Exploring Spatial and Temporal Dynamics of Red Sea Air Quality through Multivariate Analysis, Trajectories, and Satellite Observations
Abstract
:1. Introduction
2. Data and Method
2.1. Study Region
2.2. Methods
2.2.1. Data
2.2.2. Correlation Analysis
2.2.3. Back Trajectory Analysis
2.2.4. Principal Component Analysis
2.2.5. NOAA HYSPLIT Model
3. Results and Discussions
3.1. Descriptive Statistics
3.2. Correlation Analysis
3.3. Spatiotemporal Variation in Aerosol Index and Trace Gas Distribution
3.4. Back Trajectory Analysis
3.5. Principal Component Analysis
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Jin, X.; Wu, L.; Wang, X.; Fu, M.; Lv, Z.; Morawska, L.; Huang, F.; He, K. The impact of marine shipping and its DECA control on air quality in the Pearl River Delta, China. Sci. Total Environ. 2018, 625, 1476–1485. [Google Scholar] [CrossRef]
- Han, S.; Cai, Z.; Liu, J.; Zhang, M.; Chen, J.; Lin, Y. Comparison on aerosol physicochemical properties of sea and land along the coast of Bohai, China. Sci. Total Environ. 2019, 673, 148–156. [Google Scholar] [CrossRef]
- Corbett, J.J.; Fischbeck, P.S.; Pandis, S.N. Global nitrogen and sulfur inventories for oceangoing ships. J. Geophys. Res. Atmos. 1999, 104, 3457–3470. [Google Scholar] [CrossRef]
- IMO. Fourth IMO GHG Study 2020 Executive Summary; The Convention on the International Maritime Organization: London, UK, 2020. [Google Scholar]
- Ledoux, F.; Roche, C.; Cazier, F.; Beaugard, C.; Courcot, D. Influence of ship emissions on NOx, SO2, O3 and PM concentrations in a North-Sea harbor in France. J. Environ. Sci. 2018, 71, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Viana, M.; Hammingh, P.; Colette, A.; Querol, X.; Degraeuwe, B.; de Vlieger, I.; van Aardenne, J. Impact of maritime transport emissions on coastal air quality in Europe. Atmos. Environ. 2014, 90, 96–105. [Google Scholar] [CrossRef]
- Endresen, Ø.; Sørgård Det Norske Veritas, E.; Jostein Sundet, N.K.; Dalsøren, S.B.; Isaksen, I.S.A.; Berglen, T.F.; Norske Veritas, D. Emission from International Sea Transportation and Environmental Impact. J. Geophys. Res. 2003, 108, 4560. [Google Scholar] [CrossRef]
- Eyring, V.; Isaksen, I.S.; Berntsen, T.; Collins, W.J.; Corbett, J.J.; Endresen, O.; Grainger, R.G.; Moldanova, J.; Schlager, H.; Stevenson, D.S. Transport impacts on atmosphere and climate: Shipping. Atmos. Environ. 2010, 44, 4735–4771. [Google Scholar] [CrossRef]
- Eyring, V.; Köhler, H.W.; Van Aardenne, J.; Lauer, A. Emissions from International Shipping: 1. The Last 50 Years. J. Geophys. Res. D Atmos. 2005, 110, 171–182. [Google Scholar] [CrossRef]
- Walker, D.I.; Ormond, R.F.G. Coral death from sewage and phosphate pollution at Aqaba, Red Sea. Mar. Pollut. Bull. 1982, 13, 21–25. [Google Scholar] [CrossRef]
- Khatib, H. Oil and natural gas prospects: Middle East and North Africa. Energy Policy 2014, 64, 71–77. [Google Scholar] [CrossRef]
