Sugarcane Yield Estimation Using Satellite Remote Sensing Data in Empirical or Mechanistic Modeling: A Systematic Review
Abstract
:1. Introduction
2. Empirical and Mechanistic Crop Yield Models
2.1. Empirical Models
2.2. Mechanistic Models
2.2.1. Decision Support System for Agrotechnology Transfer (DSSAT)
2.2.2. Agricultural Production Systems Simulator (APSIM)
2.2.3. World Food Studies (WOFOST)
2.2.4. FAO Agroecological Zone Model (FAO-AZM)
2.2.5. AquaCrop
3. Material and Methods
4. Results and Discussion
4.1. Overview
4.2. Accuracy of the Methodologies Discussed in the Selected Papers
4.3. Attributes Used in the Selected Papers That Made Use of Statistical Modeling
4.4. Research Trends
4.5. Limitations
4.6. Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hoffman, N.; Singels, A.; Patton, A.; Ramburan, S. Predicting Genotypic Differences in Irrigated Sugarcane Yield Using the Canegro Model and Independent Trait Parameter Estimates. Eur. J. Agron. 2018, 96, 13–21. [Google Scholar] [CrossRef]
- Pagani, V.; Stella, T.; Guarneri, T.; Finotto, G.; Van Den Berg, M.; Marin, F.R.; Acutis, M.; Confalonieri, R. Forecasting Sugarcane Yields Using Agro-Climatic Indicators and Canegro Model: A Case Study in the Main Production Region in Brazil. Agric. Syst. 2017, 154, 45–52. [Google Scholar] [CrossRef]
- FAOSTAT. FAO Global Statistical Yearbook, FAO Regional Statistical Yearbooks—2021. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 22 August 2022).
- Dimov, D.; Uhl, J.H.; Löw, F.; Seboka, G.N. Sugarcane Yield Estimation through Remote Sensing Time Series and Phenology Metrics. Smart Agric. Technol. 2022, 2, 100046. [Google Scholar] [CrossRef]
- Estes, L.D.; Bradley, B.A.; Beukes, H.; Hole, D.G.; Lau, M.; Oppenheimer, M.G.; Schulze, R.; Tadross, M.A.; Turner, W.R. Comparing Mechanistic and Empirical Model Projections of Crop Suitability and Productivity: Implications for Ecological Forecasting. Glob. Ecol. Biogeogr. 2013, 22, 1007–1018. [Google Scholar] [CrossRef]
- Kern, A.; Barcza, Z.; Marjanović, H.; Árendás, T.; Fodor, N.; Bónis, P.; Bognár, P.; Lichtenberger, J. Statistical Modelling of Crop Yield in Central Europe Using Climate Data and Remote Sensing Vegetation Indices. Agric. For. Meteorol. 2018, 260–261, 300–320. [Google Scholar] [CrossRef]
- Hansen, J.W.; Jones, J.W. Scaling-up Crop Models for Climate Variability Applications. Agric. Syst. 2000, 65, 43–72. [Google Scholar] [CrossRef]
- Huang, J.; Gómez-Dans, J.L.; Huang, H.; Ma, H.; Wu, Q.; Lewis, P.E.; Liang, S.; Chen, Z.; Xue, J.-H.; Wu, Y.; et al. Assimilation of Remote Sensing into Crop Growth Models: Current Status and Perspectives. Agric. For. Meteorol. 2019, 276–277, 107609. [Google Scholar] [CrossRef]
- Knowling, M.J.; White, J.T.; Grigg, D.; Collins, C.; Westra, S.; Walker, R.R.; Pellegrino, A.; Ostendorf, B.; Bennett, B.; Alzraiee, A. Operationalizing Crop Model Data Assimilation for Improved On-Farm Situational Awareness. Agric. For. Meteorol. 2023, 338, 109502. [Google Scholar] [CrossRef]
- Feng, X.; Tian, H.; Cong, J.; Zhao, C. A Method Review of the Climate Change Impact on Crop Yield. Front. For. Glob. Chang. 2023, 6, 1198186. [Google Scholar] [CrossRef]
- Abebe, G.; Tadesse, T.; Gessesse, B. Combined Use of Landsat 8 and Sentinel 2A Imagery for Improved Sugarcane Yield Estimation in Wonji-Shoa, Ethiopia. J. Indian. Soc. Remote Sens. 2022, 50, 143–157. [Google Scholar] [CrossRef]
- Luciano, A.C.D.S.; Picoli, M.C.A.; Duft, D.G.; Rocha, J.V.; Leal, M.R.L.V.; Le Maire, G. Empirical Model for Forecasting Sugarcane Yield on a Local Scale in Brazil Using Landsat Imagery and Random Forest Algorithm. Comput. Electron. Agric. 2021, 184, 106063. [Google Scholar] [CrossRef]
