Hierarchical Feature Association and Global Correction Network for Change Detection
Abstract
:1. Introduction
1.1. Background Studies
- (1)
- Traditional methods. Traditional change detection methods can be distinguished into arithmetic-operation-based methods [7,8,9,10,11], image-transformation-based methods [12,13], classification-based methods [14], and clustering-based methods [15,16,17]. The arithmetic-operation-based method obtains the difference map of remote sensing images in different phases, and then the threshold value is determined to classify the changed and unchanged areas. The typical approach includes the image-difference-based method [7,8], image-ratio-based method [9], and change-vector-based method [10,11], etc. However, the arithmetic-operation-based methods are generally computed at the pixel level and ignore the overall information. The image-transformation-based method increases the image difference by transferring images to feature space through image transformation, such as principal component analysis (PCA) [12] and tasseled cap transformation (KT) [13], and then the final result is obtained through the division of a threshold value. The classification-based method obtains the change detection result on the classification map [14]; however, the accuracy may be affected by the classification results. The clustering-based method clusters the difference map to obtain change detection results. For example, Liu et al. [15] used the typical K-mean clustering, Cui et al. [16] introduced fuzzy c-means (FCM) clustering, and Shao et al. [17] proposed a new fuzzy clustering change detection method. Most of the clustering-based methods consider the spectral information of the image but ignore the spatial texture information. In general, traditional methods with simple and fast features are in demand in most applicable cases; however, the accuracy is barely satisfactory.
- (2)
- Deep-learning-based methods. DL-based change detection methods have attracted attention in recent years. Most existing DL-based methods are established on convolutional neural networks (CNN) [18,19,20] or Transformer networks [21,22]. The characteristics of CNN networks brought by their convolutional operators enable them to extract rich local detail information, and, due to the characteristics brought by the cascade of convolutional layers, they extract detail-rich information and abstract information with semantic associative properties. Transformer can be good at extracting global information and has a nonlinear fitting capability, no less than that of the CNN. Most deep learning methods achieved competitive results [23,24,25], and analysis of existing DL-based change detection methods to further improve their performance is necessarily expected.
1.2. Analysis of Existing Deep-Learning-Based Methods
1.2.1. CNN
- (1)
- Feature extraction on a Siamese network
- (2)
- Multi-scale feature utilization
- (3)
- Global information utilization
1.2.2. Transformer
1.3. Challenges
- (1)
- Challenge 1: How to make full use of the information among different scale features.
- (2)
- Challenge 2: How to alleviate the feature misalignment.
1.4. Contribution
- (1)
- A hierarchical feature association and global correction network, namely, HFA-GCN, is proposed for change detection. The HFA is designed to model the association relationships between hierarchical features, so that the different hierarchical features can be fully utilized. The GC is designed to extract global information more efficiently, and alleviate the feature misalignment.
- (2)
- HFA-GCN, by modeling the correlations of hierarchical features at different levels, can enhance the information at different levels, making it easier for change detection tasks to obtain change information at different levels; the innovative global information extraction and utilization method makes the global information effective for change detection tasks. Therefore, HFA-GCN obtains excellent performance.