- Dalsøren, S.B.; Endresen, Ø.; Isaksen, I.S.A.; Gravir, G.; Sörgärd, E. Environmental Impacts of the Expected Increase in Sea Transportation, with a Particular Focus on Oil and Gas Scenarios for Norway and Northwest Russia. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Endresen, Ø.; Sørgård, E.; Behrens, H.L.; Brett, P.O.; Isaksen, I.S.A. A Historical Reconstruction of Ships’ Fuel Consumption and Emissions. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Crutzen, P.J. Influence of NOx emissions from ships on tropospheric photochemistry and climate. Nature 1999, 402, 167–170. [Google Scholar] [CrossRef]
- Agulles, M.; Jordà, G.; Jones, B.; Agustí, S.; Duarte, C.C. Temporal evolution of temperatures in the red sea and the gulf of aden based on in situ observations (1958–2017). Ocean Sci. 2020, 16, 149–166. [Google Scholar] [CrossRef]
- Karnauskas, K.B.; Jones, B.H. The Interannual Variability of Sea Surface Temperature in the Red Sea From 35 Years of Satellite and In Situ Observations. J. Geophys. Res. Ocean 2018, 123, 5824–5841. [Google Scholar] [CrossRef]
- Richter, A.; Eyring, V.; Burrows, J.P.; Bovensmann, H.; Lauer, A.; Sierk, B.; Crutzen, P.J. Satellite Measurements of NO2 from International Shipping Emissions. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef]
- Seddiek, I.S.; Elgohary, M.M. Eco-Friendly Selection of Ship Emissions Reduction Strategies with Emphasis on SOx and NOx Emissions. Int. J. Nav. Archit. Ocean Eng. 2014, 6, 737–748. [Google Scholar] [CrossRef]
- Alahmadi, S.; Al-Ahmadi, K.; Almeshari, M. Spatial Variation in the Association between NO2 Concentrations and Shipping Emissions in the Red Sea. Sci. Total Environ. 2019, 676, 131–143. [Google Scholar] [CrossRef]
- Hu, M.; Wang, Y.; Wang, S.; Jiao, M.; Huang, G.; Xia, B. Spatial-Temporal Heterogeneity of Air Pollution and Its Relationship with Meteorological Factors in the Pearl River Delta, China. Atmos. Environ. 2021, 254, 118415. [Google Scholar] [CrossRef]
- Tyagi, B.; Singh, J.; Beig, G. Seasonal Progression of Surface Ozone and NOx Concentrations over Three Tropical Stations in North-East India. Environ. Pollut. 2020, 258, 113662. [Google Scholar] [CrossRef]
- Bourtsoukidis, E.; Pozzer, A.; Sattler, T.; Matthaios, V.N.; Ernle, L.; Edtbauer, A.; Fischer, H.; Könemann, T.; Osipov, S.; Paris, J.D.; et al. The Red Sea Deep Water Is a Potent Source of Atmospheric Ethane and Propane. Nat. Commun. 2020, 11, 447. [Google Scholar] [CrossRef]
- Pedgley, D.E. An Outline of the Weather and Climate of the Red Sea. L’oceanographie Phys. Mer Rouge 1974, 11, 9–27. [Google Scholar]
- Jiang, H.; Farrar, J.T.; Beardsley, R.C.; Chen, R.; Chen, C. Zonal Surface Wind Jets across the Red Sea Due to Mountain Gap Forcing along Both Sides of the Red Sea. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Held, I.; Hou, A. Nonlinear Axially Symmetric Circulations in a Nearly Inviscid Atmosphere. J. Atmos. Sci. 1980, 37, 515–533. [Google Scholar] [CrossRef]
- Tadic, I.; Crowley, J.N.; Dienhart, D.; Eger, P.; Harder, H.; Hottmann, B.; Martinez, M.; Parchatka, U.; Pari, J.D.; Pozzer, A.; et al. Net Ozone Production and Its Re-lationship to Nitrogen Oxides and Volatile Organic Compounds in the Marine Boundary Layer around the Arabian Pen-insula. Atmos. Chem. Phys. 2020, 20, 6769–6787. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES Mission for Global Observations of the Atmospheric Composition for Climate, Air Quality and Ozone Layer Applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Sun, J.; Gong, J.; Zhou, J. Estimating Hourly PM2.5 Concentrations in Beijing with Satellite Aerosol Optical Depth and a Random Forest Approach. Sci. Total Environ. 2021, 762, 144502. [Google Scholar] [CrossRef]
