Performance of the Atmospheric Radiative Transfer Simulator (ARTS) in the 600–1650 cm−1 Region
Abstract
:1. Introduction
2. Datasets
2.1. Atmospheric Profiles
2.2. Instrument Spectral Response Functions
3. Theory and Experiment Setup
3.1. Radiative Transfer Theory
3.2. Jacobian
3.3. Experimental Setup
3.4. Evaluation Criteria
4. Results
4.1. Comparison on 0.001 cm−1 Spectral Grid
4.2. Comparison of AIRS Channels
4.3. Comparison of MODIS Bands
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Vogelmann, J.E.; Helder, D.; Morfitt, R.; Choate, M.J.; Merchant, J.W.; Bulley, H. Effects of Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper Plus Radiometric and Geometric Calibrations and Corrections on Landscape Characterization. Remote Sens. Environ. 2001, 78, 55–70. [Google Scholar] [CrossRef]
- Chapman, J.W.; Thompson, D.R.; Helmlinger, M.C.; Bue, B.D.; Green, R.O.; Eastwood, M.L.; Geier, S.; Olson-Duvall, W.; Lundeen, S.R. Spectral and Radiometric Calibration of the next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). Remote Sens. 2019, 11, 2129. [Google Scholar] [CrossRef]
- Tang, H.; Xie, J.; Tang, X.; Chen, W.; Li, Q. On-Orbit Radiometric Performance of GF-7 Satellite Multispectral Imagery. Remote Sens. 2022, 14, 886. [Google Scholar] [CrossRef]
- Li, J.; Wolf, W.W.; Menzel, W.P.; Zhang, W.; Huang, H.-L.; Achtor, T.H. Global Soundings of the Atmosphere from ATOVS Measurements: The Algorithm and Validation. J. Appl. Meteorol. Climatol. 2000, 39, 1248–1268. [Google Scholar] [CrossRef]
- Eyre, J.; Kelly, G.; McNally, A.; Andersson, E.; Persson, A. Assimilation of TOVS Radiance Information through One-Dimensional Variational Analysis. Q. J. R. Meteorol. Soc. 1993, 119, 1427–1463. [Google Scholar] [CrossRef]
- Moradi, I.; Goldberg, M.; Brath, M.; Ferraro, R.; Buehler, S.A.; Saunders, R.; Sun, N. Performance of Radiative Transfer Models in the Microwave Region. J. Geophys. Res. Atmos. 2020, 125, e2019JD031831. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gordon, I.E.; Babikov, Y.; Barbe, A.; Benner, D.C.; Bernath, P.F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.R.; et al. The HITRAN2012 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 4–50. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.; et al. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar]
- Rothman, L.S. History of the HITRAN Database. Nat. Rev. Phys. 2021, 3, 302–304. [Google Scholar] [CrossRef]
- Clough, S.A.; Iacono, M.J.; Moncet, J.-L. Line-by-Line Calculations of Atmospheric Fluxes and Cooling Rates: Application to Water Vapor. J. Geophys. Res. Atmos. 1992, 97, 15761–15785. [Google Scholar] [CrossRef]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Muratov, L.; Lee, J.; Fox, M.; Adler-Golden, S.M.; Chetwynd, J.H.; Hoke, M.L.; et al. MODTRAN 5: A Reformulated Atmospheric Band Model with Auxiliary Species and Practical Multiple Scattering Options: Update. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, Orlando, FL, USA, 28 March–1 April 2005; SPIE: Washington, DC, USA, 2005; Volume 5806, pp. 662–667. [Google Scholar]
- Goody, R.; West, R.; Chen, L.; Crisp, D. The Correlated-k Method for Radiation Calculations in Nonhomogeneous Atmospheres. J. Quant. Spectrosc. Radiat. Transf. 1989, 42, 539–550. [Google Scholar] [CrossRef]
