Water Body Extraction of the Weihe River Basin Based on MF-SegFormer Applied to Landsat8 OLI Data
Abstract
:1. Introduction
2. Study Area and Data
3. Methods
3.1. Proposed Method
3.1.1. SegFormer
3.1.2. MF-SegFormer
3.1.3. Innovations of the MF-SegFormer
- In this study, we proposed the MF-SegFormer method, which improved the decoder performance of SegFormer. The FF module was employed to reduce the influence of other ground objects, and the ASPP module was used to enhance the extraction accuracy of small WBs.
- We proposed the FF module to fuse features from different levels, thereby capturing richer semantic information. In addition, the FF module could integrate different features according to the spectral difference between WBs and other ground objects, enhancing the extraction of WB edge information and improving the recognition ability of WBs.
- We introduced the ASPP module, which aggregated contextual information at different scales through parallel branches to obtain denser data, to improve the extraction accuracy of small WBs.
3.2. Contrastive Methods
3.2.1. U-Net
3.2.2. Seg-Net
3.2.3. SETR
3.2.4. Segmenter
3.2.5. Composite Spectral Index Method
3.3. Experimental Setup
4. Results and Discussion
4.1. Data Selection
4.2. Comparison with Various Methods
4.3. Typical Area Extraction Comparison
4.4. Comparison of the Weihe River’s Mainstream
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, X.; Feng, L.; Tang, J.; Song, X.; Liu, J.; Zhang, Y.; Wang, J.; Xu, Y.; Dai, Y.; Zheng, Y.; et al. Anthropogenic transformation of Yangtze Plain freshwater lakes: Patterns, drivers and impacts. Remote Sens. Environ. 2020, 248, 111998. [Google Scholar] [CrossRef]
- Zou, Z.; Xiao, X.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Zhang, G.; Wang, J. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815. [Google Scholar] [CrossRef] [PubMed]
- Keller, P.S.; Catalan, N.; von Schiller, D.; Grossart, H.P.; Koschorreck, M.; Obrador, B.; Frassl, M.A.; Karakaya, N.; Barros, N.; Howitt, J.A.; et al. Global CO2 emissions from dry inland waters share common drivers across ecosystems. Nat. Commun. 2020, 11, 2126. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, extracting, and monitoring surface water from space using optical sensors: A review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Reidy Liermann, C.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Feng, M.; Sexton, J.O.; Channan, S.; Townshend, J.R. A global, high-resolution (30-m) inland water body dataset for 2000: First results of a topographic–spectral classification algorithm. Int. J. Digit. Earth 2016, 9, 113–133. [Google Scholar] [CrossRef]
- Su, H.; Ji, B.; Wang, Y. Sea ice extent detection in the Bohai Sea using Sentinel-3 OLCI data. Remote Sens. 2019, 11, 2436. [Google Scholar] [CrossRef]
- Su, H.; Wang, A.; Zhang, T.; Qin, T.; Du, X.; Yan, X.H. Super-resolution of subsurface temperature field from remote sensing observations based on machine learning. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102440. [Google Scholar] [CrossRef]
- Zhang, T.; Su, H.; Yang, X.; Yan, X. Remote sensing prediction of global subsurface thermohaline and the impact of longitude and latitude based on LightGBM. J. Remote Sens. 2020, 24, 1255–1269. [Google Scholar] [CrossRef]
- Su, H.; Zhang, T.; Lin, M.; Lu, W.; Yan, X.H. Predicting subsurface thermohaline structure from remote sensing data based on long short-term memory neural networks. Remote Sens. Environ. 2021, 260, 112465. [Google Scholar] [CrossRef]