- Tabunschik, V.; Gorbunov, R.; Gorbunova, T. Unveiling Air Pollution in Crimean Mountain Rivers: Analysis of Sentinel-5 Satellite Images Using Google Earth Engine (GEE). Remote Sens. 2023, 15, 3364. [Google Scholar] [CrossRef]
- Bosworth, W.; Huchon, P.; McClay, K. The Red Sea and Gulf of Aden Basins. J. Afr. Earth Sci. 2005, 43, 334–378. [Google Scholar] [CrossRef]
- Loya, Y. Recolonization of Red Sea Corals Affected by Natural Catastrophes and Man-Made Perturbations. Ecology 1976, 57, 278–289. [Google Scholar] [CrossRef]
- Rozanov, V.V.; Diebel, D.; Spurr, R.J.D.; Burrows, J.P. GOMETRAN: A Radiative Transfer Model for the Satellite Project GOME, the Plane-Parallel Version. J. Geophys. Res. Atmos. 1997, 102, 16683–16695. [Google Scholar] [CrossRef]
- Galli, A.; Butz, A.; Scheepmaker, R.A.; Hasekamp, O.; Landgraf, J.; Tol, P.; Wunch, D.; Deutscher, N.M.; Toon, G.C.; Wennberg, P.O.; et al. CH4, CO, and H2O Spectroscopy for the Sentinel-5 Precursor Mission: An As-sessment with the Total Carbon Column Observing Network Measurements. Atmos. Meas. Tech. 2012, 5, 1387–1398. [Google Scholar] [CrossRef]
- Irizar, J.; Melf, M.; Bartsch, P.; Koehler, J.; Weiss, S.; Greinacher, R.; Erdmann, M.; Kirschner, V.; Perez Albinana, A.; Martin, D. Sentinel-5/UVNS. In Proceedings of the International Conference on Space Optics—ICSO 2018, Chania, Greece, 9–12 October 2018; SPIE: Bellingham, WA, USA, 2019; pp. 41–58. [Google Scholar] [CrossRef]
- Stratoulias, D.; Nuthammachot, N. Air Quality Development during the COVID-19 Pandemic over a Medium-Sized Urban Area in Thailand. Sci. Total Environ. 2020, 746, 141320. [Google Scholar] [CrossRef] [PubMed]
- Ogen, Y. Assessing Nitrogen Dioxide (NO2) Levels as a Contributing Factor to Coronavirus (COVID-19) Fatality. Sci. Total Environ. 2020, 726, 138605. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Liu, C.; Cai, Z.; Liu, X.; Bak, J.; Kim, J.; Hu, Q.; Xia, C.; Zhang, C.; Sun, Y.; et al. Ozone Profile Retrievals from TROPOMI: Implication for the Variation of Tropospheric Ozone during the Outbreak of COVID-19 in China. Sci. Total Environ. 2021, 764, 142886. [Google Scholar] [CrossRef]
- Hashim, B.M.; Al-Naseri, S.K.; Al-Maliki, A.; Al-Ansari, N. Impact of COVID-19 Lockdown on NO2, O3, PM2.5 and PM10 Concentrations and Assessing Air Quality Changes in Baghdad, Iraq. Sci. Total Environ. 2021, 754, 141978. [Google Scholar] [CrossRef]
- Mahmud, K.; Mitra, B.; Uddin, M.S.; Hridoy, A.-E.E.; Aina, Y.A.; Abubakar, I.R.; Rahman, S.M.; Tan, M.L.; Rahman, M.M. Temporal Assessment of Air Quality in Major Cities in Nigeria Using Satellite Data. Atmos. Environ. X 2023, 20, 100227. [Google Scholar] [CrossRef]
- Gujarati, D.; Porter, D.; Gunasekar, S. The McGraw-Hill Series Economics. 2009. Available online: www.downloadslide.com (accessed on 22 April 2021).