2. Methodology
2.1. Baseline Backbone Network
2.2. Hierarchical Feature Association Module
2.3. Global Correction Module
2.4. Change Detection Module
3. Experiment and Analysis
3.1. Experimental Datasets
- (1)
- CDD dataset
- (2)
- LEVIR-CD dataset
- (3)
- GZ-CD dataset
3.2. Experimental Setup
3.3. Evaluation Indicators
3.4. Experimental Results
3.4.1. CDD Dataset
3.4.2. LEVIR-CD Dataset
3.4.3. GZ-CD Dataset
3.5. Ablation Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, Z.; Liu, T.; Benediktsson, J.A.; Falco, N. Land cover change detection techniques: Very-high-resolution optical images: A review. IEEE Geosci. Remote Sens. Mag. 2021, 10, 44–63. [Google Scholar] [CrossRef]
- Ji, S.; Wei, S.; Lu, M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set. IEEE Trans. Geosci. Remote Sens. 2019, 57, 574–586. [Google Scholar] [CrossRef]
- Ye, S.; Rogan, J.; Zhu, Z.; Eastman, J.R. A near-real-time approach for monitoring forest disturbance using Landsat time series: Stochas-tic continuous change detection. Remote Sens. Environ. 2021, 252, 112167. [Google Scholar] [CrossRef]
- Gueguen, L.; Hamid, R. Toward a generalizable image representation for large-scale change detection: Application to generic damage analy-sis. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3378–3387. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, M.; Ke, H.; Fang, X.; Zhan, Z.; Chen, S. Landslide recognition by deep convolutional neural network and change detection. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4654–4672. [Google Scholar] [CrossRef]
- Asokan, A.; Anitha, J. Change detection techniques for remote sensing applications: A survey. Earth Sci. Inform. 2019, 12, 143–160. [Google Scholar] [CrossRef]
- Quarmby, N.A.; Cushnie, J.L. Monitoring urban land cover changes at the urban fringe from spot hrv imagery in south-east England. Int. J. Remote Sens. 1989, 10, 953–963. [Google Scholar] [CrossRef]
- Zhu, J.; Su, Y.; Guo, Q.; Harmon, T. Unsupervised object-based differencing for land-cover change detection. Photogramm. Eng. Remote Sens. 2017, 83, 225–236. [Google Scholar] [CrossRef]
- Rignot, E.; Vanzyl, J. Change detection techniques for ers-1 sar data. IEEE Trans. Geosci. Remote Sens. 1993, 31, 896–906. [Google Scholar] [CrossRef]
- Liu, S.; Bruzzone, L.; Bovolo, F.; Zanetti, M.; Du, P. Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4363–4378. [Google Scholar] [CrossRef]
- Ferraris, V.; Dobigeon, N.; Wei, Q.; Chabert, M. Detecting changes between optical images of different spatial and spectral resolutions: A fusion-based approach. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1566–1578. [Google Scholar] [CrossRef]
- Richards, J. Thematic mapping from multitemporal image data using the principal components transformation. Remote Sens. Environ. 1984, 16, 35–46. [Google Scholar] [CrossRef]
- Jin, S.; Sader, A. Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sens. Environ. 2005, 94, 364–372. [Google Scholar] [CrossRef]
- Ahlqvist, O. Extending post-classification change detection using semantic similarity metrics to overcome class heterogeneity: A study of 1992 and 2001 U.S. National Land Cover Database changes. Remote Sens. Environ. 2008, 112, 1226–1241. [Google Scholar] [CrossRef]
- Liu, J.; Chen, K.; Xu, G.; Sun, X.; Yan, M.; Diao, W.; Han, H. Convolutional neural network-based transfer learning for optical aerial images change detection. IEEE Geosci. Remote Sens. Lett. 2019, 17, 127–131. [Google Scholar] [CrossRef]
- Cui, B.; Zhang, Y.; Yan, L.; Wei, J.; Wu, H. An unsupervised sar change detection method based on stochastic subspace ensemble learning. Remote Sens. 2019, 11, 1314. [Google Scholar] [CrossRef]