- Muruganantham, P.; Wibowo, S.; Grandhi, S.; Samrat, N.H.; Islam, N. A Systematic Literature Review on Crop Yield Prediction with Deep Learning and Remote Sensing. Remote Sens. 2022, 14, 1990. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote Sensing for Agricultural Applications: A Meta-Review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
- Chao, Z.; Liu, N.; Zhang, P.; Ying, T.; Song, K. Estimation Methods Developing with Remote Sensing Information for Energy Crop Biomass: A Comparative Review. Biomass Bioenergy 2019, 122, 414–425. [Google Scholar] [CrossRef]
- Rembold, F.; Atzberger, C.; Savin, I.; Rojas, O. Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection. Remote Sens. 2013, 5, 1704–1733. [Google Scholar] [CrossRef]
- Hammer, R.G.; Sentelhas, P.C.; Mariano, J.C.Q. Sugarcane Yield Prediction Through Data Mining and Crop Simulation Models. Sugar Tech. 2020, 22, 216–225. [Google Scholar] [CrossRef]
- Roberts, M.J.; Braun, N.O.; Sinclair, T.R.; Lobell, D.B.; Schlenker, W. Comparing and Combining Process-Based Crop Models and Statistical Models with Some Implications for Climate Change. Environ. Res. Lett. 2017, 12, 095010. [Google Scholar] [CrossRef]
- Shi, W.; Tao, F.; Zhang, Z. A Review on Statistical Models for Identifying Climate Contributions to Crop Yields. J. Geogr. Sci. 2013, 23, 567–576. [Google Scholar] [CrossRef]
- Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop Yield Prediction Using Machine Learning: A Systematic Literature Review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Canata, T.F.; Wei, M.C.F.; Maldaner, L.F.; Molin, J.P. Sugarcane Yield Mapping Using High-Resolution Imagery Data and Machine Learning Technique. Remote Sens. 2021, 13, 232. [Google Scholar] [CrossRef]
- Kumar, M.; Das, A.; Chaudhari, K.N.; Dutta, S.; Dakhore, K.K.; Bhattacharya, B.K. Field-Scale Assessment of Sugarcane for Mill-Level Production Forecasting Using Indian Satellite Data. J. Indian. Soc. Remote Sens. 2022, 50, 313–329. [Google Scholar] [CrossRef]
- Pinheiro Lisboa, I.; Melo Damian, J.; Roberto Cherubin, M.; Silva Barros, P.; Ricardo Fiorio, P.; Cerri, C.; Eduardo Pellegrino Cerri, C. Prediction of Sugarcane Yield Based on NDVI and Concentration of Leaf-Tissue Nutrients in Fields Managed with Straw Removal. Agronomy 2018, 8, 196. [Google Scholar] [CrossRef]
- Verma, A.K.; Garg, P.K.; Hari Prasad, K.S.; Dadhwal, V.K. Modelling of Sugarcane Yield Using LISS-IV Data Based on Ground LAI and Yield Observations. Geocarto Int. 2020, 35, 887–904. [Google Scholar] [CrossRef]
- Nihar, A.; Patel, N.R.; Danodia, A. Machine-Learning-Based Regional Yield Forecasting for Sugarcane Crop in Uttar Pradesh, India. J. Indian. Soc. Remote Sens. 2022, 50, 1519–1530. [Google Scholar] [CrossRef]
- Singla, S.K.; Garg, R.D.; Dubey, O.P. Ensemble Machine Learning Methods to Estimate the Sugarcane Yield Based on Remote Sensing Information. RIA 2020, 34, 731–743. [Google Scholar] [CrossRef]
- Fernandes, J.L.; Ebecken, N.F.F.; Esquerdo, J.C.D.M. Sugarcane Yield Prediction in Brazil Using NDVI Time Series and Neural Networks Ensemble. Int. J. Remote Sens. 2017, 38, 4631–4644. [Google Scholar] [CrossRef]
- Krupavathi, K.; Raghubabu, M.; Mani, A.; Parasad, P.R.K.; Edukondalu, L. Field-Scale Estimation and Comparison of the Sugarcane Yield from Remote Sensing Data: A Machine Learning Approach. J. Indian. Soc. Remote Sens. 2022, 50, 299–312. [Google Scholar] [CrossRef]
- Han, S.Y.; Bishop, T.F.A.; Filippi, P. Data-Driven, Early-Season Forecasts of Block Sugarcane Yield for Precision Agriculture. Field Crops Res. 2022, 276, 108360. [Google Scholar] [CrossRef]
- Pignède, E.; Roudier, P.; Diedhiou, A.; N’Guessan Bi, V.H.; Kobea, A.T.; Konaté, D.; Péné, C.B. Sugarcane Yield Forecast in Ivory Coast (West Africa) Based on Weather and Vegetation Index Data. Atmosphere 2021, 12, 1459. [Google Scholar] [CrossRef]