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Springer Topics in Signal Processing; Springer Science and Business Media B.V.: Berlin/Heidelberg, Germany, 2009; Volume 2, pp. 1–4. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-Time Environmental Applications and Display SYstem: READY. Environ. Mod-Elling Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Su, L.; Yuan, Z.; Fung, J.C.H.; Lau, A.K.H. A Comparison of HYSPLIT Backward Trajectories Generated from Two GDAS Datasets. Sci. Total Environ. 2015, 506–507, 527–537. [Google Scholar] [CrossRef]
- Du, X.; Jin, X.; Zucker, N.; Kennedy, R.; Urpelainen, J. Transboundary Air Pollution from Coal-Fired Power Generation. J. Environ. Manag. 2020, 270, 110862. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Fang, C.; Qiu, J.; Wang, J. Analysis of Pollution Characteristics and Influencing Factors of Main Pollutants in the Atmosphere of Shenyang City. Atmosphere 2020, 11, 766. [Google Scholar] [CrossRef]
- Iarocci, G.; Cocchiara, R.A.; Sestili, C.; Del Cimmuto, A.; La Torre, G. Variation of Atmospheric Emissions within the Road Transport Sector in Italy between 1990 and 2016. Sci. Total Environ. 2019, 692, 1276–1281. [Google Scholar] [CrossRef]
- Pio, C.A.; Nunes, T.V.; Borrego, C.S.; Martins, J.G. Assessment of Air Pollution Sources in an Industrial Atmosphere Using Principal Component and Multilinear Regression Analysis. Sci. Total Environ. 1989, 80, 279–292. [Google Scholar] [CrossRef]
- Dominick, D.; Juahir, H.; Latif, M.T.; Zain, S.M.; Aris, A.Z. Spatial Assessment of Air Quality Patterns in Malaysia Using Multivariate Analysis. Atmos. Environ. 2012, 60, 172–181. [Google Scholar] [CrossRef]
- Lever, J.; Krzywinski, M.; Altman, N. Principal component analysis. Nature 2017, 14, 641–642. [Google Scholar] [CrossRef]
- Shaltout, M. Recent Sea Surface Temperature Trends and Future Scenarios for the Red Sea. Oceanologia 2019, 61, 484–504. [Google Scholar] [CrossRef]
- Myriokefalitakis, S.; Daskalakis, N.; Fanourgakis, G.S.; Voulgarakis, A.; Krol, M.C.; Aan de Brugh, J.M.J.; Kanakidou, M. Ozone and Carbon Monoxide Budgets over the Eastern Mediterranean. Sci. Total Environ. 2016, 563–564, 40–52. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, D.; Wang, X.; Li, S.; Zhang, J.; Qiu, H.; Ding, S.; Hu, K.; Li, W.; Tian, P.; et al. Ambient Marine Shipping Emissions Determined by Vessel Operation Mode along the East China Sea. Sci. Total Environ. 2021, 769, 144713. [Google Scholar] [CrossRef]
- Islam, M.S.; Rahman, M.; Tusher, T.R.; Roy, S.; Razi, M.A. Assessing the Relationship between COVID-19, Air Quality, and Meteorological Variables: A Case Study of Dhaka City in Bangladesh. Aerosol Air Qual. Res. 2021, 21, 200609. [Google Scholar] [CrossRef]