- Pierluissi, J.H.; Peng, G.-S. New Molecular Transmission Band Models for LOWTRAN. Opt. Eng. 1985, 24, 541–547. [Google Scholar] [CrossRef]
- Vincent, R.A.; Dudhia, A. Fast Radiative Transfer Using Monochromatic Look-up Tables. J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 254–264. [Google Scholar] [CrossRef]
- Andersson, E.; Haseler, J.; Undén, P.; Courtier, P.; Kelly, G.; Vasiljevic, D.; Brankovic, C.; Gaffard, C.; Hollingsworth, A.; Jakob, C.; et al. The ECMWF Implementation of Three-Dimensional Variational Assimilation (3D-Var). III: Experimental Results. Q. J. R. Meteorol. Soc. 1998, 124, 1831–1860. [Google Scholar]
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An Update on the RTTOV Fast Radiative Transfer Model (Currently at Version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef]
- Weng, F.; Yu, X.; Duan, Y.; Yang, J.; Wang, J. Advanced Radiative Transfer Modeling System (ARMS): A New-Generation Satellite Observation Operator Developed for Numerical Weather Prediction and Remote Sensing Applications. Adv. Atmos. Sci. 2020, 37, 131–136. [Google Scholar] [CrossRef]
- Berk, A.; Hawes, F. Validation of MODTRAN® 6 and Its Line-by-Line Algorithm. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 542–556. [Google Scholar] [CrossRef]
- Berk, A.; Conforti, P.; Hawes, F. An Accelerated Line-by-Line Option for MODTRAN Combining on-the-Fly Generation of Line Center Absorption within 0.1 cm−1 Bins and Pre-Computed Line Tails. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXI, Baltimore, MD, USA, 21 May 2015; SPIE: Washington, DC, USA, 2015; Volume 9472, pp. 405–415. [Google Scholar]
- Buehler, S.A.; Eriksson, P.; Kuhn, T.; von Engeln, A.; Verdes, C. ARTS, the Atmospheric Radiative Transfer Simulator. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 65–93. [Google Scholar] [CrossRef]
- Buehler, S.A.; Mendrok, J.; Eriksson, P.; Perrin, A.; Larsson, R.; Lemke, O. ARTS, the Atmospheric Radiative Transfer Simulator-Version 2.2, the Planetary Toolbox Edition. Geosci. Model Dev. 2018, 11, 1537–1556. [Google Scholar] [CrossRef]
- Eriksson, P.; Buehler, S.A.; Davis, C.P.; Emde, C.; Lemke, O. ARTS, the Atmospheric Radiative Transfer Simulator, Version 2. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1551–1558. [Google Scholar] [CrossRef]
- Eriksson, P.; Rydberg, B.; Mattioli, V.; Thoss, A.; Accadia, C.; Klein, U.; Buehler, S.A. Towards an Operational Ice Cloud Imager (ICI) Retrieval Product. Atmos. Meas. Tech. 2020, 13, 53–71. [Google Scholar] [CrossRef]
- Bobryshev, O.; Buehler, S.A.; John, V.O.; Brath, M.; Brogniez, H. Is There Really a Closure Gap between 183.31-GHz Satellite Passive Microwave and in Situ Radiosonde Water Vapor Measurements? IEEE Trans. Geosci. Remote Sens. 2018, 56, 2904–2910. [Google Scholar] [CrossRef]
- Barlakas, V.; Galligani, V.S.; Geer, A.J.; Eriksson, P. On the Accuracy of RTTOV-SCATT for Radiative Transfer at All-Sky Microwave and Submillimeter Frequencies. J. Quant. Spectrosc. Radiat. Transf. 2022, 283, 108137. [Google Scholar] [CrossRef]
- Buehler, S.; Von Engeln, A.; Brocard, E.; John, V.O.; Kuhn, T.; Eriksson, P. Recent Developments in the Line-by-Line Modeling of Outgoing Longwave Radiation. J. Quant. Spectrosc. Radiat. Transf. 2006, 98, 446–457. [Google Scholar] [CrossRef]