- Shendryk, Y.; Davy, R.; Thorburn, P. Integrating Satellite Imagery and Environmental Data to Predict Field-Level Cane and Sugar Yields in Australia Using Machine Learning. Field Crops Res. 2021, 260, 107984. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B. On the Use of Statistical Models to Predict Crop Yield Responses to Climate Change. Agric. For. Meteorol. 2010, 150, 1443–1452. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Shelia, V.; Wilkens, P.W.; Singh, U.; White, J.W.; Asseng, S.; Lizaso, J.I.; Moreno, L.P.; et al. The DSSAT crop modeling ecosystem. In Advances in Crop Modeling for a Sustainable Agriculture; Boote, K.J., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 173–216. [Google Scholar]
- Keating, B.A.; Robertson, M.J.; Muchow, R.C.; Huth, N.I. Modelling Sugarcane Production Systems I. Development and Performance of the Sugarcane Module. Field Crops Res. 1999, 61, 253–271. [Google Scholar] [CrossRef]
- De Wit, A.; Boogaard, H.; Fumagalli, D.; Janssen, S.; Knapen, R.; Van Kraalingen, D.; Supit, I.; Van Der Wijngaart, R.; Van Diepen, K. 25 Years of the WOFOST Cropping Systems Model. Agric. Syst. 2019, 168, 154–167. [Google Scholar] [CrossRef]
- Doorenbos, J.; Kassam, A.H.; Bentvelsen, C.I.M. Yield Response to Water, FAO Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1979. [Google Scholar]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts Underlying Principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef]
- Kiniry, J.R.; Williams, J.R.; Gassman, P.W.; Debaeke, P. A General, Process-Oriented Model for Two Competing Plant Species. Trans. ASAE 1992, 35, 801–810. [Google Scholar] [CrossRef]
- FAO. Land & Water—CropWat. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/land-water/databases-and-software/cropwat/en/ (accessed on 14 August 2022).
- Marin, F.R.; Jones, J.W. Process-Based Simple Model for Simulating Sugarcane Growth and Production. Sci. Agric. 2014, 71, 1–16. [Google Scholar] [CrossRef]
- Inman-Bamber, N.G. A Growth Model for Sugar-Cane Based on a Simple Carbon Balance and the CERES-Maize Water Balance. S. Afr. J. Plant Soil. 1991, 8, 93–99. [Google Scholar] [CrossRef]
- Singels, A.; Bezuidenhout, C.N. A New Method of Simulating Dry Matter Partitioning in the Canegro Sugarcane Model. Field Crops Res. 2002, 78, 151–164. [Google Scholar] [CrossRef]
- Singels, A.; Jones, M.; Van Der Berg, M. DSSAT v.4.5 DSSAT/CANEGRO: Sugarcane Plant Module: Scientific Documentation; South African Sugarcane Research Institute, International Consortium for Sugarcane Modeling: Mount Edgecombe, South Africa, 2008. [Google Scholar]
- Nadeem, M.; Nazer Khan, M.; Abbas, G.; Fatima, Z.; Iqbal, P.; Ahmed, M.; Ali Raza, M.; Rehman, A.; Ul Haq, E.; Hayat, A.; et al. Application of CSM-CANEGRO Model for Climate Change Impact Assessment and Adaptation for Sugarcane in Semi-Arid Environment of Southern Punjab, Pakistan. Int. J. Plant Prod. 2022, 16, 443–466. [Google Scholar] [CrossRef]
- Pokhrel, P.; Rajan, N.; Jifon, J.; Rooney, W.; Jessup, R.; Da Silva, J.; Enciso, J.; Attia, A. Evaluation of the DSSAT-CANEGRO Model for Simulating the Growth of Energy Cane (Saccharum spp.), a Biofuel Feedstock Crop. Crop Sci. 2022, 62, 466–478. [Google Scholar] [CrossRef]
- Leonaldo De Souza, A.L.D.C.; Leonaldo de Souza, S.; Santos Almeida, A.C.; Lyra, G.B.; Iedo Teodoro, G.B.L.; Ivomberg, R.A.F., Jr.; Rodrigues Santos, D.M. Sugarcane Productivity Simulation under Different Planting Times by DSSAT/CANEGRO Model in Alagoas, Brazil. Emir. J. Food Agric. 2018, 30, 190–198. [Google Scholar] [CrossRef]
- Marin, F.R.; Thorburn, P.J.; Nassif, D.S.P.; Costa, L.G. Sugarcane Model Intercomparison: Structural Differences and Uncertainties under Current and Potential Future Climates. Environ. Model. Softw. 2015, 72, 372–386. [Google Scholar] [CrossRef]