- Banta, R.M.; Senff, C.J.; Alvarez, R.J.; Langford, A.O.; Parrish, D.D.; Trainer, M.K.; Darby, L.S.; Michael Hardesty, R.; Lambeth, B.; Andrew Neuman, J.; et al. Dependence of Daily Peak O3 Concentrations near Houston, Texas on Environmental Factors: Wind Speed, Temperature, and Boundary-Layer Depth. Atmos. Environ. 2011, 45, 162–173. [Google Scholar] [CrossRef]
- Kalbarczyk, R.; Sobolewski, R.; Kalbarczyk, E. Biometeorological Determinants of the Tropospheric Ozone Concentration in the Suburban Conditions of Wroclaw, Poland. J. Elem. 2016, 21, 729–744. [Google Scholar] [CrossRef]
- Abera, A.; Malmqvist, E.; Mandakh, Y.; Flanagan, E.; Jerrett, M.; Gebrie, G.S.; Bayih, A.G.; Aseffa, A.; Isaxon, C.; Mattisson, K. Measurements of NOx and Development of Land Use Regression Models in an East-African City. Atmosphere 2021, 12, 519. [Google Scholar] [CrossRef]
- Sofiev, M.; Winebrake, J.J.; Johansson, L.; Carr, E.W.; Prank, M.; Soares, J.; Vira, J.; Kouznetsov, R.; Jalkanen, J.P.; Corbett, J.J. Cleaner Fuels for Ships Provide Public Health Benefits with Climate Tradeoffs. Nat. Commun. 2018, 9, 406. [Google Scholar] [CrossRef] [PubMed]
- Jish Prakash, P.; Stenchikov, G.; Kalenderski, S.; Osipov, S.; Bangalath, H. The Impact of Dust Storms on the Arabian Pen-insula and the Red Sea. Atmos. Chem. Phys. 2015, 15, 199–222. [Google Scholar] [CrossRef]
- Bower, A.S.; Farrar, J.T. Air–Sea Interaction and Horizontal Circulation in the Red Sea; Springer Earth System Sciences; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Patzert, W.C. Wind-Induced Reversal in Red Sea Circulation. Deep Sea Res. Oceanogr. Abstr. 1974, 21, 109–121. [Google Scholar] [CrossRef]
- Sofianos, S.S.; Johns, W.E. An Oceanic General Circulation Model (OGCM) Investigation of the Red Sea Circulation: 2. Three-Dimensional Circulation in the Red Sea. J. Geophys. Res. Ocean 2003, 108, 3066. [Google Scholar] [CrossRef]
- Pfannerstill, E.Y.; Wang, N.; Edtbauer, A.; Bourtsoukidis, E.; Crowley, J.N.; Dienhart, D.; Eger, P.G.; Ernle, L.; Fischer, H.; Hottmann, B.; et al. Shipborne Measurements of Total OH Reactivity around the Arabian Peninsula and Its Role in Ozone Chemistry. Atmos. Chem. Phys. 2019, 19, 11501–11523. [Google Scholar] [CrossRef]
- Kerr, G.H.; Waugh, D.W.; Strode, S.A.; Steenrod, S.D.; Oman, L.D.; Strahan, S.E. Disentangling the Drivers of the Summertime Ozone-Temperature Relationship Over the United States. J. Geophys. Res. Atmos. 2019, 124, 10503–10524. [Google Scholar] [CrossRef]
- Corbett, J.J.; Fischbeck, P. Emissions from Ships. Science 1997, 278, 823–824. [Google Scholar] [CrossRef]
- Corbett, J.J. Updated Emissions from Ocean Shipping. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Bozem, H.; Butler, T.M.; Lawrence, M.G.; Harder, H.; Martinez, M.; Kubistin, D.; Lelieveld, J.; Fischer, H. Chemical Processes Related to Net Ozone Tendencies in the Free Troposphere. Atmos. Chem. Phys. 2017, 17, 10565–10582. [Google Scholar] [CrossRef]