- John, V.O.; Buehler, S.; von Engeln, A.; Eriksson, P.; Kuhn, T.; Brocard, E.; Koenig-langlo, G. Understanding the Variability of Clear-Sky Outgoing Long-Wave Radiation Based on Ship-Based Temperature and Water Vapour Measurements. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2006, 132, 2675–2691. [Google Scholar] [CrossRef]
- Melsheimer, C.; Verdes, C.; Buehler, S.A.; Emde, C.; Eriksson, P.; Feist, D.G.; Ichizawa, S.; John, V.O.; Kasai, Y.; Kopp, G.; et al. Intercomparison of General Purpose Clear Sky Atmospheric Radiative Transfer Models for the Millimeter/Submillimeter Spectral Range. Radio Sci. 2005, 40, 1–25. [Google Scholar] [CrossRef]
- Buehler, S.; Courcoux, N.; John, V.O. Radiative Transfer Calculations for a Passive Microwave Satellite Sensor: Comparing a Fast Model and a Line-by-Line Model. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Schreier, F.; Milz, M.; Buehler, S.A.; Von Clarmann, T. Intercomparison of Three Microwave/Infrared High Resolution Line-by-Line Radiative Transfer Codes. J. Quant. Spectrosc. Radiat. Transf. 2018, 211, 64–77. [Google Scholar] [CrossRef]
- Saunders, R.; Rayer, P.; Brunel, P.; Von Engeln, A.; Bormann, N.; Strow, L.; Hannon, S.; Heilliette, S.; Liu, X.; Miskolczi, F.; et al. A Comparison of Radiative Transfer Models for Simulating Atmospheric Infrared Sounder (AIRS) Radiances. J. Geophys. Res. 2007, 112, D01S90. [Google Scholar] [CrossRef]
- Chahine, M.T.; Pagano, T.S.; Aumann, H.H.; Atlas, R.; Barnet, C.; Blaisdell, J.; Chen, L.; Divakarla, M.; Fetzer, E.J.; Goldberg, M.; et al. AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases. Bull. Am. Meteorol. Soc. 2006, 87, 911–926. [Google Scholar] [CrossRef]
- Clough, S.; Shephard, M.; Mlawer, E.; Delamere, J.; Iacono, M.; Cady-Pereira, K.; Boukabara, S.; Brown, P. Atmospheric Radiative Transfer Modeling: A Summary of the AER Codes. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 233–244. [Google Scholar] [CrossRef]
- Alvarado, M.J.; Payne, V.H.; Mlawer, E.J.; Uymin, G.; Shephard, M.W.; Cady-Pereira, K.E.; Delamere, J.S.; Moncet, J.-L. Performance of the Line-By-Line Radiative Transfer Model (LBLRTM) for Temperature, Water Vapor, and Trace Gas Retrievals: Recent Updates Evaluated with IASI Case Studies. Atmos. Chem. Phys. 2013, 13, 6687–6711. [Google Scholar] [CrossRef]
- Saeed, A.; Gurbuz, O.; Akkas, M.A. Terahertz Communications at Various Atmospheric Altitudes. Phys. Commun. 2020, 41, 101113. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, M.; Li, J.; Li, W.; Di, D.; Shi, Y.-N.; Wu, K. Alternate Mapping Correlated K-Distribution Method for Infrared Radiative Transfer Forward Simulation. Remote Sens. 2019, 11, 994. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Payne, V.H.; Moncet, J.-L.; Delamere, J.S.; Alvarado, M.J.; Tobin, D.C. Development and Recent Evaluation of the MT_CKD Model of Continuum Absorption. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 2520–2556. [Google Scholar] [CrossRef] [PubMed]
