Estimation of Land Surface Temperature from Chinese ZY1-02E IRS Data
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. ZY1-02E Data
2.3. MODIS Data
2.4. The ASTER Spectral Library
2.5. ERA5 Atmospheric Profiles
2.6. In Situ Data
3. Methodology
3.1. WVS-Based LST Method
3.2. Land Surface Emissivity Inversion
3.3. Atmospheric Parameter Inversion
3.4. WVS-Based LST Retrieval
- Land surface emissivity retrieval. Firstly, land surface reflectance is retrieved from the ZY1-02E VNIC data using the ERA 5 atmospheric profile from MODTRAN. Then, the NDVI and FVC can be obtained from land surface reflectance data. Subsequently, the land surface emissivity is accurately retrieved based on FVC and NDVI.
- TOA brightness temperature retrieval: The DN values received by the ZY1-02E IRS data are converted into radiance data with the calibration parameters. Subsequently, the TOA radiance is converted into TOA BT using the look-up table between radiance and brightness temperature.
- Adjusted atmospheric parameters: The atmospheric parameters in the ERA5 spatial scale can be calculated using ERA5 profile data from MODTRAN. Then, the atmospheric parameters in the ZY1-02E spatial scale can be estimated using temporal and spatial interpolation. Finally, the WVS method is used to adjust the ZY1-02E atmospheric parameters.
- Based on the adjusted atmospheric parameters and LSE data, the ZY1-02E LST can be inversed using the thermal radiative transfer Equation (2).
4. Results
4.1. LST Results
4.2. Validation
4.2.1. Validation Based on In Situ Data
4.2.2. Cross-Validation Compared to MODIS LST and SST Products
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bechtel, B. A New Global Climatology of Annual Land Surface Temperature. Remote Sens. 2015, 7, 2850–2870. [Google Scholar] [CrossRef]
- Bright, R.M.; Davin, E.; O’Halloran, T.; Pongratz, J.; Zhao, K.; Cescatti, A. Local temperature response to land cover and management change driven by non-radiative processes. Nat. Clim. Change 2017, 7, 296–302. [Google Scholar] [CrossRef]
- Cai, M.; Ren, C.; Xu, Y.; Lau, K.K.-L.; Wang, R. Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology—A case study of Yangtze River Delta, China. Urban Clim. 2018, 24, 485–502. [Google Scholar] [CrossRef]
- Keenan, T.F.; Riley, W.J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Change 2018, 8, 825–828. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Shen, H.; Cheng, Q.; Zhang, L. Generating Comparable and Fine-Scale Time Series of Summer Land Surface Temperature for Thermal Environment Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2136–2147. [Google Scholar] [CrossRef]
- Myneni, R.B.; Keeling, C.D.; Tucker, C.J.; Asrar, G.; Nemani, R.R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar] [CrossRef]
- Peng, S.-S.; Piao, S.; Zeng, Z.; Ciais, P.; Zhou, L.; Li, L.Z.X.; Myneni, R.B.; Yin, Y.; Zeng, H. Afforestation in China cools local land surface temperature. Proc. Natl. Acad. Sci. USA 2014, 111, 2915–2919. [Google Scholar] [CrossRef]
- Tajfar, E.; Bateni, S.M.; Lakshmi, V.; Ek, M. Estimation of surface heat fluxes via variational assimilation of land surface temperature, air temperature and specific humidity into a coupled land surface-atmospheric boundary layer model. J. Hydrol. 2020, 583, 124577. [Google Scholar] [CrossRef]
- Xu, T.; Guo, Z.; Xia, Y.; Ferreira, V.G.; Liu, S.; Wang, K.; Yao, Y.; Zhang, X.; Zhao, C. Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States. J. Hydrol. 2019, 578, 124105. [Google Scholar] [CrossRef]
- Li, K.; Qian, Y.; Wang, N.; Li, W.; Qiu, S.; Ma, L.; Li, C.; Sun, D.; Liu, Y.; Ni, L. A Four-Component Parameterized Directional Thermal Radiance Model for Row Canopies. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Hollmann, R.; Merchant, C.J.; Saunders, R.; Downy, C.; Buchwitz, M.; Cazenave, A.; Chuvieco, E.; Defourny, P.; de Leeuw, G.; Forsberg, R.; et al. The ESA Climate Change Initiative: Satellite Data Records for Essential Climate Variables. Bull. Am. Meteorol. Soc. 2013, 94, 1541–1552. [Google Scholar] [CrossRef]
