A Comprehensive Assessment of Multiple High-Resolution Precipitation Grid Products for Monitoring Heavy Rainfall during the “7.20” Extreme Rainstorm Event in China
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data
2.2.1. Rain Gauge Observations
2.2.2. RADAR Product
2.2.3. IMERG Product
2.2.4. GSMAP Product
2.2.5. ERA5 Product
2.2.6. CMPAS Product
2.3. Methods
2.3.1. Data Pre-Processing
2.3.2. Assessment Indicators
3. Results
3.1. Spatial Distribution Characteristics of Precipitation
3.2. Temporal Variation of Precipitation
3.3. Probabilistic Statistics of the Occurrence of Precipitation
3.4. Daily Variation of Precipitation
4. Discussion
5. Conclusions
- Regarding the spatial characteristics of precipitation analysis, the CMPAS shows the best performance in terms of fitting with gauge observations, particularly in precipitation distribution and extreme values at the center of heavy rainfall, with rBIAS, RMSE, CORR, KGE and TS scores of 1.07%, 0.88 mm/h, 0.961, 0.934 and 0.791, respectively. The spatial variability of error in CMPAS is minimal, and the product remains regionally stable. The RADAR significantly overestimates the cumulative precipitation, primarily due to a large number of falsely estimated heavy rainfall exceeding 100 mm/h. The overall RMSE of RADAR is 5.43 mm/h, with bias mainly concentrated in the core precipitation area in central Henan Province. The IMERG, GSMAP and ERA5 exhibit similar performance, with IMERG showing slightly better error performance. There is a significant underestimation of the cumulative rainfall in the core precipitation areas, and none of IMERG, GSMAP and ERA5 can capture heavy rainfall exceeding 60 mm/h. In the mountainous areas of northwestern Henan Province, there are negative biases in precipitation products, indicating the need for terrain error correction for satellite and model precipitation products in complex terrain.
- Regarding the temporal characteristics of precipitation analysis, the CMPAS accurately captures the evolution of the average precipitation in the region, and all evaluation indicators are stable and better than those of other precipitation products. The RADAR significantly overestimates during peak precipitation periods in the core precipitation area, with the largest deviation values and RMSE reaching 8 mm/h. The TS scores of IMERG and GSMAP are higher during heavy rainfall periods (0.6) compared to light rainfall periods (0.4), and the TS score for the precipitation core area (0.8) is higher than that for the entire study area (0.6). The ERA5 matches well and initially gauges moderate-intensity rainfall but then significantly underestimates after heavy rainfall begins, particularly in the core precipitation area where underestimation is more pronounced. In terms of the precipitation grading test, the CMPAS has slightly lower ME and FBI scores than the optimal values for rainfall exceeding 20 mm/h, indicating an underestimation of heavy rainfall estimation. The RADAR has a significantly higher RMSE in precipitation intensity below 20 mm/h, indicating that RADAR mainly produces false overestimation for small to large rainfall. The scores of IMERG, GSMAP and ERA5 are better for light rainfall compared to heavy rainfall.
- In terms of the probability statistical characteristics of precipitation occurrence, various precipitation products exhibit a similar PDF distribution to rain gauge observations when estimating hourly rainfall intensity. However, there is an underestimation in the probability estimation of precipitation occurrence in the range of 0.1–0.25 mm/h, while overestimation occurs in the range of 0.25–2.5 mm/h. When the hourly rainfall intensity exceeds 7.5 mm/h, the CMPAS and rain gauges show complete consistency in their PDFs, while RADAR overestimates and IMERG, GSMAP and ERA5 underestimate it. In ERA5, an hourly precipitation intensity of 0–4 mm/h contributes 60% of the total precipitation, while gauges and CMPAS are mainly concentrated in the range of 2–24 mm/h. The analysis of hourly maximum rainfall intensity of various precipitation products further indicates the consistency between CMPAS and rain gauge observations, the overestimation of precipitation by RADAR and the weak ability of IMERG, GSMAP and ERA5 products to capture the extreme values of heavy rainfall.
