha, M.K. Estimation of water balance and water yield in the Reedy Fork-Buffalo Creek Watershed in North Carolina using SWAT. Int. Soil Water Conserv. Res. 2018, 6, 203–213. [Google Scholar] [CrossRef]
- Ridwansyah, I.; Yulianti, M.; Onodera, S.; Shimizu, Y.; Wibowo, H.; Fakhrudin, M. The impact of land use and climate change on surface runoff and groundwater in Cimanuk watershed, Indonesia. Limnology 2020, 21, 487–498. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Bennour, A.; Jia, L.; Menenti, M.; Zheng, C.; Zeng, Y.; Asenso Barnieh, B.; Jiang, M. Calibration and validation of SWAT model by using hydrological remote sensing observables in the Lake Chad Basin. Remote Sens. 2022, 14, 1511. [Google Scholar]
- Liu, Z.; Rong, L.; Wei, W. Impacts of land use/cover change on water balance by using the SWAT model in a typical loess hilly watershed of China. Geogr. Sustain. 2023, 4, 19–28. [Google Scholar]
- Sharma, A.; Patel, P.L.; Sharma, P.J. Influence of climate and land-use changes on the sensitivity of SWAT model parameters and water availability in a semi-arid river basin. Catena 2022, 215, 106298. [Google Scholar]
- Son, N.T.; Le Huong, H.; Loc, N.D.; Phuong, T.T. Application of SWAT model to assess land use change and climate variability impacts on hydrology of Nam Rom Catchment in Northwestern Vietnam. Environ. Dev. Sustain. 2022, 24, 3091–3109. [Google Scholar]
- Trivedi, A.; Awasthi, M.K.; Gautam, V.K.; Pande, C.B.; Din, N.M. Evaluating the groundwater recharge requirement and restoration in the Kanari river, India, using SWAT model. In Environment, Development and Sustainability; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–26. [Google Scholar]
- Pandi, D.; Kothandaraman, S.; Kuppusamy, M. Simulation of water balance components using SWAT model at sub catchment level. Sustainability 2023, 15, 1438. [Google Scholar]
- Al-Djazouli, M.O.; Elmorabiti, K.; Rahimi, A.; Amellah, O.; Fadil, O.A.M. Delineating of groundwater potential zones based on remote sensing, GIS and analytical hierarchical process: A case of Waddai, eastern Chad. GeoJournal 2021, 86, 1881–1894. [Google Scholar]
- Kaur, L.; Rishi, M.S.; Singh, G.; Thakur, S.N. Groundwater potential assessment of an alluvial aquifer in Yamuna sub-basin (Panipat region) using remote sensing and GIS techniques in conjunction with analytical hierarchy process (AHP) and catastrophe theory (CT). Ecol. Indic. 2020, 110, 105850. [Google Scholar]
- Pinto, D.; Shrestha, S.; Babel, M.S.; Ninsawat, S. Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique. Appl. Water Sci. 2017, 7, 503–519. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, I.; Singh, U.K. Assessment of fluoride contaminated groundwater on food crops and vegetables in Birbhum District of West Bengal, India. In Advance Technologies in Agriculture for Doubling Farmer’s Income; New Delhi Publishers: New Delhi, India, 2018; pp. 225–235. [Google Scholar]
- Oikonomidis, D.; Dimogianni, S.; Kazakis, N.; Voudouris, K. A GIS/remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. J. Hydrol. 2015, 525, 197–208. [Google Scholar]
- Mukherjee, I.; Singh, U.K. Delineation of groundwater potential zones in a drought-prone semi-arid region of east India using GIS and analytical hierarchical process techniques. Catena 2020, 194, 104681. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, H.; Ren, C.; Nan, Z.; Wei, X.; Li, C. A cross-reconstruction method for step-changed runoff series to implement frequency analysis under changing environment. Int. J. Environ. Res. Public Health 2019, 16, 4345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiss, R. Determination of drainage network in digital elevation models, utilities and limitations. J. Hung. Geomath. 2004, 2, 17–29. [Google Scholar]