- Li, Z.-L.; Wu, H.; Duan, S.-B.; Zhao, W.; Ren, H.; Liu, X.; Leng, P.; Tang, R.; Ye, X.; Zhu, J.; et al. Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications. Rev. Geophys. 2023, 61, e2022RG000777. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Cristobal, J.; Sobrino, J.A.; Soria, G.; Ninyerola, M.; Pons, X. Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 339–349. [Google Scholar] [CrossRef]
- McMillin, L.M. Estimation of Sea Surface Temperatures from Two Infrared Window Measurements with Different Absorption. J. Geophys. Research. Part C Ocean. 1975, 80, 5113–5117. [Google Scholar] [CrossRef]
- Atitar, M.; Sobrino, J.A. A Split-Window Algorithm for Estimating LST From Meteosat 9 Data: Test and Comparison with In Situ Data and MODIS LSTs. IEEE Geosci. Remote Sens. Lett. 2009, 6, 122–126. [Google Scholar] [CrossRef]
- Becker, F. The impact of spectral emissivity on the measurement of land surface temperature from a satellite. Int. J. Remote Sens. 1987, 8, 1509–1522. [Google Scholar] [CrossRef]
- Barton, I.J.; Zavody, A.M.; O’Brien, D.M.; Cutten, D.R.; Saunders, R.W.; Llewellyn-Jones, D.T. Theoretical algorithms for satellite-derived sea surface temperatures. J. Geophys. Res. 1989, 94, 3365–3375. [Google Scholar] [CrossRef]
- Caselles, V.; Coll, C.; Valor, E. Land surface emissivity and temperature determination in the whole HAPEX-Sahel area from AVHRR data. Int. J. Remote Sens. 1997, 18, 1009–1027. [Google Scholar] [CrossRef]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Gillespie, A.R.; Abbott, E.A.; Gilson, L.; Hulley, G.; Jiménez-Muñoz, J.-C.; Sobrino, J.A. Residual errors in ASTER temperature and emissivity standard products AST08 and AST05. Remote Sens. Environ. 2011, 115, 3681–3694. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Gillespie, A.; Sabol, D.; Gustafson, W.T. Improved land surface emissivities over agricultural areas using ASTER NDVI. Remote Sens. Environ. 2006, 103, 474–487. [Google Scholar] [CrossRef]
- Malakar, N.K.; Hulley, G.C. A water vapor scaling model for improved land surface temperature and emissivity separation of MODIS thermal infrared data. Remote Sens. Environ. 2016, 182, 252–264. [Google Scholar] [CrossRef]
- Ma, C.; Qian, Y.; Li, K.; Dou, X.; Shen, H.; Tang, H.; Qiu, S.; Zhang, L.; Jia, Y.; Ou-Yang, G. Temperature and Emissivity Retrieval From Hyperspectral Thermal Infrared Data Using Dictionary-Based Sparse Representation for Emissivity. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Becker, F.; Li, Z.-L. Towards a local split window method over land surfaces. Int. J. Remote Sens. 1990, 11, 369–393. [Google Scholar] [CrossRef]
- Hook, S.J.; Gabell, A.R.; Green, A.A.; Kealy, P.S. A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies. Remote Sens. Environ. 1992, 42, 123–135. [Google Scholar] [CrossRef]
- Mushkin, A.; Balick, L.K.; Gillespie, A.R. Extending surface temperature and emissivity retrieval to the mid-infrared (3–5 μm) using the Multispectral Thermal Imager (MTI). Remote Sens. Environ. 2005, 98, 141–151. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; Hu, T.; Liu, X. A Practical Single-Channel Algorithm for Land Surface Temperature Retrieval: Application to Landsat Series Data. J. Geophys. Res. Atmos. 2019, 124, 299–316. [Google Scholar] [CrossRef]
- Ma, L.; Zhao, Y.; Woolliams, E.R.; Dai, C.; Wang, N.; Liu, Y.; Li, L.; Wang, X.; Gao, C.; Li, C.; et al. Uncertainty Analysis for RadCalNet Instrumented Test Sites Using the Baotou Sites BTCN and BSCN as Examples. Remote Sens. 2020, 12, 1696. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, L.; Wang, N.; Qian, Y. Vicarious radiometric calibration/validation of Landsat-8 operational land imager using a ground reflected radiance-based approach with Baotou site in China. J. Appl. Remote Sens. 2017, 11, 044004. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Xu, Z.; Che, T.; Xiao, Q.; Ma, M.; Liu, Q.; Jin, R.; Guo, J.; Wang, L.; et al. The Heihe Integrated Observatory Network: A Basin-Scale Land Surface Processes Observatory in China. Vadose Zone J. VZJ 2018, 17, 1–21. [Google Scholar] [CrossRef]
- Wan, Z.; Hook, S.; Hulley, G. MODIS/Terra Land Surface Temperature/Emissivity 5-Min L2 Swath 1 km V061. 2021. Available online: https://lpdaac.usgs.gov/products/mod11_l2v061/ (accessed on 8 July 2020).