- Delamere, J.; Clough, S.; Payne, V.; Mlawer, E.; Turner, D.; Gamache, R. A Far-Infrared Radiative Closure Study in the Arctic: Application to Water Vapor. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Mlawer, E.; Turner, D.; Paine, S.; Palchetti, L.; Bianchini, G.; Payne, V.; Cady-Pereira, K.; Pernak, R.; Alvarado, M.; Gombos, D.; et al. Analysis of Water Vapor Absorption in the Far-Infrared and Submillimeter Regions Using Surface Radiometric Measurements from Extremely Dry Locations. J. Geophys. Res. Atmos. 2019, 124, 8134–8160. [Google Scholar] [CrossRef]
- Amato, U.; Masiello, G.; Serio, C.; Viggiano, M. The σ-IASI Code for the Calculation of Infrared Atmospheric Radiance and Its Derivatives. Environ. Model. Softw. 2002, 17, 651–667. [Google Scholar] [CrossRef]
- Tjemkes, S.A.; Patterson, T.; Rizzi, R.; Shephard, M.W.; Clough, S.A.; Matricardi, M.; Haigh, J.D.; Höpfner, M.; Payan, S.; Trotsenko, A.; et al. The ISSWG Line-by-Line Inter-Comparison Experiment. J. Quant. Spectrosc. Radiat. Transf. 2003, 77, 433–453. [Google Scholar] [CrossRef]
- Pernini, T.; Zaccheo, T.S. Impact of Spectroscopic and Atmospheric State Knowledge on Retrieved XCO2 and XCH4 Column Amounts from Laser Differential Absorption Spectrometer Measurements. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 11 December 2017; Volume 2017, pp. 23–2349. [Google Scholar]
- Saunders, R.; Hocking, J.; Turner, E.; Havemann, S.; Geer, A.; Lupu, C.; Vidot, J.; Chambon, P.; Köpken-Watts, C.; Scheck, L.; et al. RTTOV-13 Science and Validation Report, EUMETSAT NWP-SAF; Met Office: Exeter, UK, 2020. [Google Scholar]
- Johnson, B.T.; Dang, C.; Stegmann, P.; Liu, Q.; Moradi, I.; Auligne, T. The Community Radiative Transfer Model (CRTM): Community-Focused Collaborative Model Development Accelerating Research to Operations. Bull. Am. Meteorol. Soc. 2023. [Google Scholar] [CrossRef]
- Jiao, Z.-H.; Mu, X. Global Validation of Clear-Sky Models for Retrieving Land-Surface Downward Longwave Radiation from MODIS Data. Remote Sens. Environ. 2022, 271, 112903. [Google Scholar] [CrossRef]
- Li, R.; Li, H.; Hu, T.; Bian, Z.; Liu, F.; Cao, B.; Du, Y.; Sun, L.; Liu, Q. Land Surface Temperature Retrieval From Sentinel-3A SLSTR Data: Comparison Among Split-Window, Dual-Window, Three-Channel, and Dual-Angle Algorithms. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Galve, J.M.; Sánchez, J.M.; García-Santos, V.; González-Piqueras, J.; Calera, A.; Villodre, J. Assessment of Land Surface Temperature Estimates from Landsat 8-TIRS in A High-Contrast Semiarid Agroecosystem. Algorithms Intercomparison. Remote Sens. 2022, 14, 1843. [Google Scholar] [CrossRef]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Muratov, L.; Lee, J.; Fox, M.; Adler-Golden, S.M.; Chetwynd, J.H.; Hoke, M.L.; et al. MODTRAN5: 2006 Update. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII, Kissimmee, FL, USA, 17–20 April 2006; SPIE: Washington, DC, USA, 2006; Volume 6233, pp. 508–515. [Google Scholar]
- Matricardi, M. The Generation of RTTOV Regression Coefficients for IASI and AIRS Using a New Profile Training Set and a New Line-by-Line Database. In ECMWF Technical Memoranda; ECMWE: Reading, UK, 2008; p. 47. [Google Scholar]
- Chevallier, F.; Michele, S.D.; McNally, A. Diverse Profile Datasets from the ECMWF 91-Level Short-Range Forecasts; ECMWF: Reading, UK, 2006. [Google Scholar]
- Salomonson, V.V.; Barnes, W.; Maymon, P.W.; Montgomery, H.E.; Ostrow, H. MODIS: Advanced Facility Instrument for Studies of the Earth as a System. IEEE Trans. Geosci. Remote Sens. 1989, 27, 145–153. [Google Scholar] [CrossRef]