- Ruan, H.; Feng, P.; Wang, B.; Xing, H.; O’Leary, G.J.; Huang, Z.; Guo, H.; Liu, D.L. Future Climate Change Projects Positive Impacts on Sugarcane Productivity in Southern China. Eur. J. Agron. 2018, 96, 108–119. [Google Scholar] [CrossRef]
- Lisson, S.N.; Robertson, M.J.; Keating, B.A.; Muchow, R.C. Modelling Sugarcane Production Systems. Field Crops Res. 2000, 68, 31–48. [Google Scholar] [CrossRef]
- Dias, H.B.; Sentelhas, P.C. Drying-Off Periods for Irrigated Sugarcane to Maximize Sucrose Yields Under Brazilian Conditions. Irrig. Drain. 2018, 67, 527–537. [Google Scholar] [CrossRef]
- An-Vo, D.-A.; Mushtaq, S.; Reardon-Smith, K.; Kouadio, L.; Attard, S.; Cobon, D.; Stone, R. Value of Seasonal Forecasting for Sugarcane Farm Irrigation Planning. Eur. J. Agron. 2019, 104, 37–48. [Google Scholar] [CrossRef]
- De Wit, A.; Boogaard, H. A Gentle Introduction to WOFOST. WUR. 2021. Available online: https://www.wur.nl/en/research-results/research-institutes/environmental-research/facilities-tools/software-models-and-databases/wofost/documentation-wofost.htm (accessed on 22 August 2023).
- Boogaard, H.L.; De Wit, A.J.W.; Te Roller, J.A.; Van Diepen, C.A. WOFOST Control Centre 2.1 and WOFOST 7.1.7. In User’s Guide for the WOFOST Control Centre, 2; Alterra, Wageningen University & Research Centre: Wageningen, The Netherlands, 2014. [Google Scholar]
- Abebe, G.; Tadesse, T.; Gessesse, B. Assimilation of Leaf Area Index from Multisource Earth Observation Data into the WOFOST Model for Sugarcane Yield Estimation. Int. J. Remote Sens. 2022, 43, 698–720. [Google Scholar] [CrossRef]
- Hu, S.; Shi, L.; Huang, K.; Zha, Y.; Hu, X.; Ye, H.; Yang, Q. Improvement of Sugarcane Crop Simulation by SWAP-WOFOST Model via Data Assimilation. Field Crops Res. 2019, 232, 49–61. [Google Scholar] [CrossRef]
- Shi, L.; Hu, S.; Zha, Y. Estimation of Sugarcane Yield by Assimilating UAV and Ground Measurements Via Ensemble Kalman Filter. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8816–8819. [Google Scholar]
- Cardozo, N.P.; De Oliveira Bordonal, R.; La Scala, N. Sustainable Intensification of Sugarcane Production under Irrigation Systems, Considering Climate Interactions and Agricultural Efficiency. J. Clean. Prod. 2018, 204, 861–871. [Google Scholar] [CrossRef]
- Monteiro, L.A.; Sentelhas, P.C. Potential and Actual Sugarcane Yields in Southern Brazil as a Function of Climate Conditions and Crop Management. Sugar Tech. 2014, 16, 264–276. [Google Scholar] [CrossRef]
- Caetano, J.M.; Casaroli, D. Sugarcane Yield Estimation for Climatic Conditions in the State of Goiás. Rev. Ceres 2017, 64, 298–306. [Google Scholar] [CrossRef]
- Dias, H.B.; Sentelhas, P.C. Evaluation of Three Sugarcane Simulation Models and Their Ensemble for Yield Estimation in Commercially Managed Fields. Field Crops Res. 2017, 213, 174–185. [Google Scholar] [CrossRef]
- Marin, F.R.; Carvalho, G.L.D. Spatio-Temporal Variability of Sugarcane Yield Efficiency in the State of São Paulo, Brazil. Pesq. Agropec. Bras. 2012, 47, 149–156. [Google Scholar] [CrossRef]
- Figueira, S.R.F.; Rolim, G.D.S. Economic and Agrometeorological Modeling of Sugarcane Productivity in São Paulo State, Brazil. Agron. J. 2020, 112, 4836–4848. [Google Scholar] [CrossRef]
- Farooq, N.; Gheewala, S.H. Assessing the Impact of Climate Change on Sugarcane and Adaptation Actions in Pakistan. Acta Geophys. 2020, 68, 1489–1503. [Google Scholar] [CrossRef]
- Bahmani, O.; Eghbalian, S. Simulating the Response of Sugarcane Production to Water Deficit Irrigation Using the AquaCrop Model. Agric. Res. 2018, 7, 158–166. [Google Scholar] [CrossRef]
- FAO. AquaCrop Version 7.0, Reference Manual, Annexes. Available online: https://www.fao.org/3/br244e/br244e.pdf/ (accessed on 26 July 2023).