- Wang, W.; Liang, S.; Meyers, T. Validating MODIS land surface temperature products using long-term nighttime ground measurements. Remote Sens. Environ. 2008, 112, 623–635. [Google Scholar] [CrossRef]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Yang, J.; Duan, S.-B.; Zhang, X.; Wu, P.; Huang, C.; Leng, P.; Gao, M. Evaluation of Seven Atmospheric Profiles from Reanalysis and Satellite-Derived Products: Implication for Single-Channel Land Surface Temperature Retrieval. Remote Sens. 2020, 12, 791. [Google Scholar] [CrossRef]
- Skoković, D.; Sobrino, J.A.; Jiménez-Muñoz, J.C. Vicarious Calibration of the Landsat 7 Thermal Infrared Band and LST Algorithm Validation of the ETM+ Instrument Using Three Global Atmospheric Profiles. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1804–1811. [Google Scholar] [CrossRef]
- Tonooka, H. An atmospheric correction algorithm for thermal infrared multispectral data over land-a water-vapor scaling method. IEEE Trans. Geosci. Remote Sens. 2001, 39, 682–692. [Google Scholar] [CrossRef]
- Tonooka, H. Accurate atmospheric correction of ASTER thermal infrared imagery using the WVS method. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2778–2792. [Google Scholar] [CrossRef]
- Tang, B.H.; Shao, K.; Li, Z.L.; Wu, H.; Tang, R. An improved NDVI-based threshold method for estimating land surface emissivity using MODIS satellite data. Int. J. Remote Sens. 2015, 36, 4864–4878. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jimenez-Munoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Shobairi, O.; Li, M. Dynamic Modelling of VFC from 2000 to 2010 Using NDVI and DMSP/OLS Time Series: A Study in Guangdong Province, China. J. Geogr. Inf. Syst. 2016, 8, 205–223. [Google Scholar] [CrossRef]
- Zhao, E.; Gao, C.; Han, Q.; Yao, Y.; Wang, Y.; Yu, C.; Yu, H. An Operational Land Surface Temperature Retrieval Methodology for Chinese Second-Generation Huanjing Disaster Monitoring Satellite Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1283–1292. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Raissouni, N.; Li, Z.-L. A Comparative Study of Land Surface Emissivity Retrieval from NOAA Data. Remote Sens. Environ. 2001, 75, 256–266. [Google Scholar] [CrossRef]
- Kumar, D.; Shekhar, S. Statistical analysis of land surface temperature–vegetation indexes relationship through thermal remote sensing. Ecotoxicol. Environ. Saf. 2015, 121, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Kisi, O.; Kerem Cigizoglu, H. Comparison of different ANN techniques in river flow prediction. Civ. Eng. Environ. Syst. 2007, 24, 211–231. [Google Scholar] [CrossRef]
- Qian, Y.-G.; Li, Z.-L.; Nerry, F. Evaluation of land surface temperature and emissivities retrieved from MSG/SEVIRI data with MODIS land surface temperature and emissivity products. Int. J. Remote Sens. 2013, 34, 3140–3152. [Google Scholar] [CrossRef]
