Typical Fine Structure and Seismogenic Mechanism Analysis of the Surface Rupture of the 2022 Menyuan Mw 6.7 Earthquake
Abstract
:1. Introduction
2. Geological Setting
- The Lenglongling fault (LLLF) stretches from the Shuanglong Coal Mine in Haxi Town, Tianzhu County, to Daliang, covering a distance of approximately 120 km. The LLLF is an active left-lateral strike-slip fault that has been active during the Holocene period. It exhibits a distinct fault landscape with a horizontal slip rate of 4.4 to 6.4 mm/yr [20,29,30]. Historical seismic events have been recorded along the fault and its vicinity, including the M 7.2 earthquakes in 1540 [31], the 1986 Menyuan Ms 6.4 earthquakes [22], and the 2016 Menyuan Ms 6.4 earthquake [32,33,34,35]. Guo et al. [26] suggest that this fault is one of the main seismogenic faults responsible for the 1927 Gulang M8 earthquake.
- The Tuolaishan fault (TLSF) is a fault that intersects diagonally with the LLLF at the big bend of Liuhuanggou. It extends westward through Daogou, Daquanwo, Daxigou, and Cairituhe and terminates at Binggou in Qilian County, Qinghai Province. The TLSF has an overall direction of 290–300°, trending southwest, with an inclination angle of 40–60° and a total length exceeding 100 km. The fault exhibits vigorous activity and is characterized by prominent topographic features. Prominent fault scarps, measuring approximately 1–2 m in height, can be observed in Cairituhe (Figure 3a) and Xiuhelong (Figure 3b). The TLSF represents the primary left-lateral strike-slip active fault zone that extends westward from the LLLF.
- The North Tuolaishan Fault (NTLSF) can be divided into three sections. Hu et al. [36] determined a vertical uplift rate of 1.5 ± 0.1 mm/yr in the middle section based on the deformation of river terraces, although no data were reported for the east and west sections. Field investigations have revealed clear landforms along the fault in the west section (Babao River section) (Figure 3c), indicating predominantly reverse and reverse fault-folding characteristics. The fault has an overall direction of approximately 310°, trending southwest, and spans over 280 km. The NTLSF constitutes a branch thrust fault zone that extends along the left-lateral shear sliding direction at the western end of the LLLF.
- The Sunan–Qilian fault (SN-QLF) is located west of the Hongshuiba River, and the eastern section intersects with the LLLF on the northern side of Liuhuanggou. It spans approximately 360 km, with an overall direction of 320° and an inclination angle of 55–60° toward the southwest. In a study by Liu et al. [37,38], a new activity was only observed in the Baiquanmen–Dachamuchang area in the Sunan section. Our investigation focused on the Ebao section, which is the eastern segment of the fault. We observed clear evidence of faulting in the landscape, with a series of fault scarps visible on gully terraces. For instance, a fault scarp measuring approximately 1–3 m height was observed north of Qilian Airport (Figure 3d). This fault also forms part of a branch thrust fault zone that extends along the left-lateral shear sliding direction at the western end of the LLLF.
3. Data and Methods
3.1. Data Acquisition and Process
3.2. Geomorphic Mapping and Offset Measurements
4. Details and Geometry of the Surface Rupture of the Menyuan Earthquake
4.1. Section 1 (S1)
4.2. Section 2 (S2)
4.3. Section 3 (S3)
4.4. Section 4 (S4)
5. Summary of the Surface Coseismic Offset
5.1. Coseismic Horizontal Offset Distribution
5.2. Discussion of Maximum Displacement
6. Discussion on Seismogenic Mechanism
7. Conclusions
- The earthquake occurred at the tectonic boundary between the LLLF and the TLSF in the central region of the QHF in the northern Tibet Plateau. It resulted in three surface ruptures with a combined length approximately 37 km. The primary movement observed was left-lateral sliding, with a maximum horizontal offset of 2.6 ± 0.3 m.
- The earthquake-induced surface deformation phenomena, including left-step stretching and right-step compression, are characteristic of a strike-slip active fault landform.