- FAO. The AquaCrop Model—Enhancing Crop Water Productivity; FAO: Rome, Italy, 2021; ISBN 9789251352229. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed]
- Mendeley. Mendeley Reference Manager—2023. Available online: https://www.mendeley.com/reference-management/reference-manager (accessed on 20 June 2023).
- Van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, P.B.; Nascimento, V.F.; Freitas, M.W.D.D. Sensoriamento Remoto Aplicado à Análise de Fogo Em Formações Campestres: Uma Re-Visão Sistemática. Rev. Bras. Cartogr. 2022, 74, 437–458. [Google Scholar] [CrossRef]
- Dias, H.B.; Sentelhas, P.C. Dimensioning the Impact of Irrigation on Sugarcane Yield in Brazil. Sugar Tech. 2019, 21, 29–37. [Google Scholar] [CrossRef]
- Dias, H.B.; Sentelhas, P.C. Sugarcane Yield Gap Analysis in Brazil—A Multi-Model Approach for Determining Magnitudes and Causes. Sci. Total Environ. 2018, 637–638, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Dos Anjos, J.C.R.; Casaroli, D.; Alves Júnior, J.; Paixão, J.S.; Silva, G.C.D.; Moraes, J.M.F.; Anjos Neto, J.G.D.; Medrado, L.D.C.; Almeida, F.D.P.; Santos, D.P. Productivity and Penalty in Sugarcane from Three Meteorological Databases in Jataí-GO. Sci. Elec. Arch. 2023, 16. [Google Scholar] [CrossRef]
- Monteiro, L.A.; Sentelhas, P.C. Sugarcane Yield Gap: Can It Be Determined at National Level with a Simple Agrometeorological Model? Crop Pasture Sci. 2017, 68, 272. [Google Scholar] [CrossRef]
- Monteiro, L.A.; Sentelhas, P.C.; Pedra, G.U. Assessment of NASA/POWER Satellite-based Weather System for Brazilian Conditions and Its Impact on Sugarcane Yield Simulation. Intl J. Climatol. 2018, 38, 1571–1581. [Google Scholar] [CrossRef]
- Rahman, M.M.; Robson, A. Integrating Landsat-8 and Sentinel-2 Time Series Data for Yield Prediction of Sugarcane Crops at the Block Level. Remote Sens. 2020, 12, 1313. [Google Scholar] [CrossRef]
- Brazilian Institute of Geography and Statistics—IBGE. Municipal Agricultural Production (PAM)—2021. Available online: https://sidra.ibge.gov.br/pesquisa/pam/tabelas (accessed on 22 August 2023).