- Li, Y.; Niu, Z.; Xu, Z.; Yan, X. Construction of high spatial-temporal water body dataset in China based on Sentinel-1 archives and GEE. Remote Sens. 2020, 12, 2413. [Google Scholar] [CrossRef]
- Wei, X.; Xu, W.; Bao, K.; Hou, W.; Su, J.; Li, H.; Miao, Z. A water body extraction methods comparison based on FengYun Satellite data: A case study of Poyang Lake Region, China. Remote Sens. 2020, 12, 3875. [Google Scholar] [CrossRef]
- Tang, H.; Lu, S.; Ali Baig, M.H.; Li, M.; Fang, C.; Wang, Y. Large-scale surface water mapping based on landsat and sentinel-1 images. Water 2022, 14, 1454. [Google Scholar] [CrossRef]
- Wei, Z.; Jia, K.; Liu, P.; Jia, X.; Xie, Y.; Jiang, Z. Large-Scale River Mapping Using Contrastive Learning and Multi-Source Satellite Imagery. Remote Sens. 2021, 13, 2893. [Google Scholar] [CrossRef]
- Klein, I.; Dietz, A.J.; Gessner, U.; Galayeva, A.; Myrzakhmetov, A.; Kuenzer, C. Evaluation of seasonal water body extents in Central Asia over the past 27 years derived from medium-resolution remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 335–349. [Google Scholar] [CrossRef]
- Lu, S.; Ma, J.; Ma, X.; Tang, H.; Zhao, H.; Hasan Ali Baig, M. Time series of the Inland Surface Water Dataset in China (ISWDC) for 2000–2016 derived from MODIS archives. Earth Syst. Sci. Data 2019, 11, 1099–1108. [Google Scholar] [CrossRef]
- Teodoro, A.C.; Goncalves, H. A semi-automatic approach for the extraction of sandy bodies (sand spits) from IKONOS-2 data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 634–642. [Google Scholar] [CrossRef]
- Yang, X.; Qin, Q.; Yésou, H.; Ledauphin, T.; Koehl, M.; Grussenmeyer, P.; Zhu, Z. Monthly estimation of the surface water extent in France at a 10-m resolution using Sentinel-2 data. Remote Sens. Environ. 2020, 244, 111803. [Google Scholar] [CrossRef]
- Li, L.; Su, H.; Du, Q.; Wu, T. A novel surface water index using local background information for long term and large-scale Landsat images. ISPRS J. Photogramm. Remote Sens. 2021, 172, 59–78. [Google Scholar] [CrossRef]
- Barton, I.J.; Bathols, J.M. Monitoring floods with AVHRR. Remote Sens. Environ. 1989, 30, 89–94. [Google Scholar] [CrossRef]
- Landuyt, L.; Verhoest, N.E.; Van Coillie, F.M. Flood mapping in vegetated areas using an unsupervised clustering approach on sentinel-1 and-2 imagery. Remote Sens. 2020, 12, 3611. [Google Scholar] [CrossRef]
- Feng, W.; Jin, H. Mapping Surface Water Extent in Mainland Alaska Using VIIRS Surface Reflectance. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Virtual Conference, 12–16 July 2021; pp. 6120–6123. [Google Scholar]
- Li, K.; Xu, E. High-accuracy continuous mapping of surface water dynamics using automatic update of training samples and temporal consistency modification based on Google Earth Engine: A case study from Huizhou, China. ISPRS J. Photogramm. Remote Sens. 2021, 179, 66–80. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, W.; Huang, P.; He, G.; Guo, H. A New Lightweight Convolutional Neural Network for Multi-Scale Land Surface Water Extraction from GaoFen-1D Satellite Images. Remote Sens. 2021, 13, 4576. [Google Scholar] [CrossRef]
- Zhang, J.; Xing, M.; Sun, G.C.; Chen, J.; Li, M.; Hu, Y.; Bao, Z. Water body detection in high-resolution SAR images with cascaded fully-convolutional network and variable focal loss. IEEE Trans. Geosci. Remote Sens. 2020, 59, 316–332. [Google Scholar] [CrossRef]