- Williams, E.J.; Lerrier, B.M.; Murphy, P.C.; Herndon, S.C.; Zahniser, M.S. Emissions of NOx, SO2, CO, and HCHO from Commercial Marine Shipping during Texas Air Quality Study (TexAQS) 2006. J. Geophys. Res. Atmos. 2009, 114, 21306. [Google Scholar] [CrossRef]
- Klonecki, A.; Levy, H. Tropospheric chemical ozone tendencies in CO-CH4-NOy-H2O system: Their sensitivity to variations in environmental parameters and their application to a global chemistry transport model study. J. Geophys. Res. Atmos. 1997, 102, 21221–21237. [Google Scholar] [CrossRef]
- Mohan, S.; Saranya, P. Assessment of Tropospheric Ozone at an Industrial Site of Chennai Megacity. J. Air Waste Manag. Assoc. 2019, 69, 1079–1095. [Google Scholar] [CrossRef] [PubMed]
- Swinnerton, J.W.; Linnenbom, V.J.; Lamontagne, R.A. The Ocean: A Natural Source of Carbon Monoxide. Science 1970, 167, 984–986. [Google Scholar] [CrossRef] [PubMed]
- Robbins, R.C.; Borg, K.M.; Robinson, E. Carbon Monoxide in the Atmosphere. J. Air Pollut. Control Assoc. 1968, 18, 106–110. [Google Scholar] [CrossRef]
- Bates, T.S.; Kelly, K.C.; Johnson, J.E.; Gammon, R.H. Regional and Seasonal Variations in the Flux of Oceanic Carbon Monoxide to the Atmosphere. J. Geophys. Res. 1995, 100, 23093–23101. [Google Scholar] [CrossRef]
- Isaksen, I.S.A.; Hov, Ø.; Hesstvedt, E. Ozone Generation over Rural Areas. Environ. Sci. Technol. 1978, 12, 1279–1284. [Google Scholar] [CrossRef]
- Soni, M.; Verma, S.; Jethava, H.; Payra, S.; Lamsal, L.; Gupta, P.; Singh, J. Impact of COVID-19 on the Air Quality over China and India Using Long-Term (2009–2020) Multi-Satellite Data. Aerosol Air Qual. Res. 2021, 21, 200295. [Google Scholar] [CrossRef]
- Hanafi, N.H.; Hassim, M.H.; Noor, Z.Z.; Ng, D.K.S.; Harrin Nor Helmi, N.; Aris, N.M. Analysis of Transported Pollution and Haze-Related Diseases via HYSPLIT Trajectory Modelling in the Urbanized Area of Johor, Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2019, 373, 012008. [Google Scholar] [CrossRef]
- Zhai, P.; Bower, A. The Response of the Red Sea to a Strong Wind Jet near the Tokar Gap in Summer. J. Geophys. Res. Oceans 2013, 118, 421–434. [Google Scholar] [CrossRef]
- Ramachandran, S.; Jayaraman, A. Spectral Aerosol Optical Depths over Bay of Bengal and Chennai: II—Sources, Anthro-pogenic Influence and Model Estimates. Atmos. Environ. 2003, 37, 1951–1962. [Google Scholar] [CrossRef]
- Yuan, N.; Fu, Z. Different Spatial Cross-Correlation Patterns of Temperature Records over China: A DCCA Study on Dif-ferent Time Scales. Phys. A Stat. Mech. Its Appl. 2014, 400, 71–79. [Google Scholar] [CrossRef]
- Charakopoulos, A.K.; Katsouli, G.A.; Karakasidis, T.E. Dynamics and Causalities of Atmospheric and Oceanic Data Identified by Complex Networks and Granger Causality Analysis. Phys. A Stat. Mech. Its Appl. 2018, 495, 436–453. [Google Scholar] [CrossRef]