- Shao, P.; Shi, W.; He, P.; Hao, M.; Zhang, X. Novel Approach to Unsupervised Change Detection Based on a Robust Semi-Supervised FCM Clustering Algorithm. Remote Sens. 2016, 8, 264. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, F.; Dong, J.; Wang, S. Change detection from synthetic aperture radar images based on channel weighting-based deep cascade network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4517–4529. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, W. A feature difference convolutional neural network-based change detection method. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7232–7246. [Google Scholar] [CrossRef]
- Mou, L.; Bruzzone, L.; Zhu, X.X. Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 924–935. [Google Scholar] [CrossRef]
- Li, X.; Du, Z.; Huang, Y.; Tan, Z. A deep translation (GAN) based change detection network for optical and SAR remote sensing images. ISPRS J. Photogramm. Remote Sens. 2021, 179, 14–34. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, F.; Yi, H.; Li, Y.; Chen, X. An unsupervised heterogeneous change detection method based on image translation network and post-processing algorithm. Int. J. Digit. Earth 2022, 15, 1056–1080. [Google Scholar] [CrossRef]
- Yang, B.; Qin, L.; Liu, J.; Liu, X. UTRNet: An Unsupervised Time-Distance-Guided Convolutional Recurrent Network for Change Detection in Irregularly Collected Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Lv, Z.; Huang, H.; Li, X.; Zhao, M.; Benediktsson, J.A.; Sun, W.; Falco, N. Land Cover Change Detection With Heterogeneous Remote Sensing Images: Review, Progress, and Perspective. Proc. IEEE 2022, 11, 1976–1991. [Google Scholar] [CrossRef]
- Lv, Z.; Zhong, P.; Wang, W.; You, Z.; Benediktsson, J.A.; Shi, C. Novel Piecewise Distance Based on Adaptive Region Key-Points Extraction for LCCD With VHR Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–99. [Google Scholar] [CrossRef]
- Fang, S.; Li, K.; Shao, J.; Li, Z. SNUNet-CD: A densely connected Siamese network for change detection of VHR images. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Liu, Y.; Pang, C.; Zhan, Z. Building change detection for remote sensing images using a dual-task constrained deep siamese convolutional network model. IEEE Geosci. Remote Sens. Lett. 2020, 18, 811–815. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, F.; Wang, C.; Wang, H.; Zheng, F.; Chen, X. Y-Net: A multiclass change detection network for bi-temporal remote sensing images. Int. J. Remote Sens. 2022, 43, 565–592. [Google Scholar] [CrossRef]
- Chen, J.; Fan, J.; Zhang, M.; Zhou, Y.; Shen, C. MSF-Net: A Multiscale Supervised Fusion Network for Building Change Detection in High-Resolution Remote Sensing Images. IEEE Access 2022, 10, 30925–30938. [Google Scholar] [CrossRef]
- Song, L.; Xia, M.; Jin, J.; Qian, M.; Zhang, Y. SUACDNet: Attentional change detection network based on siamese U-shaped structure. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102597. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, F.; Cui, G.; Benediktsson, J.A.; Lei, T.; Sun, W. Spatial-Spectral Attention Network Guided with Change Magnitude Image for Land Cover Change Detection Using Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Lv, Z.; Huang, H.; Gao, L.; Benediktsson, J.A.; Zhao, M.; Shi, C. Simple Multiscale UNet for Change Detection With Heterogeneous Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 2504905. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, P.; Tapete, D.; Jiang, L.; Shangguan, B.; Huang, L.; Liu, G. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images. ISPRS J. Photogramm. Remote Sens. 2020, 166, 183–200. [Google Scholar] [CrossRef]