- Aumann, H.H.; Chahine, M.T.; Gautier, C.; Goldberg, M.D.; Kalnay, E.; McMillin, L.M.; Revercomb, H.; Rosenkranz, P.W.; Smith, W.L.; Staelin, D.H.; et al. AIRS/AMSU/HSB on the Aqua Mission: Design, Science Objectives, Data Products, and Processing Systems. IEEE Trans. Geosci. Remote Sens. 2003, 41, 253–264. [Google Scholar] [CrossRef]
- Buehler, S.A.; Eriksson, P.; Lemke, O. Absorption Lookup Tables in the Radiative Transfer Model ARTS. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1559–1567. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, L.; Zheng, C.; Gkioulekas, I.; Ramamoorthi, R.; Zhao, S. A Differential Theory of Radiative Transfer. ACM Trans. Graph. (TOG) 2019, 38, 1–16. [Google Scholar] [CrossRef]
- Peraiah, A. An Introduction to Radiative Transfer: Methods and Applications in Astrophysics, by Annamaneni Peraiah; Cambridge University Press: Cambridge, UK, 2001; Volume 492, p. 2001. [Google Scholar] [CrossRef]
- Rodgers, C.D. Characterization and Error Analysis of Profiles Retrieved from Remote Sounding Measurements. J. Geophys. Res. Atmos. 1990, 95, 5587–5595. [Google Scholar] [CrossRef]
- Eriksson, P.; Jiménez, C.; Buehler, S.A. Qpack, a General Tool for Instrument Simulation and Retrieval Work. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 47–64. [Google Scholar] [CrossRef]
- Anderson, G.P.; Berk, A.; Chetwynd, J.H.; Harder, J.; Fontenla, J.M.; Shettle, E.P.; Saunders, R.; Snell, H.E.; Pilewskie, P.; Kindel, B.C.; et al. Using the MODTRAN5 Radiative Transfer Algorithm with NASA Satellite Data: AIRS and SORCE. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, Orlando, FL, USA, 9–12 April 2007; SPIE: Washington, DC, USA, 2007; Volume 6565, pp. 590–600. [Google Scholar]
- Strow, L.L.; Tobin, D.C.; Hannon, S.E. A Compilation of First-Order Line-Mixing Coefficients for CO2Q-Branches. J. Quant. Spectrosc. Radiat. Transf. 1994, 52, 281–294. [Google Scholar] [CrossRef]
- Niro, F.; Jucks, K.; Hartmann, J.-M. Spectra Calculations in Central and Wing Regions of IR Bands. IV: Software and Database for the Computation of Atmospheric Spectra. J. Quant. Spectrosc. Radiat. Transf. 2005, 95, 469–481. [Google Scholar] [CrossRef]
- Adler-Golden, S.; Schweitzer, E.; Steinfeld, J. Ultraviolet Continuum Spectroscopy of Vibrationally Excited Ozone. J. Chem. Phys. 1982, 76, 2201–2209. [Google Scholar] [CrossRef]
- Berk, A.; Conforti, P.; Hawes, F.; Perkins, T.; Guiang, C.; Acharya, P.; Kennett, R.; Gregor, B.; Bosch, J. Next Generation MODTRAN for Improved Atmospheric Correction of Spectral Imagery; Spectral Sciences, Inc.: Burlington, VT, USA, 2016. [Google Scholar]
- Anderson, G.P.; Berk, A.; Chetwynd, J.H., Jr.; Harder, J.; Fontenla, J.M.; Shettle, E.P.; Saunders, R.; Snell, H.E.; Pilewskie, P.; Kindel, B.C.; et al. Using the MODTRAN5 Radiative Transfer Algorithm with NASA Satellite Data: AIRS and SORCE; Shen, S.S., Lewis, P.E., Eds.; NASA: Washington, DC, USA, 2007. [Google Scholar]
- Eriksson, P.; Buehler, S.; Emde, C.; Sreerekha, T.; Melsheimer, C.; Lemke, O.; ARTS Theory. ARTS Development Team, Regularly Updated Versions. 2011. Available online: http://www.radiativetransfer.org/docs/ (accessed on 16 April 2018).