- In terms of the diurnal variation characteristics of precipitation, there is no obvious east–west propagation of precipitation in this precipitation process. Instead, it mainly occurs between 112.5 and 115°E, with two precipitation peak centers near 03:00 and 12:00. Both rain gauges and CMPAS reflect that the contribution rate of rainfall intensity to total precipitation is positively correlated. However, the CMPAS underestimates the extremely heavy rainfall during the peak period (06:00–08:00). Precipitation greater than 20 mm/h in the RADAR makes the largest contribution to total precipitation and is significantly overestimated from 08:00 to 14:00. The precipitation peak time estimated by IMERG lags by 2 hours. The GSMAP only reflects a single-peak structure of precipitation, while ERA5 has a diurnal variation structure opposite to gauge observations. Throughout the day, the IMERG, GSMAP and ERA5 generally overestimate rainfall from light to heavy levels but underestimate the contribution of rainstorms and heavy rainstorms to total precipitation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tapiador, F.J.; Turk, F.J.; Petersen, W.; Hou, A.Y.; García-Ortega, E.; Machado, L.A.T.; Angelis, C.F.; Salio, P.; Kidd, C.; Huffman, G.J.; et al. Global precipitation measurement: Methods, datasets and applications. Atmos. Res. 2012, 104–105, 70–97. [Google Scholar] [CrossRef]
- Tian, F.; Hou, S.; Yang, L.; Hu, H.; Hou, A. How Does the Evaluation of the GPM IMERG Rainfall Product Depend on Gauge Density and Rainfall Intensity? J. Hydrometeorol. 2018, 19, 339–349. [Google Scholar] [CrossRef]
- Wang, X.; Ding, Y.; Zhao, C.; Wang, J. Similarities and improvements of GPM IMERG upon TRMM 3B42 precipitation product under complex topographic and climatic conditions over Hexi region, Northeastern Tibetan Plateau. Atmos. Res. 2019, 218, 347–363. [Google Scholar] [CrossRef]
- Sharifi, E.; Steinacker, R.; Saghafian, B. Multi time-scale evaluation of high-resolution satellite-based precipitation products over northeast of Austria. Atmos. Res. 2018, 206, 46–63. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, M.; Wei, J.; Wang, S.; Li, X.; Li, S.; Zhao, A.; Li, X.; Fan, J. Changes in extreme precipitation over Northeast China, 1960–2011. Quat. Int. 2013, 298, 177–186. [Google Scholar] [CrossRef]
- Liu, R.; Liu, S.C.; Cicerone, R.J.; Shiu, C.-J.; Li, J.; Wang, J.; Zhang, Y. Trends of extreme precipitation in eastern China and their possible causes. Adv. Atmos. Sci. 2015, 32, 1027–1037. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, W.; Wu, J.; Hou, P.; Dai, Z.; Rao, P.; Ling, Z.; Deng, Y. Extreme hourly precipitation characteristics of Mainland China from 1980 to 2019. Int. J. Climatol. 2023, 43, 2989–3004. [Google Scholar] [CrossRef]
- Liu, M.; Xu, X.; Sun, A.Y.; Wang, K.; Liu, W.; Zhang, X. Is southwestern China experiencing more frequent precipitation extremes? Environ. Res. Lett. 2014, 9, 064002. [Google Scholar] [CrossRef]
- Yin, J.; Gu, H.; Liang, X.; Yu, M.; Sun, J.; Xie, Y.; Li, F.; Wu, C. A Possible Dynamic Mechanism for Rapid Production of the Extreme Hourly Rainfall in Zhengzhou City on 20 July 2021. J. Meteorol. Res. 2022, 36, 6–25. [Google Scholar] [CrossRef]
- Luo, Y.; Du, Y. The Roles of Low-level Jets in “21·7” Henan Extremely Persistent Heavy Rainfall Event. Adv. Atmos. Sci. 2023, 40, 350–373. [Google Scholar] [CrossRef]
- Nie, Y.; Sun, J. Moisture Sources and Transport for Extreme Precipitation Over Henan in July 2021. Geophys. Res. Lett. 2022, 49, e2021GL097446. [Google Scholar] [CrossRef]