- This earthquake can be classified as a double-release bend transition earthquake, where the seismic surface rupture jumps from the north branch to the south branch because of differences in structural properties on either side of the fault. During the transition, the north branch experiences tearing, forming two main ruptures and one secondary rupture.
- UAVs have the potential to gather comprehensive data regarding surface rupture zones following earthquakes efficiently. Nevertheless, the resolution limitations of UAVs necessitate the inclusion of on-site field investigations to augment the accuracy and precision of the information obtained.
- Based on the findings of this earthquake investigation and previous research, it is anticipated that the TLSF will become a significant earthquake-prone region.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Longitude (°) | Latitude (°) | Offset (m) | Error | Sign | Longitude (°) | Latitude (°) | Offset (m) | Error | Sign |
---|---|---|---|---|---|---|---|---|---|
101.394303 | 37.748057 | 0.23 | 0.02 | Small striated groove | 101.240316 | 37.806045 | 0.9 | 0.05 | Snow boundaries |
101.391247 | 37.749862 | 0.24 | 0.02 | Grass edges | 101.23939 | 37.806218 | 1.6 | 0.1 | Fence |
101.391162 | 37.749897 | 0.34 | 0.03 | Grass edges | 101.238286 | 37.806104 | 2.08 | 0.08 | Fence |
101.386 | 37.752578 | 0.23 | 0.02 | Grass edges | 101.236146 | 37.806492 | 1.05 | 0.08 | Snow boundaries |
101.385017 | 37.752920 | 0.17 | 0.02 | Grass edges | 101.23614 | 37.806511 | 0.5 | 0.08 | Snow boundaries |
101.385032 | 37.753083 | 0.52 | 0.03 | Grass edges | 101.235977 | 37.806444 | 1.3 | 0.05 | Fence |
101.384977 | 37.753130 | 0.34 | 0.02 | Small striated groove | 101.235959 | 37.806437 | 1.24 | 0.08 | Snow boundaries |
101.383576 | 37.754699 | 0.22 | 0.02 | Grass edges | 101.23592 | 37.806423 | 0.79 | 0.08 | Snow boundaries |
101.382705 | 37.754527 | 1.08 | 0.08 | Snow boundaries | 101.234859 | 37.806689 | 1.49 | 0.08 | Snow boundaries |
101.380171 | 37.755033 | 0.78 | 0.08 | Footprints | 101.234755 | 37.806677 | 1 | 0.08 | Snow boundaries |
101.377602 | 37.75627 | 0.75 | 0.09 | Snow boundaries | 101.234508 | 37.806632 | 0.87 | 0.08 | Snow boundaries |
101.377183 | 37.756518 | 0.74 | 0.08 | Footprints | 101.233685 | 37.806673 | 1.57 | 0.08 | Snow boundaries |
101.374347 | 37.75785 | 0.51 | 0.09 | Footprints | 101.233125 | 37.80682 | 1.28 | 0.08 | Snow boundaries |
101.372748 | 37.758555 | 0.25 | 0.08 | Snow boundaries | 101.233055 | 37.806784 | 1.32 | 0.08 | Snow boundaries |
101.37191 | 37.758764 | 0.31 | 0.08 | Footprints | 101.226338 | 37.807711 | 0.38 | 0.08 | Snow boundaries |
101.366637 | 37.761029 | 0.19 | 0.08 | Snow boundaries | 101.224431 | 37.808205 | 1.2 | 0.08 | Snow boundaries |
101.364277 | 37.762133 | 0.79 | 0.11 | Snow boundaries | 101.224 | 37.808208 | 0.67 | 0.08 | Snow boundaries |
101.361307 | 37.76398 | 0.85 | 0.08 | Ice boundaries | 101.22372 | 37.808283 | 0.97 | 0.08 | Snow boundaries |
101.360964 | 37.764132 | 0.61 | 0.07 | footprints | 101.221483 | 37.808523 | 1.14 | 0.05 | Rut |