- Niro, F.; Boulet, C.; Hartmann, J.-M. Spectra Calculations in Central and Wing Regions of CO2 IR Bands between 10 and 20 μm. I: Model and Laboratory Measurements. J. Quant. Spectrosc. Radiat. Transf. 2004, 88, 483–498. [Google Scholar] [CrossRef]
- Niro, F.; Hase, F.; Camy-Peyret, C.; Payan, S.; Hartmann, J.-M. Spectra Calculations in Central and Wing Regions of CO2 IR Bands between 10 and 20 μm. II. Atmospheric Solar Occultation Spectra. J. Quant. Spectrosc. Radiat. Transf. 2005, 90, 43–59. [Google Scholar] [CrossRef]
- Millot, G.; Lavorel, B.; Steinfeld, J. Collisional Broadening, Line Shifting, and Line Mixing in the Stimulated Raman 2ν2 Q Branch of CH4. J. Chem. Phys. 1991, 95, 7938–7946. [Google Scholar] [CrossRef]
- Grigoriev, I.; Filippov, N.; Tonkov, M.; Gabard, T.; Le Doucen, R. Estimation of Line Parameters under Line Mixing Effects: The Ν3 Band of CH4 in Helium. J. Quant. Spectrosc. Radiat. Transf. 2001, 69, 189–204. [Google Scholar] [CrossRef]
Band Number | Central Wavelength (μm) | Central Wavelength (cm−1) | Bandwidth (μm) | NEΔT @Specified Input | Primary Use |
---|---|---|---|---|---|
27 | 6.715 | 1489.203 | 0.360 | 0.25 K @ 1.16 W·m−2·sr−1·µm−1 | Cirrus clouds andWater vapor |
28 | 7.325 | 1365.188 | 0.300 | 0.25 K @ 1.16 W·m−2·sr−1·µm−1 | |
29 | 8.550 | 1169.591 | 0.300 | 0.25 K @ 1.16 W·m−2·sr−1·µm−1 | Cloud properties |
30 | 9.730 | 1027.749 | 0.300 | 0.25 K @ 1.16 W·m−2·sr−1·µm−1 | Ozone |
31 | 11.030 | 906.618 | 0.500 | 0.05 K @ 1.16 W·m−2·sr−1·µm−1 | Surface/cloud temperature |
32 | 12.020 | 831.947 | 0.500 | 0.05 K @ 1.16 W·m−2·sr−1·µm−1 | |
33 | 13.335 | 749.906 | 0.300 | 0.25 K @ 1.16 W·m−2·sr−1·µm−1 | Cloud top altitude |
34 | 13.635 | 733.407 | 0.300 | 0.25 K @ 1.16 W·m−2·sr−1·µm−1 | |
35 | 13.935 | 717.618 | 0.300 | 0.25 K @ 1.16 W·m−2·sr−1·µm−1 | |
36 | 14.235 | 702.494 | 0.300 | 0.35 K @ 1.16 W·m−2·sr−1·µm−1 |
Spectral Range (μm) | Spectral Range (cm−1) | Channel Number | Spectral Resolution (cm−1) | NEΔT @Specified Input |
---|---|---|---|---|
3.74–4.61 | 2170–2674 | 514 | ~2.0 | 0.14 K @ 280 K |
6.20–8.22 * | 1216–1613 * | 602 | ~1.0 | 0.20 K @ 280 K |
8.80–15.4 * | 650–1136 * | 1262 | ~0.5 | 0.35 K @ 280 K |
Subregion | Spectral Range (cm−1) | Main Absorption Gases |
---|---|---|
I | 600–770 | CO2 |
II | 770–980 | H2O |
III | 980–1070 | O3 |
IV | 1070–1240 | H2O |
V | 1240–1360 | CH4, H2O |
VI | 1360–1650 | H2O |
Angle | All Subregions | Subregion I | Subregion II | Subregion III | Subregion IV | Subregion V | Subregion VI | |
---|---|---|---|---|---|---|---|---|
0° | D0–100 | −0.04 (0.23) | −0.03 (0.51) | −0.08 (0.12) | −0.05 (0.24) | −0.06 (0.10) | −0.03 (0.09) | −0.01 (0.06) |
D0–5 | −0.40 (0.66) | −0.86 (1.43) | −0.32 (0.34) | −0.54 (0.61) | −0.28 (0.31) | −0.20 (0.22) | −0.13 (0.17) | |