- McFEETERS, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Das, A.; Kumar, M.; Kushwaha, A.; Dave, R.; Dakhore, K.K.; Chaudhari, K.; Bhattacharya, B.K. Machine Learning Model Ensemble for Predicting Sugarcane Yield through Synergy of Optical and SAR Remote Sensing. Remote Sens. Appl. Soc. Environ. 2023, 30, 100962. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of Forest Harvest Type Using Multiple Dates of Landsat TM Imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of Normalized Difference Built-up Index in Automatically Mapping Urban Areas from TM Imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Dubey, S.K.; Gavli, A.S.; Yadav, S.K.; Sehgal, S.; Ray, S.S. Remote Sensing-Based Yield Forecasting for Sugarcane (Saccharum officinarum L.) Crop in India. J. Indian. Soc. Remote Sens. 2018, 46, 1823–1833. [Google Scholar] [CrossRef]
- Fattori Junior, I.M.; Dos Santos Vianna, M.; Marin, F.R. Assimilating Leaf Area Index Data into a Sugarcane Process-Based Crop Model for Improving Yield Estimation. Eur. J. Agron. 2022, 136, 126501. [Google Scholar] [CrossRef]
- Verma, A.K.; Garg, P.K.; Prasad, K.S.H.; Dadhwal, V.K. Variety-Specific Sugarcane Yield Simulations and Climate Change Impacts on Sugarcane Yield Using DSSAT-CSM-CANEGRO Model. Agric. Water Manag. 2023, 275, 108034. [Google Scholar] [CrossRef]
- Dias, H.B.; Inman-Bamber, G.; Bermejo, R.; Sentelhas, P.C.; Christodoulou, D. New APSIM-Sugar Features and Parameters Required to Account for High Sugarcane Yields in Tropical Environments. Field Crops Res. 2019, 235, 38–53. [Google Scholar] [CrossRef]
- Dias, H.B.; Inman-Bamber, G.; Sentelhas, P.C.; Everingham, Y.; Bermejo, R.; Christodoulou, D. High-Yielding Sugarcane in Tropical Brazil—Integrating Field Experimentation and Modelling Approach for Assessing Variety Performances. Field Crops Res. 2021, 274, 108323. [Google Scholar] [CrossRef]
- Dias, H.B.; Sentelhas, P.C. Assessing the Performance of Two Gridded Weather Data for Sugarcane Crop Simulations with a Process-Based Model in Center-South Brazil. Int. J. Biometeorol. 2021, 65, 1881–1893. [Google Scholar] [CrossRef] [PubMed]
- Dias, H.B.; Sentelhas, P.C.; Inman-Bamber, G.; Everingham, Y. Sugarcane Yield Future Scenarios in Brazil as Projected by the APSIM-Sugar Model. Ind. Crops Prod. 2021, 171, 113918. [Google Scholar] [CrossRef]
- Peng, T.; Fu, J.; Jiang, D.; Du, J. Simulation of the Growth Potential of Sugarcane as an Energy Crop Based on the APSIM Model. Energies 2020, 13, 2173. [Google Scholar] [CrossRef]
- Sexton, J.; Everingham, Y.L.; Inman-Bamber, G. A Global Sensitivity Analysis of Cultivar Trait Parameters in a Sugarcane Growth Model for Contrasting Production Environments in Queensland, Australia. Eur. J. Agron. 2017, 88, 96–105. [Google Scholar] [CrossRef]
- Paixão, J.S.; Casaroli, D.; Dos Anjos, J.C.R.; Alves Júnior, J.; Evangelista, A.W.P.; Dias, H.B.; Battisti, R. Optimizing Sugarcane Planting Windows Using a Crop Simulation Model at the State Level. Int. J. Plant Prod. 2021, 15, 303–315. [Google Scholar] [CrossRef]
- Saini, P.; Nagpal, B.; Garg, P.; Kumar, S. CNN-BI-LSTM-CYP: A Deep Learning Approach for Sugarcane Yield Prediction. Sustain. Energy Technol. Assess. 2023, 57, 103263. [Google Scholar] [CrossRef]
- Agarwal, S.; Tarar, S. A Hybrid Approach for Crop Yield Prediction Using Machine Learning and Deep Learning Algorithms. J. Phys. Conf. Ser. 2021, 1714, 012012. [Google Scholar] [CrossRef]
- Bi, L. Deep Learning Approaches for Yield Prediction and Crop Disease Recognition. Ph.D. Thesis, Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, IA, USA, 2022. [Google Scholar]
- Cunha, R.L.D.F.; Silva, B. Estimating Crop Yields with Remote Sensing and Deep Learning. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 273–278. [Google Scholar]