101.358185 | 37.765179 | 0.48 | 0.09 | footprints | 101.221465 | 37.808523 | 1 | 0.08 | Fence |
101.350723 | 37.767558 | 0.5 | 0.08 | Snow ridgeline | 101.221032 | 37.808516 | 0.92 | 0.08 | Snow boundaries |
101.343832 | 37.770871 | 1.6 | 0.11 | Snow boundaries | 101.22094 | 37.808451 | 0.38 | 0.08 | Snow boundaries |
101.340444 | 37.771537 | 0.98 | 0.05 | Footprints | 101.213078 | 37.810348 | 0.8 | 0.08 | Ice boundaries |
101.339416 | 37.772165 | 0.9 | 0.1 | Gully | 101.211371 | 37.810965 | 0.66 | 0.08 | Snow boundaries |
101.336599 | 37.773878 | 0.65 | 0.08 | Footprints | 101.208795 | 37.811407 | 0.67 | 0.08 | Snow boundaries |
101.329194 | 37.778009 | 0.59 | 0.09 | Footprints | 101.208397 | 37.811376 | 1.13 | 0.08 | Snow boundaries |
101.3275 | 37.778257 | 0.75 | 0.11 | Snow boundaries | 101.207791 | 37.811512 | 1.07 | 0.08 | Snow boundaries |
101.323845 | 37.779399 | 2.2 | 0.3 | Rut | 101.20773 | 37.811533 | 0.75 | 0.08 | Footprints |
101.317792 | 37.783196 | 0.82 | 0.08 | Snow boundaries | 101.207365 | 37.811496 | 1.2 | 0.1 | Footprints |
101.311867 | 37.783625 | 0.52 | 0.09 | Road | 101.206688 | 37.811683 | 1 | 0.08 | Fence |
101.308583 | 37.784767 | 1.26 | 0.08 | Road | 101.206229 | 37.811666 | 1.2 | 0.08 | Snow boundaries |
101.308202 | 37.784743 | 0.91 | 0.09 | Snow boundaries | 101.20189 | 37.812273 | 0.8 | 0.05 | Ice boundaries |
101.307822 | 37.784957 | 0.25 | 0.08 | Footprints | 101.201545 | 37.812164 | 1.4 | 0.05 | Ice boundaries |
101.300588 | 37.787241 | 0.45 | 0.09 | Footprints | 101.201448 | 37.812149 | 0.9 | 0.08 | Ice boundaries |
101.296781 | 37.788479 | 1 | 0.1 | Footprints | 101.201122 | 37.812173 | 0.64 | 0.08 | Snow boundaries |
101.296329 | 37.788907 | 1 | 0.11 | Footprints | 101.196841 | 37.812931 | 0.76 | 0.08 | Snow boundaries |
101.28647 | 37.790625 | 0.9 | 0.08 | Footprints | 101.196809 | 37.812923 | 1.3 | 0.08 | Snow boundaries |
101.270917 | 37.794454 | 0.23 | 0.02 | Small striated groove | 101.196402 | 37.812971 | 0.98 | 0.08 | Snow boundaries |
101.271859 | 37.794297 | 0.22 | 0.02 | Small striated groove | 101.194898 | 37.813274 | 0.35 | 0.08 | Snow boundaries |
101.26358 | 37.797573 | 1.42 | 0.05 | Ice boundaries | 101.194195 | 37.813535 | 0.61 | 0.08 | Snow boundaries |
101.26096 | 37.798741 | 0.9 | 0.05 | Ice boundaries | 101.194005 | 37.813552 | 0.98 | 0.08 | Snow boundaries |
101.260724 | 37.798906 | 2 | 0.5 | Ice boundaries | 101.191942 | 37.814195 | 0.58 | 0.08 | Snow boundaries |
101.260677 | 37.799205 | 1.7 | 0.1 | Road | 101.190058 | 37.814723 | 0.49 | 0.08 | Snow boundaries |
101.26005 | 37.799261 | 1.35 | 0.05 | Ice boundaries | 101.189551 | 37.814794 | 0.54 | 0.08 | Snow boundaries |
101.258393 | 37.800342 | 1.76 | 0.04 | Ice boundaries | 101.187857 | 37.814944 | 0.27 | 0.08 | Snow boundaries |
101.256217 | 37.801888 | 1.5 | 0.1 | Fence | 101.155999 | 37.793423 | 0.55 | 0.08 | Road |
101.253957 | 37.802689 | 2.26 | 0.14 | Fence | 101.154204 | 37.793648 | 0.46 | 0.08 | Groove edge |