- Naghibi, S.A.; Hashemi, H.; Berndtsson, R.; Lee, S. Application of extreme gradient boosting and parallel random forest algorithms for assessing groundwater spring potential using DEM-derived factors. J. Hydrol. 2020, 589, 125197. [Google Scholar] [CrossRef]
- Conoscenti, C.; Ciaccio, M.; Caraballo-Arias, N.A.; Gómez-Gutiérrez, Á.; Rotigliano, E.; Agnesi, V. Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: A case of the Belice River basin (western Sicily, Italy). Geomorphology 2015, 242, 49–64. [Google Scholar]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for automated geoscientific analyses (SAGA) v. 2.1. 4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- Rahmati, O.; Melesse, A.M. Application of Dempster–Shafer theory, spatial analysis and remote sensing for groundwater potentiality and nitrate pollution analysis in the semi-arid region of Khuzestan, Iran. Sci. Total Environ. 2016, 568, 1110–1123. [Google Scholar] [CrossRef]
- Shao, Z.; Huq, M.E.; Cai, B.; Altan, O.; Li, Y. Integrated remote sensing and GIS approach using Fuzzy-AHP to delineate and identify groundwater potential zones in semi-arid Shanxi Province, China. Environ. Modell. Softw. 2020, 134, 104868. [Google Scholar] [CrossRef]
- Elvis, B.W.W.; Arsene, M.; Théophile, N.M.; Bruno, K.M.E.; Olivier, O.A. Integration of shannon entropy (SE), frequency ratio (FR) and analytical hierarchy process (AHP) in GIS for suitable groundwater potential zones targeting in the Yoyo river basin, Méiganga area, Adamawa Cameroon. J. Hydrol. Reg. Stud. 2022, 39, 100997. [Google Scholar] [CrossRef]
- Jamil, R.M.; Hisham, S.S.; Leong, M.C.; Nawawi, S.A.; Nor, A.; Ibrahim, N. Identification of groundwater potential zones using AHP in district Kuala Krai, Kelantan, Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2021, 842, 12014. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Napolitano, P.; Fabbri, A.G. Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. IAHS Publ. -Ser. Proc. Rep. -Intern. Assoc. Hydrol. Sci. 1996, 235, 559–566. [Google Scholar]
Data | Source | Data Precision |
---|---|---|
DEM | ASTER GDEM (http://www.gscloud.cn accessed on 24 November 2022) | 30 m |
Land use | Globeland30 (http://www.globeland30.com/ accessed on 24 November 2022) | 30 m |
Soil | HWSD (https://www.fao.org/ accessed on 15 December 2022) | 1 km |
Climate | CMADS V1.1 (http://www.cmads.org/ accessed on 20 December 2022) | 1/4°, daily |
Streamflow | Hydrological Yearbook (non-public access) | |
Geology | Geological Map (https://www.ngac.cn/125cms/c/qggnew/index.htm accessed on 15 November 2022) | 1:200,000 |
Wells and springs | Wuhan Geological Survey Center (non-public access) |
Parameter Name | Description | Fitted Value |
---|---|---|
CN2 | SCS runoff curve number | 76.11 |
SOL_AWC | Available water capacity of the soil layer (mm/mm soil) | 0.02 |
GW_DELAY | Groundwater delay (d) | 34.95 |
APLHA_BF | Baseflow recession coefficient | 0.11 |
ESCO | Soil evaporation compensation factor | 0.99 |
SURLAG | Coefficient of surface runoff lag | 4.51 |
CH_N2 | Manning’s value for the main channel | 0.01 |
GW_REVAP | Groundwater ‘revap’ coefficient | 0.03 |
GWQMN | Threshold depth of water in the shallow aquifer required for return flow to occur (mm) | 402.00 |
CANMX | Maximum canopy storage | 10.05 |
SOL_K | Saturated hydraulic conductivity (mm/h) | 0.11 |
Scale | Degree of Preference | Description |
---|---|---|
1 | Equally | Judgment favors both criteria equally |
3 | Moderately | Judgment slightly favors one criterion |