- Kaneko, A.; Kennedy, T.; Mei, L.; Sintek, C.; Burke, M.; Ermon, S.; Lobell, D. Deep Learning for Crop Yield Prediction in Africa. In Proceedings of the the International Conference on Machine Learning AI for Social Good, Long Beach, CA, USA, 9–15 June 2019; pp. 33–37. [Google Scholar]
- Shetty, S.A.; Padmashree, T.; Sagar, B.M.; Cauvery, N.K. Performance Analysis on Machine Learning Algorithms with Deep Learning Model for Crop Yield Prediction. In Data Intelligence and Cognitive Informatics; Jeena Jacob, I., Kolandapalayam Shanmugam, S., Piramuthu, S., Falkowski-Gilski, P., Eds.; Springer: Singapore, 2021; pp. 739–750. ISBN 9789811585296. [Google Scholar]
- Srikamdee, S.; Rimcharoen, S.; Leelathakul, N. Sugarcane Yield and Quality Forecasting Models: Adaptive ES vs. Deep Learning. In In Proceedings of the 2nd International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, Phuket, Thailand, 24 March 2018; pp. 6–11. [Google Scholar]
- Vignesh, K.; Askarunisa, A.; Abirami, A.M. Optimized Deep Learning Methods for Crop Yield Prediction. Comput. Syst. Sci. Eng. 2023, 44, 1051–1067. [Google Scholar] [CrossRef]
- Wang, A.X.; Tran, C.; Desai, N.; Lobell, D.; Ermon, S. Deep Transfer Learning for Crop Yield Prediction with Remote Sensing Data. In Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies, Menlo Park/San Jose, CA, USA, 20 June 2018; pp. 1–5. [Google Scholar]
- Zhu, Y.; Wu, S.; Qin, M.; Fu, Z.; Gao, Y.; Wang, Y.; Du, Z. A Deep Learning Crop Model for Adaptive Yield Estimation in Large Areas. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102828. [Google Scholar] [CrossRef]
- Joshi, A.; Pradhan, B.; Gite, S.; Chakraborty, S. Remote-Sensing Data and Deep-Learning Techniques in Crop Mapping and Yield Prediction: A Systematic Review. Remote Sens. 2023, 15, 2014. [Google Scholar] [CrossRef]
- Oikonomidis, A.; Catal, C.; Kassahun, A. Deep Learning for Crop Yield Prediction: A Systematic Literature Review. N. Z. J. Crop Hortic. Sci. 2023, 51, 1–26. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Alam, M.S.B.; Hassan, M.; Rozbu, M.R.; Ishtiak, T.; Rafa, N.; Mofijur, M.; Shawkat Ali, A.B.M.; Gandomi, A.H. Deep Learning Modelling Techniques: Current Progress, Applications, Advantages, and Challenges. Artif. Intell. Rev. 2023, 56, 13521–13617. [Google Scholar] [CrossRef]
- Baez-Gonzalez, A.; Kiniry, J.; Meki, M.; Williams, J.; Alvarez-Cilva, M.; Ramos-Gonzalez, J.; Magallanes-Estala, A.; Zapata-Buenfil, G. Crop Parameters for Modeling Sugarcane under Rainfed Conditions in Mexico. Sustainability 2017, 9, 1337. [Google Scholar] [CrossRef]
- Thorburn, P.J.; Biggs, J.S.; Palmer, J.; Meier, E.A.; Verburg, K.; Skocaj, D.M. Prioritizing Crop Management to Increase Nitrogen Use Efficiency in Australian Sugarcane Crops. Front. Plant Sci. 2017, 8, 1504. [Google Scholar] [CrossRef] [PubMed]
- Chukalla, A.D.; Mul, M.L.; Van Der Zaag, P.; Van Halsema, G.; Mubaya, E.; Muchanga, E.; Den Besten, N.; Karimi, P. A Framework for Irrigation Performance Assessment Using WaPOR Data: The Case of a Sugarcane Estate in Mozambique. Hydrol. Earth Syst. Sci. 2022, 26, 2759–2778. [Google Scholar] [CrossRef]
- Sonkar, G.; Singh, N.; Mall, R.K.; Singh, K.K.; Gupta, A. Simulating the Impacts of Climate Change on Sugarcane in Diverse Agro-Climatic Zones of Northern India Using CANEGRO-Sugarcane Model. Sugar Tech. 2020, 22, 460–472. [Google Scholar] [CrossRef]
- Vianna, M.D.S.; Nassif, D.S.P.; Dos Santos Carvalho, K.; Marin, F.R. Modelling the Trash Blanket Effect on Sugarcane Growth and Water Use. Comput. Electron. Agric. 2020, 172, 105361. [Google Scholar] [CrossRef]
- Prado, H.D. Ambientes de produção de cana-de-açúcar na região Centro-Sul do Brasil. Informações Agronômicas 2005, 110, 12–17. [Google Scholar]
- Zhu, L.; Liu, X.; Wang, Z.; Tian, L. High-Precision Sugarcane Yield Prediction by Integrating 10-m Sentinel-1 VOD and Sentinel-2 GRVI Indexes. Eur. J. Agron. 2023, 149, 126889. [Google Scholar] [CrossRef]