101.249781 | 37.804012 | 1.17 | 0.08 | Fence | 101.154175 | 37.793641 | 0.33 | 0.08 | Small striated groove |
101.248722 | 37.804238 | 1.81 | 0.05 | Fence | 101.154031 | 37.793605 | 0.86 | 0.08 | Small striated groove |
101.247646 | 37.804404 | 2.18 | 0.06 | Fence | 101.152946 | 37.793667 | 1 | 0.08 | Groove edge |
101.247656 | 37.804405 | 2.25 | 0.03 | Fence | 101.145342 | 37.793722 | 0.33 | 0.08 | Fence |
101.246951 | 37.804544 | 2.32 | 0.05 | Fence | 101.143017 | 37.793698 | 0.49 | 0.08 | Fence |
101.245691 | 37.804743 | 2.6 | 0.3 | Fence | 101.142506 | 37.793802 | 0.32 | 0.08 | Snow boundaries |
101.244183 | 37.805153 | 2.45 | 0.06 | Fence | 101.140622 | 37.793846 | 0.61 | 0.08 | Fence |
101.243066 | 37.805358 | 2.41 | 0.05 | Fence | 101.13332 | 37.794094 | 0.4 | 0.08 | Road |
101.241983 | 37.805558 | 2.13 | 0.08 | Fence |
References
- Wesnousky, S.G. Predicting the Endpoints of Earthquake Ruptures. Nature 2006, 444, 358–360. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmith, K.J. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar]
- Petersen, M.D.; Dawson, T.E.; Chen, R.; Cao, T.; Wills, C.J.; Schwartz, D.P.; Frankel, A.D. Fault Displacement Hazard for Strike-Slip Faults. Bull. Seismol. Soc. Am. 2011, 101, 805–825. [Google Scholar] [CrossRef]
- Rockwell, T.K.; Klinger, Y. Surface Rupture and Slip Distribution of the 1940 Imperial Valley Earthquake, Imperial Fault, Southern California: Implications for Rupture Segmentation and Dynamics. Bull. Seismol. Soc. Am. 2013, 103, 629–640. [Google Scholar] [CrossRef]
- Kurtz, R.; Klinger, Y.; Ferry, M.; Ritz, J.-F. Horizontal Surface-Slip Distribution through Several Seismic Cycles: The Eastern Bogd Fault, Gobi-Altai, Mongolia. Tectonophysics 2018, 734–735, 167–182. [Google Scholar] [CrossRef]
- Ren, J.; Xu, X.; Zhang, G.; Wang, Q.; Zhang, Z.; Gai, H.; Kang, W. Coseismic Surface Ruptures, Slip Distribution, and 3D Seismogenic Fault for the 2021 Mw 7.3 Maduo Earthquake, Central Tibetan Plateau, and Its Tectonic Implications. Tectonophysics 2022, 827, 229275. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, J.; LI, X.; Xu, J.; Yao, W.; Han, L.; Li, T. Detailed mapping of the surface rupture of the 12 February 2014 Yutian Ms7.3 earthquake, Altyn Tagh fault, Xinjiang, China. Sci. China Earth Sci. 2021, 51, 276–298. (In Chinese) [Google Scholar]
- Li, Y.; Jiang, W.; Li, Y.; Shen, W.; He, Z.; Li, B.; Li, Q.; Jiao, Q.; Tian, Y. Coseismic Rupture Model and Tectonic Implications of the January 7 2022, Menyuan Mw 6.6 Earthquake Constraints from InSAR Observations and Field Investigation. Remote Sens. 2022, 14, 2111. [Google Scholar] [CrossRef]
- Pan, J.; Li, H.; Chevalier, M.L.; Liu, D.; Li, C.; Liu, F.; Wu, Q.; Lu, H.; Jiao, L. Coseismic surface rupture and seismogenic structure of the 2022 Ms6.9 Menyuan earthquake, Qinghai Province, China. Acta Geol. Sin. 2022, 96, 215–231. (In Chinese) [Google Scholar]
- Han, S.; Wu, Z.; Gao, Y.; Lu, H. Surface rupture investigation of the 2022 Menyuan MS 6. 9 Earthquake, Qinghai, China: Implications for the fault behavior of the Lenglongling fault and regional intense earthquake risk. J. Geomech. 2022, 28, 155–168. (In Chinese) [Google Scholar]