5 | Strongly | Judgment strongly favors one criterion |
7 | Very Strongly | Judgment favors very strongly preference or importance |
9 | Extremely | Quite important |
2, 4, 6 and 8 | Between two scales | Between 1 and 3, 3 and 5, 5 and 7, 7 and 9 |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 |
Calibration (2009–2013) | Validation (2014–2016) | |
---|---|---|
0.86 | 0.92 | |
0.85 | 0.91 |
Recharge/Rainfall | Lithology | LU | SL | DD | CI | FD | Weight | CR | |
---|---|---|---|---|---|---|---|---|---|
Recharge/Rainfall | 1 | 1 | 1/3 | 1 | 1/3 | 3 | 1 | 12.35% | 9.7% |
Lithology | 1 | 1 | 3 | 1 | 1 | 3 | 1 | 18.48% | |
LU | 3 | 1/3 | 1 | 1 | 1/3 | 1 | 1 | 12.63% | |
SL | 1 | 1 | 1 | 1 | 1/2 | 2 | 2 | 14.22% | |
DD | 3 | 1 | 3 | 2 | 1 | 1 | 1 | 21.09% | |
CI | 1/3 | 1/3 | 1 | 1/2 | 1 | 1 | 1 | 9.29% | |
FD | 1 | 1 | 1 | 1/2 | 1 | 1 | 1 | 11.93% |
Factor | Normalized Weight | Sub-Classes | Sub-Classes’ Rating |
---|---|---|---|
Lithology | 18.48% | Very poor for groundwater | 1 |
Poor for groundwater | 2 | ||
Moderate for groundwater | 3 | ||
Good for groundwater | 4 | ||
Excellent for groundwater | 5 | ||
Fault density (km/km2) | 11.93% | 0–0.16 | 1 |
0.16–0.31 | 2 | ||
0.34–0.55 | 3 | ||
0.55–0.86 | 4 | ||
0.86–1.71 | 5 | ||
Land use | 12.63% | Cultivated land | 4 |
Forest | 5 | ||
Grassland | 5 | ||
Wetland | 5 | ||
Water bodies | 5 | ||
Artificial surfaces | 1 | ||
Bare land | 2 | ||
Slope (°) | 14.22% | 0–7 | 5 |
7–13 | 4 | ||
13–20 | 3 | ||
20–28 | 2 | ||
28–63 | 1 | ||
Convergence index | 9.29% | −100–(−39.61) | 5 |
−39.61–(−9.8) | 4 | ||
−9.8–7.45 | 3 | ||
7.45–38.04 | 2 | ||
38.04–99.26 | 1 | ||
Drainage density (km/km2) | 21.09% | 0–0.07 | 1 |
0.07–0.18 | 2 | ||
0.18–0.30 | 3 | ||
0.30–0.43 | 4 | ||
0.43–0.78 | 5 | ||
Rainfall (mm) | 12.35% | 1438–1451 | 1 |
1451–1512 | 2 | ||
1512–1535 | 3 | ||
1535–1563 | 4 | ||
1563–1603 | 5 | ||
Recharge (mm) | 12.35% | 369–441 | 1 |
441–494 | 2 | ||
494–539 | 3 | ||
539–594 | 4 | ||
594–685 | 5 |
Factors | Empirical Weight (%) | Effective Weight (%) | |||
---|---|---|---|---|---|
Min | Max | Mean | SD | ||
Recharge | 12.35 | 1.90 | 41.10 | 13.38 | 6.91 |
Lithology | 18.48 | 3.32 | 39.02 | 14.97 | 4.92 |
LU | 12.63 | 2.02 | 37.70 | 14.48 | 3.91 |
SL | 14.22 | 2.61 | 51.00 | 21.57 | 6.15 |
DD | 21.09 | 3.52 | 47.29 | 15.04 | 8.80 |
CI | 9.29 | 1.37 | 29.57 | 11.12 | 2.77 |
FD | 11.93 | 1.63 | 37.52 | 9.44 | 5.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhang, S.; Li, M.; Zhang, Y.; Chen, M.; Zhang, Q.; Dai, Z.; Liu, J. Groundwater Potential Assessment in Gannan Region, China, Using the Soil and Water Assessment Tool Model and GIS-Based Analytical Hierarchical Process. Remote Sens. 2023, 15, 3873. https://doi.org/10.3390/rs15153873
Zhang Z, Zhang S, Li M, Zhang Y, Chen M, Zhang Q, Dai Z, Liu J. Groundwater Potential Assessment in Gannan Region, China, Using the Soil and Water Assessment Tool Model and GIS-Based Analytical Hierarchical Process. Remote Sensing. 2023; 15(15):3873. https://doi.org/10.3390/rs15153873
Chicago/Turabian StyleZhang, Zeyi, Shuangxi Zhang, Mengkui Li, Yu Zhang, Meng Chen, Qing Zhang, Zhouqing Dai, and Jing Liu. 2023. "Groundwater Potential Assessment in Gannan Region, China, Using the Soil and Water Assessment Tool Model and GIS-Based Analytical Hierarchical Process" Remote Sensing 15, no. 15: 3873. https://doi.org/10.3390/rs15153873
APA StyleZhang, Z., Zhang, S., Li, M., Zhang, Y., Chen, M., Zhang, Q., Dai, Z., & Liu, J. (2023). Groundwater Potential Assessment in Gannan Region, China, Using the Soil and Water Assessment Tool Model and GIS-Based Analytical Hierarchical Process. Remote Sensing, 15(15), 3873. https://doi.org/10.3390/rs15153873