- Zhong, H.F.; Sun, Q.; Sun, H.M.; Jia, R.S. NT-Net: A Semantic Segmentation Network for Extracting Lake Water Bodies from Optical Remote Sensing Images Based on Transformer. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Su, H.; Wei, S.; Qiu, J.; Wu, W. RaftNet: A New Deep Neural Network for Coastal Raft Aquaculture Extraction from Landsat 8 OLI Data. Remote Sens. 2022, 14, 4587. [Google Scholar] [CrossRef]
- Tambe, R.G.; Talbar, S.N.; Chavan, S.S. Deep multi-feature learning architecture for water body segmentation from satellite images. J. Vis. Commun. Image Represent. 2021, 77, 103141. [Google Scholar] [CrossRef]
- Li, Y.; Chang, J.; Wang, Y.; Jin, W.; Guo, A. Spatiotemporal impacts of climate, land cover change and direct human activities on runoff variations in the Wei River Basin, China. Water 2016, 8, 220. [Google Scholar] [CrossRef]
- Lei, Y.; Zhu, Y.; Wang, B.; Yao, T.; Yang, K.; Zhang, X.; Zhai, J.; Ma, N. Extreme lake level changes on the Tibetan Plateau associated with the 2015/2016 El Niño. Geophys. Res. Lett. 2019, 46, 5889–5898. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
- Deng, J.; Lv, X.; Yang, L.; Zhao, B.; Zhou, C.; Yang, Z.; Jiang, J.; Ning, N.; Zhang, J.; Shi, J.; et al. Assessing Macro Disease Index of Wheat Stripe Rust Based on Segformer with Complex Background in the Field. Sensors 2022, 22, 5676. [Google Scholar] [CrossRef]
- Tian, X.W.; Wang, J.L.; Chen, M.; Du, S.Q. An Improved SegFormer Network based Method for Semantic Segmentation of Remote Sensing Images. Comput. Eng. Appl. 2023, 59, 217–226. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Volume 18, pp. 234–241. [Google Scholar]
- Li, Z.; Liu, Y.; Kuang, Y.; Wang, H.; Liu, C. A semantic segmentation method of buildings in remote sensing image based on improved UNet. In Proceedings of the 2nd International Conference on Signal Image Processing and Communication (ICSIPC 2022), Qingdao, China, 20–22 May 2022; Volume 12246, pp. 298–303. [Google Scholar]
- Wang, X.; Ming, Y.U.; Ren, H.E. Remote sensing image semantic segmentation combining UNET and FPN. Chin. J. Liq. Cryst. Disp. 2021, 36, 475–483. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Handa, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv 2015, arXiv:1505.07293. [Google Scholar]
- Abdollahi, A.; Pradhan, B.; Alamri, A.M. An ensemble architecture of deep convolutional Segnet and Unet networks for building semantic segmentation from high-resolution aerial images. Geocarto Int. 2022, 37, 3355–3370. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Gou, A. Numerical characteristics and spatial distribution of panoramic Street Green View index based on SegNet semantic segmentation in Savannah. Urban For. Urban Green. 2022, 69, 127488. [Google Scholar] [CrossRef]
- Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H.S.; et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 6881–6890. [Google Scholar]
- Strudel, R.; Garcia, R.; Laptev, I.; Schmid, C. Segmenter: Transformer for semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 7262–7272. [Google Scholar]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Feng, S.; Liu, S.; Zhou, G. Long-term dense Landsat observations reveal detailed waterbody dynamics and temporal changes of the size-abundance relationship. J. Hydrol. Reg. Stud. 2022, 41, 101111. [Google Scholar] [CrossRef]