- Barnes, E.M.; Clarke, T.R.; Richards, S.E.; Colaizzi, P.D.; Haberland, J.; Kostrzewski, M.; Waller, P.; Choi, C.; Riley, E.; Thompson, T.; et al. Coincident Detection of Crop Water Stress, Nitrogen Status, and Canopy Density Using Ground-Based Multispectral Data. In Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, 16–19 July 2000; pp. 1–15. [Google Scholar]
- Gitelson, A.; Merzlyak, M.N. Quantitative Estimation of Chlorophyll-a Using Reflectance Spectra: Experiments with Autumn Chestnut and Maple Leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Saini, P.; Nagpal, B.; Garg, P.; Kumar, S. Evaluation of Remote Sensing and Meteorological Parameters for Yield Prediction of Sugarcane (Saccharum officinarum L.) Crop. Braz. Arch. Biol. Technol. 2023, 66, e23220781. [Google Scholar] [CrossRef]
- Rogers, A.S.; Kearney, M.S. Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices. Int. J. Remote Sens. 2004, 25, 2317–2335. [Google Scholar] [CrossRef]
Model Type | Name/Method | Data Requirements | Spatial Implementation | Complexity | Application |
---|---|---|---|---|---|
Mechanistic | DSSAT | Weather, soil, crop information, and management practices obtained in the field or from RS data. | Forcing, recalibration, updating | Highly complex in the data processing and model operation. | Specific crops |
APSIM | |||||
WOFOST | |||||
FAO-AZM | |||||
AquaCrop | |||||
Empirical | Linear Regression, SVM, ANN, and RF | Features extracted from field and RS data. For further information on features, please see the Supplementary Materials. | Implemented on a pixel basis. | (*) Linear Regression: less complex than ML in data processing and model operation. ML: Moderately complex in data processing and less complex in model operation. | Any crops |
Author (Model Type) | Title | Year | Journal | Influence |
---|---|---|---|---|
Monteiro et al. (2018) [76] (Mechanistic) | “Assessment of NASA/POWER satellite-based weather system for Brazilian conditions and its impact on sugarcane yield simulation” | 2018 | International Journal of Climatology | 14.20 |
Shendryk et al. (2021) [32] (Empirical) | “Integrating satellite imagery and environmental data to predict field-level cane and sugar yields in Australia using machine learning” | 2021 | Field Crops Research | 12.00 |
Dias and Sentelhas (2018) [73] (Mechanistic) | “Sugarcane yield gap analysis in Brazil—A multi-model approach for determining magnitudes and causes” | 2018 | Science of the Total Environment | 11.80 |
Rahman and Robson (2020) [77] (Empirical) | “Integrating Landsat 8 and Sentinel-2 time series data for yield prediction of sugarcane crops at the block level” | 2020 | Remote Sensing | 11.33 |
Fernandes et al. (2017) [28] (Empirical) | “Sugarcane yield prediction in Brazil using NDVI time series and neural networks ensemble” | 2017 | International Journal of Remote Sensing | 11.00 |
Canata et al. (2021) [22] (Empirical) | “Sugarcane yield mapping using high-resolution imagery data and machine learning technique” | 2021 | Remote Sensing | 10.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de França e Silva, N.R.; Chaves, M.E.D.; Luciano, A.C.d.S.; Sanches, I.D.; de Almeida, C.M.; Adami, M. Sugarcane Yield Estimation Using Satellite Remote Sensing Data in Empirical or Mechanistic Modeling: A Systematic Review. Remote Sens. 2024, 16, 863. https://doi.org/10.3390/rs16050863
de França e Silva NR, Chaves MED, Luciano ACdS, Sanches ID, de Almeida CM, Adami M. Sugarcane Yield Estimation Using Satellite Remote Sensing Data in Empirical or Mechanistic Modeling: A Systematic Review. Remote Sensing. 2024; 16(5):863. https://doi.org/10.3390/rs16050863
Chicago/Turabian Stylede França e Silva, Nildson Rodrigues, Michel Eustáquio Dantas Chaves, Ana Cláudia dos Santos Luciano, Ieda Del’Arco Sanches, Cláudia Maria de Almeida, and Marcos Adami. 2024. "Sugarcane Yield Estimation Using Satellite Remote Sensing Data in Empirical or Mechanistic Modeling: A Systematic Review" Remote Sensing 16, no. 5: 863. https://doi.org/10.3390/rs16050863