- Chen, H.; Qi, Z.; Shi, Z. Remote sensing image change detection with transformers. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Bandara, W.; Patel, V. A Transformer-Based Siamese Network for Change Detection. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 207–210. [Google Scholar]
- Feng, Y.; Xu, H.; Jiang, J.; Liu, H.; Zheng, J. ICIF-Net: Intra-Scale Cross-Interaction and Inter-Scale Feature Fusion Network for Bitemporal Remote Sensing Images Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
CDD | Pre (%) | Recall (%) | F1 (%) | IOU (%) |
---|---|---|---|---|
FC-EF(2019) | 74.12 | 55.86 | 63.70 | 46.74 |
FC-Siam-Di(2019) | 82.23 | 54.33 | 65.43 | 48.62 |
FC-Siam-Conv(2019) | 77.68 | 58.63 | 66.82 | 50.18 |
IFN(2020) | 96.05 | 97.01 | 96.53 | 93.29 |
SNUNet-CD/32(2022) | 96.14 | 95.90 | 96.02 | 92.34 |
DTCDSCN(2020) | 94.98 | 92.66 | 93.80 | 88.33 |
BIT(2021) | 94.72 | 96.44 | 96.58 | 93.38 |
HFA-GCN | 97.40 | 97.20 | 97.30 | 94.75 |
LEVIR-CD | Pre (%) | Recall (%) | F1 (%) | IOU (%) |
---|---|---|---|---|
FC-EF(2019) | 78.95 | 74.82 | 76.83 | 62.38 |
FC-Siam-Di(2019) | 87.07 | 67.10 | 75.79 | 61.02 |
FC-Siam-Conv(2019) | 87.14 | 66.64 | 75.52 | 60.67 |
IFN(2020) | 88.45 | 90.62 | 89.52 | 81.03 |
SNUNet-CD/32(2022) | 90.12 | 89.17 | 89.64 | 81.23 |
DTCDSCN(2020) | 90.26 | 87.66 | 88.94 | 80.09 |
BIT(2021) | 92.20 | 87.88 | 89.99 | 81.80 |
HFA-GCN | 91.49 | 89.99 | 90.73 | 83.04 |
GZ-CD | Pre (%) | Recall (%) | F1 (%) | IOU (%) |
---|---|---|---|---|
FC-EF(2019) | 87.52 | 55.01 | 67.56 | 51.01 |
FC-Siam-Di(2019) | 76.99 | 62.88 | 69.22 | 52.93 |
FC-Siam-Conv(2019) | 73.94 | 66.64 | 70.10 | 53.97 |
IFN(2020) | 80.70 | 84.66 | 82.64 | 70.41 |
SNUNet-CD/32(2022) | 86.18 | 78.73 | 82.29 | 69.91 |
DTCDSCN(2020) | 88.83 | 79.40 | 83.85 | 72.19 |
BIT(2021) | 92.98 | 81.29 | 86.74 | 76.59 |
HFA-GCN | 91.84 | 83.40 | 86.86 | 76.78 |
Dataset | Methods | Pre (%) | Recall (%) | F1 (%) | IOU (%) |
---|---|---|---|---|---|
CDD | Base | 98.23 | 93.62 | 95.87 | 92.07 |
Res-HFA-GCN | 95.10 | 96.40 | 95.74 | 91.84 | |
w/o HFA | 96.41 | 95.63 | 96.02 | 92.34 | |
w/o GC | 98.48 | 94.12 | 96.25 | 92.77 | |
w/o GC-RIF | 97.66 | 96.60 | 97.13 | 94.42 | |
HFA-GCN | 97.40 | 97.20 | 97.30 | 94.75 | |
LEVIR-CD | Base | 91.52 | 87.67 | 89.55 | 81.08 |
Res-HFA-GCN | 92.01 | 86.79 | 89.33 | 80.71 | |
w/o HFA | 92.33 | 88.91 | 90.59 | 82.79 | |
w/o GC | 91.81 | 87.80 | 89.76 | 81.42 | |
w/o GC-RIF | 93.09 | 88.03 | 90.49 | 82.63 | |
HFA-GCN | 91.49 | 89.99 | 90.73 | 83.04 | |
GZ-CD | Base | 92.05 | 78.01 | 84.45 | 73.09 |
Res-HFA-GCN | 92.69 | 77.53 | 84.44 | 73.07 | |
w/o HFA | 88.35 | 82.37 | 85.26 | 74.30 | |
w/o GC | 92.93 | 78.69 | 85.22 | 74.25 | |
w/o GC-RIF | 93.20 | 80.86 | 86.59 | 76.35 | |
HFA-GCN | 91.84 | 82.40 | 86.86 | 76.78 |
Methods | Base | Res-HFA-GCN | w/o HFA | w/o GC | w/o GC-RIF | HFA-GCN |
---|---|---|---|---|---|---|
FLOPs(G) | 153.71 | 253.47 | 160.29 | 306.01 | 317.32 | 317.48 |
Params(M) | 3.02 | 24.73 | 2.91 | 15.57 | 15.60 | 15.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Meng, X.; Liu, Q.; Lv, Z.; Yang, G.; Sun, W.; Jin, W. Hierarchical Feature Association and Global Correction Network for Change Detection. Remote Sens. 2023, 15, 4141. https://doi.org/10.3390/rs15174141
Lu J, Meng X, Liu Q, Lv Z, Yang G, Sun W, Jin W. Hierarchical Feature Association and Global Correction Network for Change Detection. Remote Sensing. 2023; 15(17):4141. https://doi.org/10.3390/rs15174141
Chicago/Turabian StyleLu, Jinquan, Xiangchao Meng, Qiang Liu, Zhiyong Lv, Gang Yang, Weiwei Sun, and Wei Jin. 2023. "Hierarchical Feature Association and Global Correction Network for Change Detection" Remote Sensing 15, no. 17: 4141. https://doi.org/10.3390/rs15174141