- Zhang, G.; Mao, J.; Hua, W.; Wu, X.; Sun, R.; Yan, Z.; Liu, Y.; Wu, G. Synergistic Effect of the Planetary-scale Disturbance, Typhoon and Meso-β-scale Convective Vortex on the Extremely Intense Rainstorm on 20 July 2021 in Zhengzhou. Adv. Atmos. Sci. 2023, 40, 428–446. [Google Scholar] [CrossRef]
- Li, Z.; Yun, C.; Zhang, F.; Sun, J.; Wang, Y.; Fu, J.; Chao, Y. Consideration by “75·8” Extreme Heavy Rainfall Event in Henan. Meteorol. Environ. Sci. 2015, 38, 1–12. [Google Scholar]
- Villarini, G.; Krajewski, W.F.; Ciach, G.J.; Zimmerman, D.L. Product-error-driven generator of probable rainfall conditioned on WSR-88D precipitation estimates. Water Resour. Res. 2009, 45, W01404. [Google Scholar] [CrossRef]
- Vila, D.A.; de Goncalves, L.G.G.; Toll, D.L.; Rozante, J.R. Statistical Evaluation of Combined Daily Gauge Observations and Rainfall Satellite Estimates over Continental South America. J. Hydrometeorol. 2009, 10, 533–543. [Google Scholar] [CrossRef]
- Hong, Y.; Tang, G.; Ma, Y.; Huang, Q.; Han, Z.; Zeng, Z.; Yang, Y.; Wang, C.; Guo, X. Remote Sensing Precipitation: Sensors, Retrievals, Validations, and Applications. In Observation and Measurement of Ecohydrological Processes; Springer: Cham, Switzerland, 2019; pp. 107–128. [Google Scholar]
- Collier, C.G.; Larke, P.R.; May, B.R. A weather radar correction procedure for real-time estimation of surface rainfall. Q. J. R. Meteorol. Soc. 1983, 109, 589–608. [Google Scholar]
- Ninomiya, K.; Akiyama, T. Objective Analysis of Heavy Rainfalls Based on Radar and Gauge Measurements. J. Meteorol. Soc. Jpn. 1978, Ser II 56, 206–210. [Google Scholar] [CrossRef]
- Zhong, L.; Yang, R.; Chen, L.; Wen, Y.; Li, R.; Tang, G.; Hong, Y. Combined Space and Ground Radars for Improving Quantitative Precipitation Estimations in the Eastern Downstream Region of the Tibetan Plateau. Part I: Variability in the Vertical Structure of Precipitation in ChuanYu Analyzed from Long-Term Spaceborne Observations by TRMM PR. J. Appl. Meteorol. Climatol. 2017, 56, 2259–2274. [Google Scholar]
- Wen, Y.; Cao, Q.; Kirstetter, P.-E.; Hong, Y.; Gourley, J.J.; Zhang, J.; Zhang, G.; Yong, B. Incorporating NASA Spaceborne Radar Data into NOAA National Mosaic QPE System for Improved Precipitation Measurement: A Physically Based VPR Identification and Enhancement Method. J. Hydrometeorol. 2013, 14, 1293–1307. [Google Scholar] [CrossRef]
- Yong, B.; Ren, L.; Hong, Y.; Gourley, J.J.; Tian, Y.; Huffman, G.J.; Chen, X.; Wang, W.; Wen, Y. First evaluation of the climatological calibration algorithm in the real- time TMPA precipitation estimates over two basins at high and low latitudes. Water Resour. Res. 2013, 49, 2461–2472. [Google Scholar] [CrossRef]
- Lu, X.; Wei, M.; Tang, G.; Zhang, Y. Evaluation and correction of the TRMM 3B43V7 and GPM 3IMERGM satellite precipitation products by use of ground-based data over Xinjiang, China. Environ. Earth Sci. 2018, 77, 209. [Google Scholar] [CrossRef]
- Tang, G.; Ma, Y.; Long, D.; Zhong, L.; Hong, Y. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar] [CrossRef]
- Albergel, C.; Dutra, E.; Munier, S.; Calvet, J.-C.; Muñoz Sabater, J.; Rosnay, P.; Balsamo, G. ERA-5 and ERA-Interim driven ISBA land surface model simulations: Which one performs better? Hydrol. Earth Syst. Sci. 2018, 22, 3515–3532. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Munoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Wang, C.; Graham, R.M.; Wang, K.; Gerland, S.; Granskog, M.A. Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: Effects on sea ice thermodynamics and evolution. Cryosphere 2019, 13, 1661–1679. [Google Scholar] [CrossRef]