- Obata, K.; Miura, T.; Yoshioka, H. Analysis of the Scaling Effects in the Area-Averaged Fraction of Vegetation Cover Retrieved Using an NDVI-Isoline-Based Linear Mixture Model. Remote Sens. 2012, 4, 2156–2180. [Google Scholar] [CrossRef]
No. | Station | Land Cover | Study Area | Longitude (°) | Latitude (°) | Elevation (m) | LSE |
---|---|---|---|---|---|---|---|
1 | Ulansuhai | Water body | Baotou | 108.7706E | 40.8476N | 977 | 0.9869 |
2 | Bare soil | Bare soil | Baotou | 108.8176E | 40.7978N | 977 | 0.9257 |
3 | Kubuqi desert | Desert | Baotou | 108.6203E | 40.4551N | 977 | 0.8836 |
4 | Baotou sand | Sand | Baotou | 109.6187E | 40.8659N | 1296 | 0.9159 |
5 | Baotou Crop | Vegetation | Baotou | 109.5537E | 40.8708N | 1295 | 0.9718 |
6 | Zhangye wetland | Reed wetland | HRB | 100.4464E | 38.9751N | 1460 | 0.9869 |
7 | Desert | Reaumuria desert | HRB | 100.9872E | 42.1135N | 1054 | 0.8836 |
8 | Yantai Sea | Water body | Yantai | 121.4653E | 37.5148N | 0 | 0.9869 |
Bands | Bands No. | Spectral Range (µm) | Resolution (m) | NEDT/SNR |
---|---|---|---|---|
VNIC | Pan | 0.45~0.90 | 2.5 | ≥28 dB@sun altitude angle is 30° and surface reflectance is 0.03 ≥48 dB@sun altitude angle is 70° and surface reflectance is 0.5 |
B1 | 0.45~0.52 | 10 | ||
B2 | 0.52~0.59 | 10 | ||
B3 | 0.63~0.69 | 10 | ||
B4 | 0.77~0.89 | 10 | ||
B5 | 0.40~0.45 | 10 | ||
B6 | 0.59~0.625 | 10 | ||
B7 | 0.705~0.745 | 10 | ||
B8 | 0.860~1.040 | 10 | ||
IRS | B9 | 7~12 | 16 | NEΔT ≤ 0.1 K@300K |
Instrument | Spectral Range (µm) | Operating Environment (°C) | Accuracy | Resolution | FOV (°) |
---|---|---|---|---|---|
SI-111 | 8~14 | −55~80 | ±0.2 K | 0.1 K | 44 |
KT-15 | 9.6~11.5 | 0~55 | ±0.5 K | 0.06 K | 2 |
102 F | 2~16 | 15~35 | 1 cm−1 | 4 cm−1 | 4.8 |
Study Area | Site | Number of Images |
---|---|---|
Baotou | Ulansuhai | 3 |
Baotou | Bare soil | 3 |
Baotou | Kubuqi desert | 3 |
Baotou | Baotou sand | 2 |
Baotou | Baotou Crop | 3 |
HRB | Zhangye wetland | 4 |
HRB | Desert | 3 |
Yantai | Yantai Sea | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, X.; Li, K.; Zhang, Q.; Ma, C.; Tang, H.; Liu, X.; Qian, Y.; Chen, J.; Li, J.; Li, Y.; et al. Estimation of Land Surface Temperature from Chinese ZY1-02E IRS Data. Remote Sens. 2024, 16, 383. https://doi.org/10.3390/rs16020383
Dou X, Li K, Zhang Q, Ma C, Tang H, Liu X, Qian Y, Chen J, Li J, Li Y, et al. Estimation of Land Surface Temperature from Chinese ZY1-02E IRS Data. Remote Sensing. 2024; 16(2):383. https://doi.org/10.3390/rs16020383
Chicago/Turabian StyleDou, Xianhui, Kun Li, Qi Zhang, Chenyang Ma, Hongzhao Tang, Xining Liu, Yonggang Qian, Jun Chen, Jinglun Li, Yichao Li, and et al. 2024. "Estimation of Land Surface Temperature from Chinese ZY1-02E IRS Data" Remote Sensing 16, no. 2: 383. https://doi.org/10.3390/rs16020383