- Liang, K.; He, Z.; Jiang, W.; Li, Y.; Liu, Z. Coseismic Surface rupture characteristics of the Menyuan Ms 6.9 earthquakes on January 8, 2022, Qinghai province. Seism. Geol. 2022, 44, 256–278. (In Chinese) [Google Scholar]
- Yuan, D.; Xie, H.; Su, R.; Li, Z.; Wen, Y.; Si, G.; Xue, S.; Chen, G.; Liu, B.; Liang, S.; et al. Characteristics of co-seismic surface rupture zone of Menyuan MS6.9 earthquake in Qinghai Province on January 8, 2022 and seismogenic mechanism. Chin. J. Geophys. 2023, 66, 229–244. (In Chinese) [Google Scholar]
- Niu, P.; Han, Z.; Li, K.; Lv, L.; Guo, P. The 2022 Mw 6.7 Menyuan Earthquake on the Northeastern Margin of the Tibetan Plateau, China: Complex Surface Ruptures and Large Slip. Bull. Seismol. Soc. Am. 2023, 113, 976–996. [Google Scholar] [CrossRef]
- Molnar, P.; Tapponnier, P. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science 1975, 189, 419–426. [Google Scholar] [CrossRef]
- Ding, L.; Kapp, P.; Cai, F.; Garzione, C.N.; Xiong, Z.; Wang, H.; Wang, C. Timing and mechanisms of Tibetan Plateau uplift. Nat. Rev. Earth Environ. 2022, 3, 652–667. [Google Scholar] [CrossRef]
- Zhang, P.; Deng, Q.; Zhang, G.; Ma, J.; Gan, W.; Min, W.; Mao, F.; Wang, Q. Seismic Activity and Active Tectonic Blocks in continental China. Sci. China Earth Sci. 2003, 33, 12–20. (In Chinese) [Google Scholar]
- Li, B.; Chen, X.; Zuza, A.V.; Hu, D.; Ding, W.; Huang, P.; Xu, S. Cenozoic cooling history of the North Qilian Shan, northern Tibetan Plateau, and the initiation of the Haiyuan fault: Constraints from apatite-and zircon-fission track thermochronology. Tectonophysics 2019, 751, 109–124. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, M.; Gan, W.; Deng, Q. Slip rates along major active faults from GPS measurements and constrains on contemporary continental tectonics. Earth Sci. Front. 2003, 10, 81–92. (In Chinese) [Google Scholar]
- Liu-Zeng, J.; Klinger, Y.; Xu, X.; Lasserre, C.; Chen, G.; Chen, W.; Tapponnier, P.; Zhang, B. Millennial Recurrence of Large Earthquakes on the Haiyuan Fault near Songshan, Gansu Province, China. Bull. Seismol. Soc. Am. 2007, 97, 14–34. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, P.; He, W.; Yuan, D.; Shao, Y.; Zheng, D.; Ge, W.; Min, W. Transformation of Displacement between Strike-Slip and Crustal Shortening in the Northern Margin of the Tibetan Plateau: Evidence from Decadal GPS Measurements and Late Quaternary Slip Rates on Faults. Tectonophysics 2013, 584, 267–280. [Google Scholar] [CrossRef]
- Daout, S.; Jolivet, R.; Lasserre, C.; Doin, M.-P.; Barbot, S.; Tapponnier, P.; Peltzer, G.; Socquet, A.; Sun, J. Along-Strike Variations of the Partitioning of Convergence across the Haiyuan Fault System Detected by InSAR. Geophys. J. Int. 2016, 205, 536–547. [Google Scholar] [CrossRef]
- Dang, G.; Tu, D.; Ye, J.; Zhang, R.; Jia, H. Seismic damage and intensity distribution of the Menyuan (M = 6.4) earthquake in 1986. Northwest Seismol. J. 1988, 3, 95–97. (In Chinese) [Google Scholar]