- Xie, P.; Arkin, P.A. Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs. Bull. Am. Meteorol. Soc. 1997, 78, 2539–2558. [Google Scholar] [CrossRef]
- Zhang, J.; Howard, K.; Langston, C.; Kaney, B.; Qi, Y.; Tang, L.; Grams, H.; Wang, Y.; Cocks, S.; Martinaitis, S.; et al. Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Am. Meteorol. Soc. 2016, 97, 621–637. [Google Scholar] [CrossRef]
- Pan, Y.; Gu, J.; Yu, J.; Shen, Y.; Shi, C.; Zhou, Z. Test of merging methods for multi-source observed precipitation products at high resolution over China. Acta Meteorol. Sin. 2018, 76, 755–766. [Google Scholar]
- Shen, Y.; Hong, Z.; Pan, Y.; Yu, J.; Maguire, L. China’s 1 km Merged Gauge, Radar and Satellite Experimental Precipitation Dataset. Remote Sens. 2018, 10, 264. [Google Scholar] [CrossRef]
- Shen, Y.; Xiong, A.; Hong, Y.; Yu, J.; Pan, Y.; Chen, Z.; Saharia, M. Uncertainty analysis of five satellite-based precipitation products and evaluation of three optimally merged multi-algorithm products over the Tibetan Plateau. Int. J. Remote Sens. 2014, 35, 6843–6858. [Google Scholar] [CrossRef]
- Pang, Z.; Shi, C.; Gu, J.; Pan, Y.; Xu, B. Assessment of a Gauge-Radar-Satellite Merged Hourly Precipitation Product for Accurately Monitoring the Characteristics of the Super-Strong Meiyu Precipitation over the Yangtze River Basin in 2020. Remote Sens. 2021, 13, 3850. [Google Scholar] [CrossRef]
- Zhang, A.; Xiao, L.; Min, C.; Chen, S.; Kulie, M.; Huang, C.; Liang, Z. Evaluation of latest GPM-Era high-resolution satellite precipitation products during the May 2017 Guangdong extreme rainfall event. Atmos. Res. 2019, 216, 76–85. [Google Scholar] [CrossRef]
- Fang, J.; Yang, W.; Luan, Y.; Du, J.; Lin, A.; Zhao, L. Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China. Atmos. Res. 2019, 223, 24–38. [Google Scholar] [CrossRef]
- Lai, S.; Xie, Z.; Bueh, C.; Gong, Y. Fidelity of the APHRODITE Dataset in Representing Extreme Precipitation over Central Asia. Adv. Atmos. Sci. 2020, 37, 1405–1416. [Google Scholar] [CrossRef]
- Xia, Z.; Xinmin, W.; Han, L.I.; Linyi, L.Y.U. Construction and Application of Extreme Rainstorm Index Based on Environmental Parameters. Meteor. Mon. 2020, 46, 898–912. [Google Scholar]
- Li, N.; Tang, G.; Zhao, P.; Hong, Y.; Gou, Y.; Yang, K. Statistical assessment and hydrological utility of the latest multi-satellite precipitation analysis IMERG in Ganjiang River basin. Atmos. Res. 2017, 183, 212–223. [Google Scholar] [CrossRef]
- Ren, Z.; Zhao, P.; Zhang, Q.; Zhang, Z.; Chen, Z. Quality Control Procedures for Hourly Precipitation Data from Automatic Weather Stations in China. Meteorol. Mon. 2010, 36, 123–132. [Google Scholar]
- Wu, W.; Zou, H.; Shan, J.; Wu, S. A Dynamical Z-R Relationship for Precipitation Estimation Based on Radar Echo-Top Height Classification. Adv. Meteorol. 2018, 2018, 8202031. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Behrangi, A.; Hong, Y.; Ndayisaba, F.; Hu, J.; Stepanian, P.M. Early assessment of Integrated Multi-satellite Retrievals for Global Precipitation Measurement over China. Atmos. Res. 2016, 176, 121–133. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Liang, Z.; Huang, C.; Li, Z.; Hu, B. Performance Assessment of GSMaP and GPM IMERG Products during Typhoon Mangkhut. Atmosphere 2021, 12, 134. [Google Scholar] [CrossRef]
- Beck, H.E.; Pan, M.; Roy, T.; Weedon, G.P.; Pappenberger, F.; Van Dijk, A.I.J.M.; Huffman, G.J.; Adler, R.F.; Wood, E.F. Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci. 2019, 23, 207–224. [Google Scholar] [CrossRef]