D5–95 | −0.04 (0.07) | −0.03 (0.09) | −0.07 (0.10) | −0.05 (0.09) | −0.05 (0.08) | −0.04 (0.05) | −0.01 (0.02) | |
D95–100 | 0.27 (0.74) | 0.91 (1.72) | 0.01 (0.03) | 0.56 (0.83) | 0.04 (0.07) | 0.17 (0.21) | 0.10 (0.15) | |
30° | D0–100 | −0.04 (0.24) | −0.02 (0.52) | −0.07 (0.12) | −0.04 (0.25) | −0.06 (0.10) | −0.03 (0.08) | −0.01 (0.06) |
D0–5 | −0.40 (0.67) | −0.89 (1.48) | −0.33 (0.34) | −0.55 (0.61) | −0.29 (0.32) | −0.20 (0.21) | −0.14 (0.17) | |
D5–95 | −0.03 (0.06) | −0.03 (0.08) | −0.06 (0.10) | −0.05 (0.08) | −0.05 (0.07) | −0.03 (0.05) | −0.01 (0.02) | |
D95–100 | 0.29 (0.76) | 0.96 (1.77) | 0.01 (0.04) | 0.60 (0.86) | 0.05 (0.08) | 0.17 (0.22) | 0.10 (0.15) | |
60° | D0–100 | −0.02 (0.26) | −0.01 (0.58) | −0.05 (0.12) | −0.02 (0.27) | −0.04 (0.11) | −0.02 (0.08) | −0.01 (0.06) |
D0–5 | −0.43 (0.74) | −1.02 (1.66) | −0.32 (0.34) | −0.57 (0.64) | −0.33 (0.37) | −0.17 (0.19) | −0.14 (0.18) | |
D5–95 | −0.02 (0.06) | −0.01 (0.09) | −0.04 (0.09) | −0.03 (0.09) | −0.04 (0.07) | −0.02 (0.04) | −0.01 (0.02) | |
D95–100 | 0.35 (0.85) | 1.16 (1.96) | 0.04 (0.07) | 0.74 (0.97) | 0.09 (0.13) | 0.18 (0.23) | 0.12 (0.17) |
Gas | Lines | Mixed Lines | Mixed Line Rates |
---|---|---|---|
O3 | 121,252 | 0 | 0% |
CO2 | 113,311 | 84,514 | 74.6% |
N2O | 37,195 | 0 | 0% |
H2O | 14,583 | 0 | 0% |
CH4 | 159,377 | 472 | 0.3% |
Spectral Range | Profile | ARTS-LBLRTM (with Line Mixing) | |||
---|---|---|---|---|---|
|ΔBT| < 0.2 K | 0.2 K < |ΔBT| < 0.5 K | 0.5 K < |ΔBT| < 1 K | |ΔBT| > 1 K | ||
600–770 cm−1 | 81 | 51.72% | 33.01% | 13.06% | 2.21% |
83 | 33.03% | 37.43% | 21.42% | 8.12% | |
82 | 24.65% | 48.27% | 19.45% | 7.63% | |
600–1650 cm−1 | 81 | 89.49% | 7.19% | 2.84% | 0.48% |
83 | 74.19% | 16.41% | 7.63% | 1.77% | |
82 | 29.94% | 24.57% | 43.40% | 2.09% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Z.; Long, Z.; Wang, S.; Liu, Y. Performance of the Atmospheric Radiative Transfer Simulator (ARTS) in the 600–1650 cm−1 Region. Remote Sens. 2023, 15, 4889. https://doi.org/10.3390/rs15194889
Jin Z, Long Z, Wang S, Liu Y. Performance of the Atmospheric Radiative Transfer Simulator (ARTS) in the 600–1650 cm−1 Region. Remote Sensing. 2023; 15(19):4889. https://doi.org/10.3390/rs15194889
Chicago/Turabian StyleJin, Zichun, Zhiyong Long, Shaofei Wang, and Yunmeng Liu. 2023. "Performance of the Atmospheric Radiative Transfer Simulator (ARTS) in the 600–1650 cm−1 Region" Remote Sensing 15, no. 19: 4889. https://doi.org/10.3390/rs15194889
APA StyleJin, Z., Long, Z., Wang, S., & Liu, Y. (2023). Performance of the Atmospheric Radiative Transfer Simulator (ARTS) in the 600–1650 cm−1 Region. Remote Sensing, 15(19), 4889. https://doi.org/10.3390/rs15194889