- Xu, J.; Yao, L.; Wang, J. Earthquake source mechanism of the Menyuan earthquake (Ms = 6.4, on Aug. 26, 1986) and its strong aftershocks. Northwest Seismol. J. 1986, 4, 82–84. (In Chinese) [Google Scholar]
- Jiang, W. Holocene Rupture Pattern, Seismic Recurrence Feature of the Lenglongling Fault Zone and Its Tectonic Implication for the Northeast Tibetan Plateau. Ph.D. Thesis, Institute of Geology, China Earthquake Administration, Beijing, China, 2018. (In Chinese). [Google Scholar]
- Lei, D.; Liu, J.; Liu, Z.; He, Y.; Qiao, Y. Discussion on the seismogenic structure of 2016 Menyuan M6. 4 Earthquakes in Menyuan Qinghai. Seismol. Geol. 2018, 40, 107–120. (In Chinese) [Google Scholar]
- Guo, P.; Han, Z.; Gao, F.; Zhu, C.; Gai, H. A New Tectonic Model for the 1927 M8.0 Gulang Earthquake on the NE Tibetan Plateau. Tectonics 2020, 39, e2020TC006064. [Google Scholar] [CrossRef]
- Ou, Q.; Kulikova, G.; Yu, J.; Elliott, A.; Parsons, B.; Walker, R. Magnitude of the 1920 Haiyuan Earthquake Reestimated Using Seismological and Geomorphological Methods. J. Geophys. Res. Solid Earth 2020, 125, e2019JB019244. [Google Scholar] [CrossRef]
- Fan, L.; Li, B.; Liao, S.; Jiang, C.; Fang, L. High-precision relocation of the aftershock sequence of the January 8, 2022, Ms6.9 Menyuan earthquake. Earthq. Sci. 2022, 35, 138–145. [Google Scholar] [CrossRef]
- He, W.; Liu, B.; Yuan, D.; Yang, M. Reseacrh on the slip rate of the Lenglongling active fault zone. Northwest Seismol. J. 2000, 22, 90–97. (In Chinese) [Google Scholar]
- Guo, P.; Han, Z.; Jiang, W.; Mao, Z. Holocene left-lateral slip rate of the Lenglongling fault on the northeastern margin of the Qinghai-Tibet Plateau. Seismol. Geol. 2017, 39, 323–341. (In Chinese) [Google Scholar]
- He, W.; Liu, B.; Yuan, D. Preliminary study of the paleoearthquake on Lenglongling Fault. Res. Act. Fault. 2001, 8, 64–74. (In Chinese) [Google Scholar]
- Hu, C.; Yang, P.; Li, Z.; Huang, S.; Zhao, Y.; Chen, D.; Xiong, R.; Chen, Q. Seismogenic mechanism of the 21 Jaunary 2016 Menyuan, Qinghai Ms6.4 earthquake. Chinese. J. Geophys. 2016, 59, 1637. (In Chinese) [Google Scholar]
- Jiang, W.; Li, Y.; Tian, Y.; Han, Z.; Zhang, J. Research of seismogenic structure of the Menyuan Ms6.4earthquake on January 21, 2016 in Lenglongling aera of NE Tibetan plateau. Seismol. Geol. 2017, 39, 536–549. (In Chinese) [Google Scholar]
- Guo, P.; Han, Z.; An, Y.; Jiang, W.; Mao, Z.; Feng, W. Activity of the Lenglongling fault system and seismotectonics of the 2016 Ms6.4 Menyuan earthquake. Sci. China Earth Sci. 2017, 60, 925–942. (In Chinese) [Google Scholar] [CrossRef]
- He, X.; Zhang, Y.; Shen, X.; Zheng, W.; Zhang, P.; Zhang, D. Examination of the Repeatability of Two Ms6.4 Menyuan Earthquakes in Qilian-Haiyuan Fault Zone (NE Tibetan Plateau) Based on Source Parameters. Phys. Earth Planet. Inter. 2020, 299, 106408. [Google Scholar] [CrossRef]