- Pan, Y.; Shen, Y.; Yu, J.; Zhao, P. Analysis of the combined gauge-satellite hourly precipitation over China based on the OI technique. Acta Meteorol. Sin. 2012, 70, 1381–1389. [Google Scholar]
- Shen, Y.; Zhao, P.; Pan, Y.; Yu, J. A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res.-Atmos. 2014, 119, 3063–3075. [Google Scholar] [CrossRef]
- Pan, Y.; Gu, J.; Xu, B.; Shen, Y.; Han, S.; Shi, C. Advances in multi-source precipitation merging research. Adv. Meteorol. Sci. Technol. 2018, 8, 143–152. [Google Scholar]
- Yang, M.; Liu, G.; Chen, T.; Chen, Y.; Xia, C. Evaluation of GPM IMERG precipitation products with the point rain gauge records over Sichuan, China. Atmos. Res. 2020, 246, 105101. [Google Scholar] [CrossRef]
- Tan, M.L.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar] [CrossRef]
- Wang, W.; Lu, H.; Zhao, T.; Jiang, L.; Shi, J. Evaluation and Comparison of Daily Rainfall From Latest GPM and TRMM Products Over the Mekong River Basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2540–2549. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, Z.; Li, Z.; Zhang, P.; Liu, Q.; Nan, Y.; Zhang, J.; Hu, S.; Feng, Y.; Zhao, H. Using CYGNSS Data to Map Flood Inundation during the 2021 Extreme Precipitation in Henan Province, China. Remote Sens. 2021, 13, 5181. [Google Scholar] [CrossRef]
- Jackson, G.; Petersen, W.; Berg, W.; Kidd, C.; Stocker, E.; Kirschbaum, D.; Kakar, R.; Braun, S.; Huffman, G.; Iguchi, T.; et al. The Global Precipitation Measurement (GPM) Mission for Science and Society. Bull. Am. Meteorol. Soc. 2017, 98, 1679–1695. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, W.; Fan, Z.; He, X.; Sun, W.; Chen, S.; Wen, J.; Gao, J.; Wang, J. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese mainland. J. Hydrol. 2021, 595, 125660. [Google Scholar] [CrossRef]
- Sun, H.; Yao, T.; Su, F.; He, Z.; Tang, G.; Li, N.; Zheng, B.; Huang, J.; Meng, F.; Ou, T.; et al. Corrected ERA5 precipitation by machine learning significantly improved flow simulations for the third pole basins. J. Hydrometeorol. 2022, 23, 1663–1679. [Google Scholar] [CrossRef]
- Veloria, A.; Perez, G.J.; Tapang, G.; Comiso, J. Improved Rainfall Data in the Philippines through Concurrent Use of GPM IMERG and Ground-Based Measurements. Remote Sens. 2021, 13, 2859. [Google Scholar] [CrossRef]
- Chen, S.; Hong, Y.; Kulie, M.; Behrangi, A.; Stepanian, P.M.; Cao, Q.; You, Y.; Zhang, J.; Hu, J.; Zhang, X. Comparison of snowfall estimates from the NASA CloudSat Cloud Profiling Radar and NOAA/NSSL Multi-Radar Multi-Sensor System. J. Hydrol. 2016, 541, 862–872. [Google Scholar] [CrossRef]
- Dinku, T.; Chidzambwa, S.; Ceccato, P.; Connor, S.J.; Ropelewski, C.F. Validation of high-resolution satellite rainfall products over complex terrain. Int. J. Remote Sens. 2008, 29, 4097–4110. [Google Scholar] [CrossRef]
- Islam, M.A.; Cartwright, N. Evaluation of climate reanalysis and space-borne precipitation products over Bangladesh. Hydrol. Sci. J. 2020, 65, 1112–1128. [Google Scholar] [CrossRef]
- Wu, G.; Qin, S.; Mao, Y.; Ma, Z.; Shi, C. Validation of precipitation events in ERA5 to gauge observations during warm seasons over eastern China. J. Hydrometeorol. 2022, 23, 807–822. [Google Scholar] [CrossRef]
- Lee, H.; Waliser, D.E.; Ferraro, R.; Iguchi, T.; Peters-Lidard, C.D.; Tian, B.; Loikith, P.C.; Wright, D.B. Evaluating hourly rainfall characteristics over the US Great Plains in dynamically downscaled climate model simulations using NASA-Unified WRF. J. Geophys. Res.-Atmos. 2017, 122, 7371–7384. [Google Scholar] [CrossRef]