Variable Name | Product Name | Instrument | Spatial Resolution |
---|---|---|---|
NO2 | Sentinel-5P NRTI NO2 | TROPOMI Sentinel-5 Precursor | 1113.2 m × 1113.2 m |
SO2 | Sentinel-5P OFFL SO2 | ||
O3 | Sentinel-5P OFFL O3 | ||
CO | Sentinel-5P OFFL CO | ||
AI | Sentinel-5P OFFL AER AI | ||
SST | NOAA CDR OISST v2 | NOAA | 0.05° × 0.05° |
AT | NOAA CDR | ||
WS | |||
SH | |||
WV | MERRA-2 | GEOS-5 | 0.5° × 0.625° |
Statistics | SH (g/kg) | WS (ms−1) | AT (°C) | SST (°C) | NO2 (μmolm−2) | SO2 (μmolm−2) | O3 (μmolm−2) | CO (μmolm−2) | AI |
---|---|---|---|---|---|---|---|---|---|
Mean | 16.9 | 4.68 | 27.9 | 28.4 | 50.1 | 195 | 0.118 | 31905 | −0.699 |
Standard deviation | 1.45 | 1.37 | 1.98 | 2.34 | 7.32 | 141 | 0.00507 | 3701 | 0.726 |
Minimum | 12.6 | 2.54 | 23.4 | 22.1 | 27.8 | 6.34 | 0.104 | 18874 | −3.13 |
Maximum | 20.1 | 8.82 | 31.1 | 32.1 | 70.0 | 763 | 0.128 | 44683 | 1.96 |
Skewness | −0.737 | 0.810 | −0.499 | −0.363 | 0.280 | 1.10 | −0.723 | 0.307 | 0.951 |
Variables | PC1 | PC2 | PC3 |
---|---|---|---|
Air temperature | 0.944 | - | - |
Sea Surface Temperature | 0.925 | - | - |
Specific Humidity | 0.691 | - | - |
Wind Speed | −0.753 | - | - |
NO2 | - | 0.752 | |
SO2 | - | - | 0.937 |
O3 | 0.652 | 0.55 | - |
CO | −0.650 | - | - |
AI | - | 0.739 | - |
Eigenvalue | 3.87 | 1.21 | 1.02 |
Variability (%) | 42.97 | 13.46 | 11.28 |
Cumulative (%) | 43.0 | 56.4 | 77.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitra, B.; Hridoy, A.-E.E.; Mahmud, K.; Uddin, M.S.; Talha, A.; Das, N.; Nath, S.K.; Shafiullah, M.; Rahman, S.M.; Rahman, M.M. Exploring Spatial and Temporal Dynamics of Red Sea Air Quality through Multivariate Analysis, Trajectories, and Satellite Observations. Remote Sens. 2024, 16, 381. https://doi.org/10.3390/rs16020381
Mitra B, Hridoy A-EE, Mahmud K, Uddin MS, Talha A, Das N, Nath SK, Shafiullah M, Rahman SM, Rahman MM. Exploring Spatial and Temporal Dynamics of Red Sea Air Quality through Multivariate Analysis, Trajectories, and Satellite Observations. Remote Sensing. 2024; 16(2):381. https://doi.org/10.3390/rs16020381
Chicago/Turabian StyleMitra, Bijoy, Al-Ekram Elahee Hridoy, Khaled Mahmud, Mohammed Sakib Uddin, Abu Talha, Nayan Das, Sajib Kumar Nath, Md Shafiullah, Syed Masiur Rahman, and Muhammad Muhitur Rahman. 2024. "Exploring Spatial and Temporal Dynamics of Red Sea Air Quality through Multivariate Analysis, Trajectories, and Satellite Observations" Remote Sensing 16, no. 2: 381. https://doi.org/10.3390/rs16020381
APA StyleMitra, B., Hridoy, A. -E. E., Mahmud, K., Uddin, M. S., Talha, A., Das, N., Nath, S. K., Shafiullah, M., Rahman, S. M., & Rahman, M. M. (2024). Exploring Spatial and Temporal Dynamics of Red Sea Air Quality through Multivariate Analysis, Trajectories, and Satellite Observations. Remote Sensing, 16(2), 381. https://doi.org/10.3390/rs16020381