- Hu, X.; Cao, X.; Li, T.; Mao, J.; Zhang, J.; He, X.; Zhang, Y.; Pan, B. Late Quaternary Fault Slip Rate Within the Qilian Orogen, Insight Into the Deformation Kinematics for the NE Tibetan Plateau. Tectonics 2021, 40, e2020TC006586. [Google Scholar] [CrossRef]
- Liu, J.; Liu, B.; Yuan, D. The late Quaternary Activity Characteristics of the Sunan Fault and a Preliminary Study on Paleoearthquakes; Research on Active Faults in China; Earthquake Press: Beijing, China, 1994; pp. 36–41. [Google Scholar]
- Lucieer, A.; Jong, S.M.D.; Turner, D. Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Prog. Phys. Geogr. 2014, 38, 97–116. [Google Scholar] [CrossRef]
- Carrera-Hernández, J.J.; Levresse, G.; Lacan, P. Is UAV-SfM surveying ready to replace traditional surveying techniques? Int. J. Remote Sens. 2020, 41, 4820–4837. [Google Scholar] [CrossRef]
- Esposito, G.; Salvini, R.; Matano, F.; Sacchi, M.; Danzi, M.; Somma, R.; Troise, C. Multitemporal monitoring of a coastal landslide through SfM-derived point cloud comparison. Photogramm. Rec. 2017, 32, 459–479. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Harwin, S.; Lucieer, A. Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery. Remote Sens. 2012, 4, 1573–1599. [Google Scholar] [CrossRef]
- Johnson, K.; Nissen, E.; Saripalli, S.; Arrowsmith, J.R.; McGarey, P.; Scharer, K.; Williams, P.; Blisniuk, K. Rapid Mapping of Ultrafine Fault Zone Topography with Structure from Motion. Geosphere 2014, 10, 969–986. [Google Scholar] [CrossRef]
- AI, M.; Bi, H.; Zheng, W.; Yin, J.; Yuan, D.; Ren, Z.; Chen, G.; Liu, J. Using unmanned aerial vehicle photogrammetry technology to obtain quantitative parameteras of active tectonics. Seismol. Geol. 2018, 40, 1276–1293. (In Chinese) [Google Scholar]
- Liang, Z.; Wei, Z.; Zhuang, Q.; Sun, W.; He, H. Segmentation of surface rupture and offsets characteristics of the Fuyun M 8.0 earthquake based on high-resolution topographic date. Seismol. Geol. 2021, 43, 1507–1523. (In Chinese) [Google Scholar]
- Yuan, D.; Liu, X.; Liu, B. Research on the relation between barriers and earthquake rupture in strike-slip active fault zone. South China Earthq. 1998, 18, 35–40. (In Chinese) [Google Scholar]
- Huan, W.; Zhang, X.; Song, Z. Structural characteristics of stick-slip motion of Chinese mainland internal strike-slip seismic structure. Acta Seismol. Sin. 1997, 19, 225–234. (In Chinese) [Google Scholar]
- Wan, Y.; Huang, S.; Wang, F.; Xu, Y.; Yu, H. Fault geometry and slip characteristics revealed by the 2022 Menyuan earthquake sequence. Chinese J. Geophys. 2023, 66, 2796–2810. (In Chinese) [Google Scholar]
- Huang, C.; Zhang, G.; Zhao, D.; Shan, X.; Xie, C.; Tu, H.; Qu, C.; Zhu, C.; Han, N.; Chen, J. Rupture Process of the 2022 Mw6.6 Menyuan, China, Earthquake from Joint Inversion of Accelerogram Data and InSAR Measurements. Remote Sens. 2022, 14, 5104. [Google Scholar] [CrossRef]
- Li, Z.; Han, B.; Liu, Z.; Zhang, M.; Yu, C.; Chen, B.; Liu, H.; Du, J.; Zhang, S.; Zhu, W.; et al. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan, Qinghai Earthquakes Constrained by InSAR Observations. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 887–897. [Google Scholar]