- Liu, S.N.; Wang, J.; Wang, H.J. Assessing 10 satellite precipitation products in capturing the July 2021 extreme heavy rain in Henan, China. J. Meteor. Res. 2022, 36, 798–808. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; Rajagopal, E.N.; Pai, D.S. Assessment of TRMM-based TMPA-3B42 and gsmap precipitation products over India for the Peak Southwest Monsoon season. Int. J. Climatol. 2015, 36, 1614–1631. [Google Scholar] [CrossRef]
- Dullaart, J.C.; Muis, S.; Bloemendaal, N.; Aerts, J.C. Advancing global storm surge modelling using the new ERA5 climate reanalysis. Clim. Dyn. 2019, 54, 1007–1021. [Google Scholar] [CrossRef]
- Wu, H.; Yong, B.; Shen, Z. Research on the Monitoring Ability of Fengyun-Based Quantitative Precipitation Estimates for Capturing Heavy Precipitation: A Case Study of the “7·20” Rainstorm in Henan Province, China. Remote Sens. 2023, 15, 2726. [Google Scholar] [CrossRef]
- Li, S.; Huang, X.; Wu, W.; Du, B.; Jiang, Y. Evaluation of CMPAS precipitation products over Sichuan, China. Atmos. Ocean. Sci. Lett. 2022, 15, 100129. [Google Scholar] [CrossRef]
- Gentilucci, M.; Barbieri, M.; Pambianchi, G. Reliability of the IMERG product through reference rain gauges in central Italy. Atmos. Res. 2022, 278, 106340. [Google Scholar] [CrossRef]
- Seo, D.J.; Breidenbach, J.P. Real-time correction of spatially nonuniform bias in radar rainfall data using rain gauge measurements. J. Hydrometeorol. 2002, 3, 93–111. [Google Scholar] [CrossRef]
- Hong, Y.; Hsu, K.L.; Sorooshian, S.; Gao, X. Precipitation estimation from remotely sensed imagery using a nartificial neural net-work cloud classification system. J. Appl. Meteor. 2004, 43, 1834–1853. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at finescales. J Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
ME | rBIAS | RMSE | CORR | Bias | Var | KGE | TS | |
CMPAS | 0.007 | 1.07 | 0.88 | 0.961 | 1.01 | 0.948 | 0.934 | 0.791 |
RADAR | 0.521 | 77.9 | 5.439 | 0.385 | 1.779 | 1.018 | 0.007 | 0.556 |
IMERG | 0.0002 | 0.031 | 2.867 | 0.486 | 1.0003 | 0.701 | 0.405 | 0.456 |
GSMAP | −0.144 | −21.63 | 2.917 | 0.415 | 0.783 | 0.655 | 0.288 | 0.442 |
ERA5 | −0.056 | −8.425 | 3.105 | 0.278 | 0.915 | 0.476 | 0.104 | 0.341 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, Z.; Zhang, Y.; Shi, C.; Gu, J.; Yang, Q.; Pan, Y.; Wang, Z.; Xu, B. A Comprehensive Assessment of Multiple High-Resolution Precipitation Grid Products for Monitoring Heavy Rainfall during the “7.20” Extreme Rainstorm Event in China. Remote Sens. 2023, 15, 5255. https://doi.org/10.3390/rs15215255
Pang Z, Zhang Y, Shi C, Gu J, Yang Q, Pan Y, Wang Z, Xu B. A Comprehensive Assessment of Multiple High-Resolution Precipitation Grid Products for Monitoring Heavy Rainfall during the “7.20” Extreme Rainstorm Event in China. Remote Sensing. 2023; 15(21):5255. https://doi.org/10.3390/rs15215255
Chicago/Turabian StylePang, Zihao, Yu Zhang, Chunxiang Shi, Junxia Gu, Qingjun Yang, Yang Pan, Zheng Wang, and Bin Xu. 2023. "A Comprehensive Assessment of Multiple High-Resolution Precipitation Grid Products for Monitoring Heavy Rainfall during the “7.20” Extreme Rainstorm Event in China" Remote Sensing 15, no. 21: 5255. https://doi.org/10.3390/rs15215255
APA StylePang, Z., Zhang, Y., Shi, C., Gu, J., Yang, Q., Pan, Y., Wang, Z., & Xu, B. (2023). A Comprehensive Assessment of Multiple High-Resolution Precipitation Grid Products for Monitoring Heavy Rainfall during the “7.20” Extreme Rainstorm Event in China. Remote Sensing, 15(21), 5255. https://doi.org/10.3390/rs15215255