- Zou, Z.; Dong, J.; Menarguez, M.A.; Xiao, X.; Qin, Y. Continued decrease of open surface water body area in Oklahoma during 1984–2015. Sci. Total Environ. 2017, 595, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Jiang, W.; Tang, Z.; Ling, Z.; Wu, Z. Long-term changes of open-surface water bodies in the Yangtze River basin based on the Google Earth Engine cloud platform. Remote Sens. 2019, 11, 2213. [Google Scholar] [CrossRef]
Name | Number |
---|---|
Embed dims | 64 |
Depths | [3, 6, 40, 3] |
Hidden size | [64, 128, 320, 512] |
Num attention heads | [1, 2, 5, 8] |
Patch size | [7, 3, 3, 3] |
Strides | [4, 2, 2, 2] |
MIP ratios | [4, 4, 4, 4] |
Sr ratios | [8, 4, 2, 1] |
Decoder hidden size | 768 |
Group | Case | Experimental Schemes |
---|---|---|
Group A | Case 1A | MF-SegFormer (Band 4, Band 3, Band2) |
Case 2A | MF-SegFormer (Gaussian (Band 4, Band 3, Band 2)) | |
Case 3A | MF-SegFormer (Band 5, Band 6, Band4) | |
Case 4A | MF-SegFormer (Gaussian (Band 5, Band 6, Band 4)) | |
Group B | Case 1B | MF-SegFormer (Gaussian (Band 5, Band 6, Band 4)) |
Case 2B | SegFormer (Gaussian (Band 5, Band 6, Band 4)) | |
Case 3B | U-Net (Gaussian (Band 5, Band 6, Band 4)) | |
Case 4B | Seg-Net (Gaussian (Band 5, Band 6, Band 4)) | |
Case 5B | SETR (Gaussian (Band 5, Band 6, Band 4)) | |
Case 6B | Segmenter (Gaussian (Band 5, Band 6, Band 4)) | |
Case 7B | Composite spectral index method |
Case | TN | FN | FP | TP |
---|---|---|---|---|
Case 1B | 325,710,948 | 95,883 | 163,867 | 595,190 |
Case 2B | 325,676,610 | 88,810 | 198,205 | 602,263 |
Case 3B | 325,630,121 | 229,929 | 244,694 | 461,144 |
Case 4B | 325,734,553 | 273,736 | 140,262 | 417,337 |
Case 5B | 325,746,904 | 137,425 | 127,911 | 553,648 |
Case 6B | 325,616,333 | 295,237 | 258,482 | 395,836 |
Case | Precision | Recall | F1-Score | mIoU |
---|---|---|---|---|
Case 1B | 78.4% | 86.1% | 82.1% | 84.8% |
Case 2B | 75.2% | 87.1% | 80.8% | 83.8% |
Case 3B | 65.3% | 66.7% | 66.0% | 74.6% |
Case 4B | 74.8% | 60.4% | 66.8% | 75.0% |
Case 5B | 81.2% | 80.1% | 80.7% | 83.8% |
Case 6B | 60.5% | 57.3% | 58.8% | 70.8% |
Case | Precision | Recall | F1-Score | mIoU |
---|---|---|---|---|
Case 1B | 77.6% | 84.4% | 80.9% | 83.9% |
Case 2B | 74.6% | 85.4% | 79.7% | 83.1% |
Case 3B | 63.9% | 64.1% | 64.0% | 73.5% |
Case 4B | 73.9% | 57.4% | 64.6% | 73.8% |
Case 5B | 80.0% | 78.7% | 79.3% | 82.8% |
Case 6B | 57.8% | 53.4% | 55.5% | 69.1% |
Case 7B | 58.0% | 24.8% | 34.7% | 60.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Qin, C.; Li, W.; Mao, X.; Zhao, L.; Hou, B.; Jiao, L. Water Body Extraction of the Weihe River Basin Based on MF-SegFormer Applied to Landsat8 OLI Data. Remote Sens. 2023, 15, 4697. https://doi.org/10.3390/rs15194697
Zhang T, Qin C, Li W, Mao X, Zhao L, Hou B, Jiao L. Water Body Extraction of the Weihe River Basin Based on MF-SegFormer Applied to Landsat8 OLI Data. Remote Sensing. 2023; 15(19):4697. https://doi.org/10.3390/rs15194697
Chicago/Turabian StyleZhang, Tianyi, Chenhao Qin, Weibin Li, Xin Mao, Liyun Zhao, Biao Hou, and Licheng Jiao. 2023. "Water Body Extraction of the Weihe River Basin Based on MF-SegFormer Applied to Landsat8 OLI Data" Remote Sensing 15, no. 19: 4697. https://doi.org/10.3390/rs15194697
APA StyleZhang, T., Qin, C., Li, W., Mao, X., Zhao, L., Hou, B., & Jiao, L. (2023). Water Body Extraction of the Weihe River Basin Based on MF-SegFormer Applied to Landsat8 OLI Data. Remote Sensing, 15(19), 4697. https://doi.org/10.3390/rs15194697