- Liu, J.; Hu, J.; Li, Z.; Ma, Z.; Shi, J.; Xu, W.; Sun, Q. Three-Dimensional Surface Displacements of the 8 January 2022 Mw6.7 Menyuan Earthquake, China from Sentinel-1 and ALOS-2 SAR Observations. Remote Sens. 2022, 14, 1404. [Google Scholar] [CrossRef]
- Sun, A.; Gao, Y.; Zhao, G.; Ren, C.; Liang, S. Seismic structure and b-value in the focal area of the 8th January 2022 Menyuan, Qinghai Ms6.9earthquake. Chin. J. Geophys. 2022, 65, 1175–1183. (In Chinese) [Google Scholar]
- Zhao, L.; Sun, X.; Zhan, Y.; Yang, H.; Wang, Q.; Hao, M.; Liu, X. The seismogenic model of the Menyuan Ms6.9earthquake on January 8, 2022, Qinghai Province and segmented extensional characteristics of the Lenglongling fault. Chin. J. Geophys. 2022, 65, 1536–1546. (In Chinese) [Google Scholar]
- Chen, L.; Wang, H.; Ran, Y.; Sun, X.; Su, G.; Wang, J.; Tan, X.; Li, Z.; Zhang, X. The MS7.1 Yushu Earthquake Surface Rupture and Large Historical Earthquakes on the Garzê-Yushu Fault. Chin. Sci. Bull. 2010, 55, 3504–3509. [Google Scholar] [CrossRef]
Institution | Location | Depth (km) | Magnitude | Section 1 | Section 2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Longitude (°) | Latitude (°) | Strike (°) | Dip (°) | Rake (°) | Strike (°) | Dip (°) | Rake (°) | |||
CENC | 101.26 | 37.77 | 10 | Ms 6.9 | ||||||
USGS | 101.290 | 37.828 | 13 | Mw 6.6 | 13 | 75 | 178 | 104 | 88 | 15 |
GCMT | 101.31 | 37.80 | 14.8 | Mw 6.7 | 104 | 82 | 1 | 14 | 89 | 172 |
GFZ | 101.32 | 37.78 | 15 | Mw 6.6 | 285 | 82 | 16 | 193 | 74 | 172 |
CEA-IGP | 101.26 | 37.77 | 10 | Mw 6.7 | 192° | 69° | 172° | 284° | 82° | 21° |
IPGP | 101.275 | 37.811 | 15 | Mw 6.7 | 284 | 89 | −2 | 14 | 18 | −179 |
Source | Length of Rupture | Number of Ruptures | Step | Maximum Offset |
---|---|---|---|---|
Pan et al. [9] | 27 km | 2 | 3 km | 3.7 m |
Han et al. [10] | 30 km | 3 | 2 km | 3 ± 0.2 m |
Liang et al. [11] | 29.5 km | 2 | 2.77 m | |
Yuan et al. [12] | 31 km | 2 | 1 km | 2.6 ± 0.3 m |
Niu et al. [13] | 31.7 km | 5 | 3.5 ± 0.3 m | |
This article | 36.6 km (including crack zones and secondary ruptures) | 3 | 1 km | 2.6 ± 0.3 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Y.; Yuan, D.; Xie, H.; Su, R.; Su, Q.; Li, Z.; Sun, H.; Si, G.; Yu, J.; Chen, Y.; et al. Typical Fine Structure and Seismogenic Mechanism Analysis of the Surface Rupture of the 2022 Menyuan Mw 6.7 Earthquake. Remote Sens. 2023, 15, 4375. https://doi.org/10.3390/rs15184375
Wen Y, Yuan D, Xie H, Su R, Su Q, Li Z, Sun H, Si G, Yu J, Chen Y, et al. Typical Fine Structure and Seismogenic Mechanism Analysis of the Surface Rupture of the 2022 Menyuan Mw 6.7 Earthquake. Remote Sensing. 2023; 15(18):4375. https://doi.org/10.3390/rs15184375
Chicago/Turabian StyleWen, Yameng, Daoyang Yuan, Hong Xie, Ruihuan Su, Qi Su, Zhimin Li, Hao Sun, Guojun Si, Jinchao Yu, Yanwen Chen, and et al. 2023. "Typical Fine Structure and Seismogenic Mechanism Analysis of the Surface Rupture of the 2022 Menyuan Mw 6.7 Earthquake" Remote Sensing 15, no. 18: 4375. https://doi.org/10.3390/rs15184375